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Abstract: Leukodystrophies, a group of rare demyelinating disorders, mainly affect the CNS. Clinical
presentation of different types of leukodystrophies can be nonspecific, and thus, imaging techniques
like MRI can be used for a more definitive diagnosis. These diseases are characterized as cerebral
lesions with characteristic demyelinating patterns which can be used as differentiating tools. In this
review, we talk about these MRI study findings for each leukodystrophy, associated genetics, blood
work that can help in differentiation, emerging diagnostics, and a follow-up imaging strategy. The
leukodystrophies discussed in this paper include X-linked adrenoleukodystrophy, metachromatic
leukodystrophy, Krabbe’s disease, Pelizaeus–Merzbacher disease, Alexander’s disease, Canavan
disease, and Aicardi–Goutières Syndrome.

Keywords: leukodystrophies; demyelinating disorders; magnetic resonance imaging; myelin imaging;
white matter disorders

1. Introduction

Leukodystrophies, a group of rare and debilitating disorders affecting the white matter
of the central nervous system, present a complex interplay between pathology and genetics.
This literature review explores the intricate landscape of leukodystrophies, delving into the
pathological mechanisms that underlie these disorders, the genetic intricacies that drive
their manifestation, and the imaging techniques used as part of the diagnosis regimen.
Through a synthesis of recent research findings, this review aims to provide a comprehen-
sive understanding of the histopathological alterations within the central nervous system,
shedding light on how these changes contribute to the clinical presentation and progression
of leukodystrophies.

Simultaneously, this review delves into the pivotal role of genetics in leukodystro-
phies, where monogenic mutations significantly impact the disease onset, severity, and
progression. From advancements in genetic testing methodologies to the identification of
novel genes associated with specific leukodystrophy subtypes, the genetic landscape of
these disorders is rapidly expanding. This synthesis of the latest research in pathology,
genetics, and imaging aims to offer a robust resource for clinicians, researchers, and genetic
counselors striving for a deeper understanding of leukodystrophies and the development
of targeted therapeutic interventions.

Magnetic resonance imaging (MRI) is the primary imaging technique to identify, lo-
calize, and characterize cerebral lesions in patients with leukodystrophy. These disorders
pose a threat to the integrity of the brain and peripheral nerves, with clinical presenta-
tions often being nonspecific [1,2]. Imaging techniques, particularly MRI, play a crucial
role in establishing a definitive diagnosis [3]. Current research suggests that early detec-
tion of leukodystrophy allows for more optimal implementation of therapy treatments,
highlighting the importance of early disease detection [3,4].
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Quantitative MRI, providing insights into myelin and axonal content, condition,
and white matter composition, aids not only in diagnosis, but also in understanding
disease progression [5]. Additionally, genetic testing, focusing on distinct alterations in
specific genes, complements the diagnostic process, with advanced sequencing significantly
accelerating the speed of diagnosis [6–8].

This review specifically concentrates on elucidating the most common leukodystro-
phies that are classified: X-linked adrenoleukodystrophy, metachromatic leukodystrophy,
Krabbe’s disease, Pelizaeus–Merzbacher disease, Alexander’s disease, Canavan disease,
and Aicardi–Goutières Syndrome, offering a nuanced exploration of their clinical pre-
sentations and distinctions seen on MRI to facilitate conclusive and specific diagnoses.
(Figure 1).
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The condition is marked by a mutation in the ABCD1 gene on the X chromosome, which 
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2. Types of Leukodystrophies
2.1. X-Linked Adrenoleukodystrophy

X-linked adrenoleukodystrophy (X-ALD), an X-linked genetic condition impacting
the central and peripheral nervous systems along with the adrenal cortex, primarily man-
ifests in boys and clinically presents with adrenal insufficiency, dysarthria, dysgraphia,
vision, and hearing deficits, as well as neurocognitive and neurobehavioral issues [9,10].
The condition is marked by a mutation in the ABCD1 gene on the X chromosome, which
is responsible for encoding the ALD protein, a transmembrane protein crucial for the
transport of very long chain fatty acid (VLCFA)-CoA esters into the peroxisome [11,12].
Consequently, mutations in the ABCD1 gene lead to diminished VLCFA transport and
widespread accumulation throughout the body [13]. Adrenocortical insufficiency typi-
cally develops in nearly all affected males around age 7.5, with the onset of progressive
myelopathy and peripheral neuropathy occurring in adulthood [9,11]. Sixty percent of male
patients will experience progressive and often fatal cerebral demyelination, a phenomenon
detectable via the instrumental use of MRI, facilitating early detection and improving
patient outcomes [14,15].
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Newborn screening for X-ALD has gained widespread recommendation for imple-
mentation into the uniform screening panel in the United States, with over half of the
states initiating screening. The diagnosis of X-ALD requires the detection of the ABCD1
pathogenic variant and the accumulation of VLCFAs [9]. Cerebral X-ALD cases present
with distinctive white matter demyelination and inflammation, visualized on MRI, with
lesions categorized into three zones [11,16,17]. These zones delineate the loss of axons,
oligodendrocytes, and myelin sheaths, highlighting gadolinium enhancement and active
macrophage involvement. Brain MRIs exhibit hyperintense confluent lesions of the cor-
pus callosum and parieto-occipital white matter, progressing to impact the entire cerebral
white matter in adulthood [18–22]. Routine brain MRIs are conducted to monitor disease
progression, contrasting with the less utilized spinal cord imaging, which demonstrates
corticospinal tract and dorsal column degeneration [23–25]. Furthermore, spinal cord MRI
demonstrates corticospinal tract and dorsal column degeneration, resulting in the appear-
ance of a flattened spinal cord and the reduction in anteroposterior diameters [23–25]. The
pathophysiology of X-ALD, succinctly captured in Figure 2, underlines the prevention of
VLCFA entry into the peroxisome due to ABCD1 gene mutations, resulting in the clinical
phenotype arising from VLCFA accumulation throughout the body.
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Figure 2. Pathophysiology of X-Linked Adrenoleukodystrophy: Mutations in the ABCD1 gene on the
X chromosome result in the prevention of very long chain fatty acids (VLCFAs) into the peroxisome,
resulting in the clinical phenotype due to VLCFA accumulation throughout the body.

While MRI remains the gold standard for lesion detection in X-ALD, emerging studies
in other neurodegenerative disorders suggest the potential utility of Neurite Orientation
Dispersion and Density Imaging (NODDI) in revealing increased orientation dispersion
and a higher surface area of neurodegeneration compared to structural MRI and diffusion
tensor imaging [26,27]. Additionally, myelin water fraction (MWF) imaging, assessing the
quantity of myelin via specific water pools, presents a promising avenue for detecting early
X-ALD lesions in the future [28].

2.2. Metachromatic Leukodystrophy

Metachromatic leukodystrophy, an autosomal recessive lysosomal storage disease, is
characterized by a deficiency of arylsulfatase A (ARSA) due to a mutation in the arylsulfatase
A gene on chromosome 22q13.3-qter [29,30]. ARSA plays a crucial role in the degradation
of sulphatide, a membrane lipid found in myelin, the distal tubules of the kidney, and bile
duct epithelia [29]. The deficiency of ARSA leads to the accumulation of sulphatide primar-
ily affecting the nervous system and resulting in progressive demyelination, presenting
clinically with ataxia, optic atrophy, dementia, and decerebrate posturing [29,31].

Children suspected of metachromatic leukodystrophy often exhibit delays in meeting
developmental milestones and a decline in both gross and fine motor skills [30]. Diagnosis
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involves laboratory studies to assess ARSA levels, with criteria ranging from undetectable to
less than 10% of the normal value [10]. Distinguishing metachromatic leukodystrophy from
arylsulfatase A pseudodeficiency, present in about 1% of the general population, requires
additional assessments such as urine sulfatide levels, radiolabeled sulfatide fibroblast
loading, and DNA analysis.

As a demyelinating condition, MRI reveals brain demyelination and abnormalities
in nerve conduction [32,33]. Initial impact occurs in the central and periventricular white
matter, progressing to subcortical structures. Extreme cases may exhibit projection fiber
involvement, leading to distinctive patterns like the “tigroid pattern” and “leopard skin”
pattern as shown in Figure 3 [34,35]. Nearly all patients with metachromatic leukodystrophy
show splenial corpus callosum demyelination [36]. T2-weighted FLAIR images display
symmetric, confluent hyperintense areas in the periventricular white matter, consistent
with the demyelinating nature of the disorder [37]. Lastly, MRI modalities, including
diffusion-weighted parameters, demyelination load, and MR spectroscopy, hold potential
in aiding early diagnosis by providing insights into nonspecific white matter changes
associated with metachromatic leukodystrophy [38–40].
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2.3. Krabbe’s Disease

Krabbe disease (KD), an inherited lysosomal storage disease, poses a diagnostic
challenge due to its diverse clinical presentation and overlap with other neurodegenerative
disorders [41]. This disease, also known as Globoid Cell Leukodystrophy, results from a
defect in the GALC gene, leading to the accumulation of toxic myelin products [42]. KD
typically manifests in infants under the age of six but can also occur in adolescents or
adults, presenting symptoms such as muscle weakness, spasticity, hypertonia, myoclonic
seizures, and sensory deficits [42,43]. At the presymptomatic stage, stem cell transplant
can improve patient prognosis; however, without a family history of KD, the disorder is
often not identified until the symptomatic stage. Once symptomatic, the patient becomes
ineligible for transplantation [44]. For this reason, the goal of care is to screen infants for
KD and identify it before symptoms appear.

Infant screening for KD is limited across the U.S., highlighting the importance of
early identification before symptom onset [45]. Consensus guidelines recommend a three-
step screening, diagnosis, and treatment process, which is detailed in Figure 4 [44]. The
initial step involves a dried blood spot assay for GALC enzyme activity, followed by
diagnostic tests at a specialty care center (SCC). Neurodiagnostic studies, including MRI
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and CSF analysis, are conducted at a human stem cell transplantation center (HSCT) upon
confirmation of the diagnosis.
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The MRI findings in KD exhibit distinctive patterns across different subtypes, such as
optic nerve and cervical cord enlargement in the infantile form and T2-hyperintense changes
in corticospinal tracts in the adult form [46–48]. Psychosine accumulation in the CSF serves
as a diagnostic tool, offering potential insights into gene therapy targets [47,49,50]. Despite
its severity, KD diagnosis relies on a combination of clinical, genetic, and imaging assess-
ments, emphasizing the significance of early screening and multidisciplinary approaches
for optimal patient management.

2.4. Pelizaeus–Merzbacher Disease

Pelizaeus–Merzbacher disease (PMD) stands out as a rare leukodystrophy and CNS
demyelinating disease, with its clinical manifestation documented by Friederich Pelizaeus
and Ludwig Merzbacher in 1885 [51]. This neurological disorder presents symptoms such
as nystagmus, spastic paralysis, and ataxia, leading to a progressive decline in coordination,
motor skills, and cognitive function [52]. The X-linked recessive inheritance of PMD is
attributed to mutations in the proteolipid protein 1 (PLP1) gene on the X chromosome,
resulting in varied levels of decreased myelin production [51]. Classification into Types I,
II, and III is contingent on the specific mutation, with Type I being the most severe [51].

Diagnosing PMD poses complexity due to overlapping symptoms with other leukodys-
trophies, necessitating the exclusion of alternative diagnoses [51]. Neonatal onset presents
a more severe prognosis compared to the nearly benign adult form [53]. Inoue et al. intro-
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duced an interphase fluorescence in situ hybridization (FISH) assay for efficient screening,
successfully diagnosing PMD and detecting carriers [54]. Molecular analysis further aids
in identifying the size and location of gene duplications. Imaging via MRIs reveals gliosis
around demyelinated areas, with T1-weighted sections indicating hypointensity and T2-
weighted images displaying hyperintensity, reflecting demyelination (Figure 5). Magnetic
resonance spectroscopy (MRS) findings in PMD cases vary, necessitating additional research
for conclusive diagnostic utility [55,56]. Sumida et al.’s retrospective study correlated MRI
scans with disease severity, emphasizing high T2-weighted intensity in the brainstem or
corticospin tract [57,58]. CSF analysis indicates a low level of N-acetyl aspartate (NAA),
correlating with axonal damage and disease severity [57,58].
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While FISH, MRI, and CSF analysis contribute to PMD identification, the reliance
on exclusionary diagnosis due to overlapping findings underscores the need for further
research. Current treatments focus on supportive care to alleviate symptoms, emphasizing
the imperative for ongoing research to enhance the diagnosis and treatment of PMD and
ultimately improve patients’ quality of life.

2.5. Alexander Disease

First identified in 1949, Alexander disease (AxD) constitutes a form of leukodystrophy
affecting the CNS white matter, marked by myelin sheath degeneration due to a defect in
the Glial Fibrillary Acidic Protein (GFAP) gene [59,60]. Although predominantly associated
with infants, clinical manifestations can arise at neonatal, infantile, juvenile, and adult
stages [61]. A defining diagnostic feature of AxD is the presence of Rosenthal fibers and
eosinophilic granular bodies observed via light microscopy and categorized into two
subtypes: Type I and Type II [62].

The exclusive defect linked to AxD originates from mutations in the GFAP gene on
chromosome 17q21.31, responsible for encoding a protein expressed in astrocytes. This
mutation leads to the formation of GFAP aggregates, known as Rosenthal fibers, causing
astrocyte degeneration and demyelination [63]. Quantification of GFAP levels, notably
elevated in the cerebrospinal fluid (CSF) of AxD patients, provides valuable diagnostic
insight, although marginal elevations may occur when measured in blood [64].

Regarding imaging, MRI observations typically reveal abnormal signals in the frontal
white matter, periventricular rim, or structures such as the caudate head, thalamus, and
brainstem [65]. Figure 6 illustrates increased T2-weighted signal intensity and decreased
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T1-weighted signal intensity on MRI, aligning with AxD characteristics [66]. Van der
Knaap et al. outlined five MRI criteria, necessitating the fulfillment of four for an imaging-
based diagnosis: extensive cerebral frontal white matter abnormalities, periventricular
rim with altered T2 and T1 signals, abnormalities in basal ganglia and thalami, brainstem
irregularities, and contrast enhancement in specific structures [65]. Notably, hindbrain
structural abnormalities, including brainstem atrophy and cervical spinal cord signs, are
distinctive features of later-onset presentations [60].
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Figure 6. MRIs characteristic of Alexander Disease; the right image demonstrates an increased signal
of T2, the middle image demonstrates a decreased signal of T1, and the right image is a T2 midline
sagittal section demonstrating atrophy. Reprinted/adapted with permission from Ref. [66].

Lastly, while autopsies are the only definitive diagnostic tool for Rosenthal fiber
analysis, current diagnosis techniques revolve around histological examination via brain
biopsy, MRI diagnosis, and gene analysis for the GFAP gene [67].

2.6. Canavan Disease

Described for the first time in 1931, Canavan Disease stands as an autosomal recessive
leukodystrophy predominantly impacting the brain’s white matter [68]. The ASPA gene on
chromosome 17p13.2 is implicated, encoding aspartoacylase; a deficiency in this gene leads
to the accumulation of N-acetyl-L-aspartic acid (NAA), associated with oligodendrocyte
dysfunction and myelin degradation [68]. Primarily affecting infants, the disease is more
prevalent in Ashkenazi Jews, although occurrences in other populations have been docu-
mented [69]. Excessive NAA is believed to disrupt myelination pathways, contributing to
abnormal myelination and tissue spongy degeneration [69,70]. While there are no curative
therapies, ongoing research explores the introduction of the ASPA gene into functional
neural progenitor cells, showing promise in mouse models [71,72].

Confirmation of Canavan disease involves culturing skin fibroblasts with NAA and
assessing NAA levels via gas chromatography-mass spectrometry after incubation; elevated
levels indicate aspartoacylase deficiency, distinguishing it from other leukodystrophies like
Alexander’s disease, which exhibit normal NAA levels. Aspartoacylase expression can also
be determined via chorionic villus biopsy for prenatal diagnoses [73,74].

Similar to other white matter diseases, Canavan disease manifests hyperintense T2-
weighted images in subcortical U fibers [75]. T1 signals appear hypointense with diffuse
signals throughout the white matter and brainstem [76]. MRI reveals diffuse cerebral white
matter degeneration, with preserved structures like the periventricular rim. Follow-up
MRI scans for infants may exhibit progressive ventriculomegaly and atrophy [77,78]. Other
modalities, such as CT, may depict white matter hypodensity [78].
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2.7. Aicardi–Goutières Syndrome

Aicardi–Goutières Syndrome (AGS) stands as a rare genetically inherited neuroinflam-
matory disorder impacting the brain, immune system, and skin, presenting progressively
with symptoms such as dystonia/spasticity, hepatosplenomegaly, elevated liver enzymes,
thrombocytopenia, chilblain-like skin lesions, and neurological abnormalities, including
microcephaly, CSF lymphocytosis, and developmental delays [79–81]. These symptoms,
reminiscent of TORCH congenital infections despite the absence of active viral infection,
have led to the term “Pseudo-TORCH syndrome” for AGS. The diagnosis involves a multi-
faceted approach, encompassing a comprehensive understanding of its distinctive clinical
presentation, specific imaging findings, intricate genetic underpinnings, and discerning
cerebrospinal fluid (CSF) and bloodwork biomarkers [82–84]. Effective management and
prognosis evaluation often necessitate vigilant follow-up imaging procedures to monitor
disease progression and assess treatment efficacy.

MRI study findings play a pivotal role in identifying characteristic brain abnormalities
associated with AGS. These findings commonly include the loss of white matter, particularly
in the periventricular and deep white matter regions, as well as calcifications in the basal
ganglia and dentate nuclei [79,81,85]. Additionally, the presence of ventriculomegaly and
the thinning of the corpus callosum are frequently observed, contributing to the distinctive
radiological profile that aids in distinguishing AGS from other neurological conditions [80].

MRI studies play a crucial role in identifying characteristic brain abnormalities as-
sociated with AGS, including loss of white matter in periventricular and deep regions,
calcifications in the basal ganglia and dentate nuclei, ventriculomegaly, and the thinning of
the corpus callosum [79,81,85]. AGS, inherited in an autosomal recessive pattern, is closely
linked to genetic mutations involving genes associated with the intracellular metabolism of
nucleic acids, such as TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR,
and IFIH1 [79,82,86–90]. These mutations lead to increased calcium deposits in the brain, be-
lieved to result in an overactive immune system [91]. The strong association between AGS
and a predisposition to other autoimmune conditions, like systemic lupus erythematosus,
has been revealed in recent research [92,93].

Specific abnormalities in the CSF, such as elevated levels of interferon-alpha, neopterin,
and other proinflammatory cytokines, along with the presence of autoantibodies, aid in
differentiating AGS from related conditions. Advanced genomic sequencing methods,
including Next-Generation Sequencing (NGS) and Whole-Exome Sequencing (WES), have
enhanced diagnostic accuracy and facilitate the identification of novel genetic variants.
Follow-up imaging, particularly serial MRI examinations, is crucial for monitoring disease
progression, tracking the evolution of abnormalities, and optimizing individualized man-
agement strategies, underscoring the significance of a multidisciplinary approach in AGS
care.

3. Conclusions

In conclusion, the spectrum of leukodystrophies presents a complex and diverse
array of disorders, each with distinct pathological and genetic underpinnings. This com-
prehensive review has delved into the intricacies of various leukodystrophies, exploring
their pathology, genetic manifestations, diagnostic modalities, and implications for patient
management.

Leukodystrophies, whether X-linked adrenoleukodystrophy, Metachromatic leukodys-
trophy, Krabbe’s disease, Pelizaeus–Merzbacher disease, Canavan disease, or
Aicardi–Goutières Syndrome, share commonalities in their impact on the white matter of
the central nervous system. Through advanced imaging techniques like magnetic resonance
imaging (MRI), clinicians can discern specific patterns of demyelination and other struc-
tural alterations critical for accurate diagnosis and prognosis. Moreover, the integration
of advanced genomic sequencing methods, such as Next-Generation Sequencing (NGS)
and Whole-Exome Sequencing (WES), has significantly improved diagnostic precision,
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allowing for the identification of novel genetic variants and a deeper understanding of
disease mechanisms.

While significant progress has been made in elucidating the genetic landscape and di-
agnostic tools for leukodystrophies, challenges persist. Diagnosing these disorders remains
intricate due to overlapping clinical presentations, necessitating a meticulous exclusion of
other leukodystrophies. In the absence of a definitive cure for many leukodystrophies, sup-
portive and symptomatic management remains the mainstay of treatment. The importance
of early detection, especially in disorders like X-linked adrenoleukodystrophy, highlights
the potential impact on therapeutic interventions and patient outcomes.

As we continue to unravel the complexities of leukodystrophies, ongoing research
endeavors, innovative diagnostic technologies, and collaborative multidisciplinary ap-
proaches offer hope for improved diagnostic accuracy, targeted therapeutic interventions,
and enhanced quality of life for individuals affected by these challenging disorders. The
integration of advanced imaging, genetic testing, and evolving diagnostic techniques marks
a promising path forward in our pursuit of comprehensive understanding and effective
management of leukodystrophies.
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