
Citation: Sadeghi, J.; Venney, C.J.;

Wright, S.; Watkins, J.; Manning, D.;

Bai, E.; Frank, C.; Heath, D.D. Aquatic

Bacterial Community Connectivity:

The Effect of Hydrological Flow on

Community Diversity and

Composition. Environments 2024, 11,

90. https://doi.org/10.3390/

environments11050090

Academic Editor: Chin H. Wu

Received: 12 March 2024

Revised: 15 April 2024

Accepted: 24 April 2024

Published: 28 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

environments 

Article

Aquatic Bacterial Community Connectivity: The Effect of
Hydrological Flow on Community Diversity and Composition
Javad Sadeghi 1 , Clare J. Venney 1, Shelby Wright 1, James Watkins 1, Dana Manning 1, Edel Bai 1, Chelsea Frank 1

and Daniel D. Heath 1,2,*

1 Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada;
sadeghij@uwindsor.ca (J.S.); venney@uwindsor.ca (C.J.V.); wright24@uwindsor.ca (S.W.);
watkinsj@uwindsor.ca (J.W.); manningd@uwindsor.ca (D.M.); baie@uwindsor.ca (E.B.);
frankc@uwindsor.ca (C.F.)

2 Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada
* Correspondence: dheath@uwindsor.ca

Abstract: Microbial communities are vital components of freshwater ecosystems due to their role in
nutrient cycling and energy flow; however, the mechanisms driving their variation are still being
explored. In aquatic systems, water flow (hydrology) can impact microbial community composition
through community connectivity; however, the details of hydrology’s effects on microbial connec-
tivity remain unclear. To address this question, we used 16S rRNA metabarcoding to determine
bacterial community composition and connectivity across flow transects in three connected Great
Lakes waterbodies with very different water-flow regimes: the Little River (high flow), the Detroit
River (moderate flow), and Lake Erie (low flow). Bacterial alpha diversity (Chao1) did not differ
among the three locations or sample sites along the transects. Analyses of beta diversity using
community dissimilarity matrices identified significant differences among the three locations and
among sample sites within locations. Bacterial community connectivity varied among the three
locations, with a significant distance–decay relationship observed only in the low-flow location,
which is indicative of connectivity driven by spatial proximity. Directional analyses showed that the
water-flow direction affected bacterial similarity, consistent with the expected hydrological effects
on community connectivity and previous published work. Our results indicate that (1) microbial
community composition varies within and among even geographically close sampling locations
and (2) the specific water-flow regime appears to affect bacterial community connectivity. Including
hydrology in models of bacterial community composition will improve our understanding of the
relative roles of selection versus stochastic effects on bacterial community diversity and composition
in freshwater ecosystems.

Keywords: bacterial connectivity; 16S meta-barcoding; microbial community; aquatic ecosystems;
community diversity

1. Introduction

Microorganisms play a pivotal role in ecosystems where their community composi-
tion and activity directly influence biogeochemical cycles and energy flow [1,2]. A major
component of the whole ecosystem energy budget is transferred through the microbial
community, making them critical, but often overlooked, members of the aquatic food
web [3]. Thus, the composition, diversity, and function of aquatic microbial communi-
ties can dictate ecosystem-level biogeochemical cycling and, since those biogeochemical
processes affect ecosystem function, ecosystem health, and stability. Although much re-
search has been focused on the composition of microbial communities in widely diverse
ecosystems, the forces driving microbial community variation (i.e., bacterial community
composition) and the mechanisms behind spatial variation in community composition still
require further characterization.
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Many factors contribute to the variation observed in aquatic bacterial community
composition among sites and ecosystems [4]. Bacterial communities can be very specialized,
with high levels of spatial and temporal variation, where significant differences can be
found even a few meters apart in the water column [5]. While the factors driving bacterial
community variation are not always resolved, they generally include both biotic and
abiotic factors [4,6]. Furthermore, the ongoing discussion of the relative contributions of
environmental selection versus ecological drift (neutral factors) indicates that both processes
are important, and their relative contribution is context dependent [7,8]. One widely
recognized factor contributing to variation in the composition of bacterial communities
(especially aquatic ones) is connectivity, or bacterial dispersal among communities [9,10].
Indeed, microbial connectivity is widely recognized as an important driver of community
structure across a diverse array of habitats, e.g., Arctic watersheds [11], floodplain soils [12],
the Laurentian Great Lakes [13], agricultural and urban land/waterscapes [14,15], and
even deep-sea sediments [16]. Thus, while patterns of microbial connectivity have been
reported, there is less known about how it contributes to the mechanisms driving bacterial
community composition in aquatic habitats.

In aquatic ecosystems, microbial community composition is affected by key environ-
mental factors, such as water chemistry [17], season [18], pH [19], carbon availability [20],
and biotic interactions [4,21], among others. However, the hydrology of the ecosystem can
also have profound effects on the structure of microbial communities [13,22,23]. For exam-
ple, high water velocity was reported to reduce microbial adhesion and the formation of
biofilms relative to habitats with lower water velocities [22,24]. Microbial community con-
nectivity fundamentally depends on the rate of microbial dispersal among patches within
an environment [25,26]. Thus, high habitat connectivity (e.g., due to high water flow) is ex-
pected to result in reduced beta diversity across aquatic landscapes. However, connectivity
is also strongly affected by landscape characteristics and structure, as well as the mobility
of organisms within the landscape [12,27]. Since most microbes are non-motile [19], they
depend on passive means of transportation such as water flow [19,28]. Thus, specific hy-
drological conditions may be important in determining microbial community connectivity
because water flow can facilitate microbial dispersal in aquatic ecosystems [12].

The goal of this study was to characterize bacterial community composition and
connectivity within and among aquatic habitats that differed in water-flow regimes. We
predicted that higher water-flow habitats will exhibit greater connectivity and, hence, more
homogeneous microbial community composition relative to lower-flow sites, since aquatic
microbial community connectivity is expected to be affected by water flow. To investigate
this, we characterized bacterial community composition using 16S rRNA metabarcoding
along flow transects in three physically connected water bodies in the Huron–Erie corridor
of the Laurentian Great Lakes. Specifically, we sampled the Little River (a high-flow
tributary of the Detroit River), the Detroit River (a moderate-flow tributary of Lake Erie),
and Lake Erie (low flow). We tested two hypotheses: (1) bacterial community composition
and diversity would vary among the sample locations due to habitat differences associated
with the flow (and possibly other abiotic differences) and (2) low-flow locations would
exhibit lower connectivity relative to higher-flow locations and, hence, greater bacterial
community divergence among sample sites. While hydrology has been previously explored
as a factor in microbial community composition (e.g., [11,13]), few studies have addressed
water-flow effects on bacterial communities at fine spatial scales. If bacterial community
composition is significantly affected by fine spatial scale (<1000 m) hydrological effects,
then factors such as dispersal (connectivity) and ecological drift will need to be included
in models of microbial ecosystem dynamics. Additionally, such fine-scale effects should
inform future lotic versus lentic water-body sampling design for microbial community
analyses. Thus, our results address issues in basic microbial ecology as well as applications
of metabarcoding for aquatic microbiome monitoring.
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2. Materials and Methods

This research was conducted as part of a senior undergraduate course in Evolutionary,
Ecological, and Environmental Genetics in March 2019, where students contributed to the
design, execution, and analyses of the project and data. The applications of eDNA metabar-
coding (e.g., bacterial metabarcoding) are far-reaching, and early practical experiences in
these technologies are a critical part of genetics and environmental education.

2.1. Sampling

Water samples were collected on 21–23 March 2019 in three days from three connected
water bodies in the Huron–Erie corridor of the Laurentian Great Lakes in Southwestern
Ontario, Canada (Figure 1). The three sampling locations varied considerably in flow rates:
the Little River, a tributary to the upper Detroit River (“LR”, mean flow rate = 1.2 m/s;
Table 1), the Detroit River, a tributary of Lake Erie (“DR”, mean flow rate = 0.67 m/s;
Table 1), and Lake Erie (“LE”, mean flow rate = 0.51 m/s; Table 1). While the three sampling
locations vary in hydrological flow, they are all within a 50 km radius and connected by
water flow along the Huron–Erie corridor (Figure 1). At each location, we sampled water
at ∼0.5 m depth along a flow transect, taking two replicate samples per site (500 mL each),
and the geographical position was determined using GPS. The sampling gear and water
bottles were cleaned and sterilized with a 10% bleach treatment followed by 2–3 rinses
with ddH2O in the lab before each sampling event. In Lake Erie, the sample sites were
approximately two kilometers apart along the shore transect, but the Detroit River and
Little River sampling site distances varied due to access limitations (Figure 1). In the
Detroit River, there was a gap between two sampling sites of approximately 6.24 km due
to industrial sites preventing access to the river. Overall, sample sites spanned ~6.0 km in
Little River, ~19 km in Detroit River, and ~22 km in Lake Erie (Figure 1). Field negative
controls were conducted at the first, third, and tenth sampling sites along each transect to
test for field contamination. The field negative controls consisted of ddH2O transferred
from one sterile bottle to another and were otherwise treated the same as the other samples
in the field and the lab. Overall, 60 samples (20 samples per sampling location (LR, DR, and
LE)) were collected. The samples were held on ice and filtered (500 mL) within two hours
of collection using 0.2 µm 47 mm diameter polycarbonate filters (Isopore™, Millipore, MA,
USA). The filters were stored at −20 ◦C until DNA extractions were performed.

Table 1. Summary of abiotic characteristics of the three sampled locations.

Description Little River Detroit River Lake Erie Source

Flow rate 1.2 m/s 0.67 m/s 0.51 m/s

https://www.glerl.noaa.gov/res/glcfs/currents/glcfs-
currents-month.php?mon=12 (accessed on 10 April 2024);

https://nauticalcharts.noaa.gov/publications/coast-pilot/
files/cp6/CPB6_C07_WEB.pdf (accessed on 10 April 2024); [29]

Daily discharge (m3/s) a 0.5 5480 162 b https://wateroffice.ec.gc.ca/search/historical_e.html
(accessed on 10 April 2024)

Daily water level (m) c 1.30 174 174 https://wateroffice.ec.gc.ca/search/historical_e.html
(accessed on 10 April 2024)

Maximum depth (m) N/A 15.2 64 Google
Shoreline length (km) 12 93.9 1400 Google

Length of Sampling (km) 6 19 22 Google

Total phosphorus (ug/L) d N/A 22.6 13
https://files.ontario.ca/moe_mapping/downloads/2Water/
Lake_St_Clair_Water_Quality/Lake_St_Clair_Water_Quality_

Data__2023-03-08.csv (accessed on 10 April 2024)

Total nitrogen (mg/L) N/A 0.57 0.8

https://files.ontario.ca/moe_mapping/downloads/2Water/
Lake_St_Clair_Water_Quality/Lake_St_Clair_Water_Quality_

Data__2023-03-08.csv (accessed on 10 April 2024);
https://ecoreportcard.org/report-cards/lake-erie/indicators/

total-nitrogen/ (accessed on 10 April 2024)

a Recorded 20 March 2017 (Little River), and 20 March 2014 (Detroit River). b Daily discharge for Well and canal
diversion from Lake Erie on 20 March 2018. c Water level is measured based on the coordinates for Detroit River
(42◦08′39′′ N, 83◦06′49′′ W) and Lake Erie (42◦01′36′′ N, 82◦44′05′′ W). d Total phosphorus was measured on 30
May 2019, for the Detroit River and on 27 June 2019, for Lake Erie. N/A indicates data is not available.

https://www.glerl.noaa.gov/res/glcfs/currents/glcfs-currents-month.php?mon=12
https://www.glerl.noaa.gov/res/glcfs/currents/glcfs-currents-month.php?mon=12
https://nauticalcharts.noaa.gov/publications/coast-pilot/files/cp6/CPB6_C07_WEB.pdf
https://nauticalcharts.noaa.gov/publications/coast-pilot/files/cp6/CPB6_C07_WEB.pdf
https://wateroffice.ec.gc.ca/search/historical_e.html
https://wateroffice.ec.gc.ca/search/historical_e.html
https://files.ontario.ca/moe_mapping/downloads/2Water/Lake_St_Clair_Water_Quality/Lake_St_Clair_Water_Quality_Data__2023-03-08.csv
https://files.ontario.ca/moe_mapping/downloads/2Water/Lake_St_Clair_Water_Quality/Lake_St_Clair_Water_Quality_Data__2023-03-08.csv
https://files.ontario.ca/moe_mapping/downloads/2Water/Lake_St_Clair_Water_Quality/Lake_St_Clair_Water_Quality_Data__2023-03-08.csv
https://files.ontario.ca/moe_mapping/downloads/2Water/Lake_St_Clair_Water_Quality/Lake_St_Clair_Water_Quality_Data__2023-03-08.csv
https://files.ontario.ca/moe_mapping/downloads/2Water/Lake_St_Clair_Water_Quality/Lake_St_Clair_Water_Quality_Data__2023-03-08.csv
https://files.ontario.ca/moe_mapping/downloads/2Water/Lake_St_Clair_Water_Quality/Lake_St_Clair_Water_Quality_Data__2023-03-08.csv
https://ecoreportcard.org/report-cards/lake-erie/indicators/total-nitrogen/
https://ecoreportcard.org/report-cards/lake-erie/indicators/total-nitrogen/
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Figure 1. Map of water collection sites and locations. Map showing the 10 water collection sites
at three locations (Little River (inset)), Detroit River, and Lake Erie in the Huron–Erie corridor of
the Laurentian Great Lakes. General flow patterns are shown with red arrows and the first and last
(upstream to downstream) sample-site numbers are indicated.

2.2. DNA Extraction and Library Preparation

DNA was extracted from the filters using a sucrose lysis buffer method, follow-
ing Shahraki et al. [30]. The V5 (787 F-acctgcctgccg-ATTAGATACCCNGGTAG) and V6
(1046 R-acgccaccgagc-CGACAGCCATGCANCACCT) variable regions of the 16S rRNA
were selected for PCR amplification as described in Shahraki et al. [30]. Briefly, the first
round of PCR amplified the V5–V6 region of the 16S microbial ribosomal RNA. We in-
cluded a single lab negative control PCR that had ddH2O instead of extracted DNA as
the template to test for lab-based contamination. The PCR products (including lab and
field negative controls) were cleaned using Sera-Mag Magnetic Beads [30] to remove short
strands of DNA, primers, and dNTPs. The cleaned PCR products were used as a template
for a second-round short-cycle PCR to ligate the adaptor and sample identity (barcode)
sequences for high throughput sequencing (HTS). After the second round of PCR, ampli-
cons were pooled using various volumes based on their band intensity, and the combined
PCR products were purified using the QIAquick Gel Extraction Kit (QIAGEN, Toronto,
ON, Canada). The gel-extracted library was quantified using an Agilent 2100 Bioanalyzer
with a High Sensitivity DNA kit (Agilent Technologies, Mississauga, ON, Canada) to deter-
mine the library concentration and purity. The library was then diluted to 60 pmol·µL−1

and sequenced on an ION Torrent PGM high throughput sequencer using the Ion PGM™
Sequencing 400 bp chemistry and an Ion 318™ Chip (Thermo Fisher Scientific, Burlington,
ON, Canada).
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2.3. Data Processing

The FASTQ raw sequence file was analyzed using the Quantitative Insights Into
Microbial Ecology (QIIME2-2020.11) platform [31]. The sequence file was demultiplexed
using cutadapt demux-single to remove barcodes and primers. The cutadapt trim-single
command was also used to identify and remove the adapters [32], and perform a sequence
quality check. The DADA2 pipeline [33] was used to denoise the sequences, dereplicate,
filter chimeras, and for amplicon sequence variant (ASV) picking. We used 260bp for the
read truncation length (p-trunc-len 260), but for all other parameters, default values were
used. Taxonomic classification was done using the feature-classifier classify-consensus-blast
plugin with the Greengenes (13_8) [34,35] reference database. The table was summarized
with the feature-table summarize command. Using the taxa filter table, ASVs related to
mitochondria, chloroplasts, eukaryotes (combined: 0.0003% of total sequence reads), and
unassigned sequences (0.003% of total sequence reads) were further removed. ASVs that
showed up in only one sample or had fewer than 2 reads were removed using the filter-
features command in QIIME2, as these ASVs may not represent real biological diversity but
rather PCR or sequencing artifacts. For calculating alpha diversity indices, sequence data
for each sample were rarefied to 3000 sequences, as most of the samples were at the plateau
of their rarefaction curves at this read depth.

2.4. Statistical Analyses

We analyzed the bacterial community data to determine (1) if there are differences in
bacterial community composition within and among our three sampling locations (i.e., LR,
DR, and LE) and (2) the extent of connectivity among sample sites within each location.
These analyses were conducted using both alpha and beta diversity indices.

2.4.1. Community Composition

We estimated Chao 1 (alpha diversity) for each replicate at each site using QIIME2.
Linear mixed-effects models (lme4) in R (Version R-4.0.5) were used to test for differences
in sample alpha diversity (Chao1) at two hierarchical levels. First, we tested for differences
among locations (LR, DR, and LE) using a nested model with the sample site (1–10)
nested within the location and replicates nested within the sample site. We then tested for
differences among the sample sites within each location separately using three lme4 models
with the sample site and replicates (nested within the sample site). To visualize variation in
alpha diversity, we combined replicates and plotted Chao1 for each site for each location
against their relative spatial distance downstream from the most upstream sample site.

We calculated the Bray–Curtis dissimilarity matrix across sites and replicates for all
three locations in QIIME2 and used that for a principal coordinate analysis (PCoA) to assess
differences in patterns of species abundance among sites and locations. We plotted the
PCoA axes 1 and 2 for the 60 samples (30 sites plus replicates) on a scatterplot to visualize
location and site bacterial community variation. We selected PCoA axes 1 and 2 as our beta
diversity indices. They explained high levels of variance (22% and 13%, respectively), and
their eigenvalues were greater than one (4.0 and 2.3, respectively). Similar to the Chao1
analysis, we used PCoA axes 1 and 2 as dependent variables in a global lme4 model to test
for differences in beta diversity PCoA values among locations, among sample sites nested
within each location, and with sample replicates nested within each sample site. That
analysis was followed by three lme4 analyses, one for each of the three locations testing for
the effects of the sample site and replicating nested within the sample site.

Additionally, we used PERMANOVA in R and Bray–Curtis dissimilarity matrices to
test for beta diversity differences among locations and sample sites; sampling replicates
were nested within the sampling site and sample sites were nested within the locations.
We also used three separate PERMANOVAs to test for sample-site effects for each of the
three locations separately, with replicates nested within the sampling site. These three
sub-models were used to test for location-specific differences in beta diversity among
sampling sites.
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2.4.2. Community Connectivity

After combining replicate samples at each site, we tested for a distance–decay model
of pairwise geographical distance versus dissimilarity in bacterial community composition
(i.e., connectivity) using a Mantel test with the Bray–Curtis dissimilarity distance matrix and
pairwise Euclidean distance generated using the geographical coordinates of the sample
sites at all three locations. Specifically, we tested for three distance–decay relationships (one
within each location separately) with pairwise dissimilarity among sample sites within the
three locations using a Mantel test and the Bray–Curtis dissimilarity distance matrix and
pairwise Euclidean distance.

To assess directional patterns of bacterial community connectivity (i.e., downstream
flow), we tested for changes in bacterial community diversity along the sampling transects
from upstream to downstream using a regression analysis of the distance downstream
versus Chao1 (IBM SPSS Statistics, Vs 29.0.1.0). We performed a similar analysis using
mean pairwise Bray–Curtis dissimilarity (from the most upstream site to each downstream
site) versus distance downstream to assess patterns of community divergence with distance.
We plotted measures of alpha and beta diversity against distance downstream for all
three locations.

Finally, we characterized the bacterial taxa contributing to sample-site bacterial com-
munity similarity (connectivity). We first square-root transformed the bacterial ASV’s
normalized read count data in the software package PRIMER (v.7) and then used the
Similarity Percentage (SIMPER) analysis software package in PRIMER (v.7) to determine
which ASVs (i.e., taxa) were contributing to patterns of Bray–Curtis similarity among the
sample sites [36]. We reanalyzed the data at the family level in SIMPER to identify broad
categories of bacteria contributing to differences among sites within the three locations.

3. Results

A total of 3,103,650 sequences were obtained for the 60 experimental samples (30 replicated
sites), with a median frequency of 16,630 reads. The nine negative field controls resulted in
a total of fewer than 1000 reads with no particularly abundant taxa identified, while the
negative lab control generated no sequence reads. Thus, the controls were excluded from
our analyses, and we concluded our data were not biased by contamination.

3.1. Bacterial Community Composition

The bacterial communities across all three locations consisted predominantly of the
orders Burkholderiales (range = 6% to 77%), Desulfovibrionales (range = 0% to 80%), and
Lactobacillales (range = 0% to 30%), although there was considerable variation among the
sample-site bacterial community compositions at the order level (Figure 2).

Our global linear mixed-effects model showed that alpha diversity (Chao1) did not
differ among locations or sampling sites within locations (Table 2). When we tested for
sample-site effects on Chao1 within each location separately, no significant effects were
found, although the Lake Erie location approached significance (p = 0.071; Table 3).

Bacterial community beta diversity was well characterized by the first two PCoA axes
from the Bray–Curtis matrix; PCoA 1 and PCoA 2 explained 22% (Eigenvalue = 4.0) and
13% (eigenvalue = 2.3) of the variance in the Bray–Curtis dissimilarity matrix, respectively.
The PCoA plot shows LE and LR samples clustered separately; however, the DR samples
were variable and overlapped both LE and LR samples (Figure 3). As expected, the global
linear mixed-effects model showed highly significant location effects for both PCoA 1 and
PCoA 2; however, no significant sample-site (nested within location) effects were found
in that analysis (Table 2). When we considered the locations separately, the linear mixed-
effects analyses showed significant site effects on PCoA 1 for the DR location (p = 0.042)
and on PCoA 2 for the LE location (p = 0.013) but not for any other comparisons (Table 3).
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Table 2. Sample location and site effects on bacterial community diversity. Results of linear mixed-
effects (lme) model analyses for the effects of sample location (LR, DR, and LE) and sample site nested
within the location on bacterial community alpha (Chao1) and beta diversity (PCoA 1 and 2 from
Bray–Curtis dissimilarity matrix). Significant p-values are in bold.

Effect Factor df Mean Sq F Value p (>F)

Alpha diversity
(Chao 1)

Location 2 2428 0.449 0.64

Site (Location) 27 3476 0.640 0.88

Beta diversity
(PCoA 1)

Location 2 6981 29.1 <<0.0001

Site (Location) 27 380.4 1.59 0.11

Beta diversity
(PCoA 2)

Location 2 3189 17.6 <<0.0001

Site (Location) 27 212.8 1.18 0.33

Table 3. Sample-site effects on bacterial community diversity. Results of linear mixed-effects (lme)
model analyses for the effects of sample site (within each location separately) on bacterial community
alpha (Chao1) and beta (PCoA 1 and 2 from Bray–Curtis dissimilarity matrix) diversity. Significant
p-values are indicated in bold.

Location Variable df Mean Sq F Value p (>F)

Little River

Alpha diversity
(Chao 1) 9 2312 0.239 0.98

Beta diversity
(PCoA 1) 9 145.1 0.362 0.93

Beta diversity
(PCoA 2) 9 210.1 0.539 0.82

Detroit River

Alpha diversity
(Chao 1) 9 5397 0.971 0.51

Beta diversity
(PCoA 1) 9 759.1 3.198 0.042 *a

Beta diversity
(PCoA 2) 9 264.6 2.24 0.11

Lake Erie

Alpha diversity
(Chao 1) 9 2718 2.67 0.071

Beta diversity
(PCoA 1) 9 236.9 2.92 0.055

Beta diversity
(PCoA 2) 9 163.8 4.63 0.013 *

a. significance codes: 0.01 < p ≤ 0.05 *.

The nested PERMANOVA analysis resulted in significant effects of both location and
sample site (nested within location) on bacterial community composition dissimilarity
(Bray–Curtis dissimilarity matrix; Table 4). The location effect explained 18% of the varia-
tion in Bray–Curtis similarity, while the site nested within the location explained 45% of
the variation (Table 4).
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Figure 2. Bacterial community composition. Relative abundance of bacterial community taxa at
the Order taxonomic level for the three sampled locations (LR, DR, and LE) determined by 16S
metabarcoding. Each location had 10 sample sites with two replicates at each sample site. The sample
site relative abundance bars are arranged in downstream order. The ‘other taxa’ category includes
the sum of all bacterial taxa that occurred at less than 5% relative abundance.
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Table 4. Location and site effects on bacterial community beta diversity. Results of PERMANOVA
analysis for the effects of sample location (LR, DR, and LE) and sample site nested within location
on bacterial community beta diversity (Bray–Curtis dissimilarity matrix). Significant p-values are
indicated in bold.

Effect df Mean Sq R2 F Value p (>F)

Location 2 1.2 0.18 7.1 <0.01

Site (Location) 27 0.3 0.45 1.37 <0.01

Residuals 30 0.2 0.37

Total 59 1.00

The separate PERMANOVA analyses for the three locations also showed highly
significant site effects on bacterial community composition dissimilarity for LE and DR
(Bray–Curtis dissimilarity matrix; Table 5). The DR sample-site effect explained 58% of
the variation in the pairwise Bray–Curtis dissimilarity, while the LE sample-site effect
explained 68% of the variance (Table 5).

Table 5. Sample-site effects on bacterial community beta diversity. Results of PERMANOVA analyses
for the effects of sample site (within each location separately) on bacterial community beta diversity
(Bray–Curtis dissimilarity matrix). Significant effect p-values are indicated in bold.

Location Effect df Mean Sq R2 F Value p (>F)

Little River

Site 9 0.3 0.47 0.90 NS

Residuals 10 0.3 0.53

Total 19 1.00

Detroit River

Site 9 0.3 0.58 1.57 <0.01

Residuals 10 0.2 0.42

Total 19 1.00

Lake Erie

Site 9 2.2 0.68 2.40 <0.001

Residuals 10 0.09 0.32

Total 19 1.00

3.2. Bacterial Community Connectivity

We tested for a distance–decay (isolation-by-distance) model of bacterial commu-
nity dissimilarity using Mantel correlation analyses of pairwise Bray–Curtis community
dissimilarity and Euclidean geographic distance matrices (Figure 4). Significant distance–
decay relationships reflect connectivity among sample sites, since zero connectivity among
bacterial communities would result in community divergence developing independent
of distance (hence no distance–decay relationship). The Mantel test across all samples
resulted in geographical distance having a significant correlation with bacterial commu-
nity Bray–Curtis similarity patterns (Mantel test: Rho: 0.176, p < 0.05). When we tested
for distance–decay relationships within each location separately, the Mantel correlation
analyses returned a significant correlation for LE, but no evidence for distance–decay
relationships for either LR or DR (LR Mantel test: Rho = 0.12, p = 0.22; DR Mantel test:
Rho = 0.21, p = 0.11; and LE Mantel test: Rho = 0.34, p = 0.007). The significant relationship
between Bray–Curtis dissimilarity and geographic distance among the Lake Erie sites is
consistent with a distance–decay effect (Figure 4).
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Figure 4. Distance–decay relationships among sites within three sample locations. Distance–
decay plots showing pairwise geographic distance (km) versus bacterial community dissimilar-
ity (Bray–Curtis) for 10 sample sites (replicates combined) within three sampled locations; LR
(A, high flow), DR (B, moderate flow), and LE (C, low flow). Only the LE location generated a
significant positive relationship using a Mantel test (p = 0.007). The plotted line is the least-square
best-fit linear regression line. The gray shading around the line represents a confidence interval
of 95%.
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Our directionality analysis of within-location bacterial community alpha diversity
(Chao1) showed declining diversity with distance downstream at the LR location (p < 0.004,
R2 = 0.62 (Chao1)) but not for either the DR or LE locations. The directionality analysis for
beta diversity and distance downstream showed no significant linear relationship at any of
the three locations; however, considerable variation was evident among sites within the
three locations.

SIMPER analysis at the ASV level with the replicates combined showed an average
similarity of 21.8 among sites for the Little River, 30.9 for the Detroit River, and 39.9 for
the Lake Erie samples. The main ASV contributors to similarity within all three locations
were from the families Comamonadaceae (class: Betaproteobacteria) and Flavobacteriaceae
(class: Flavobacteriia).

4. Discussion

The composition of aquatic bacterial communities is determined by a variety of biotic
and abiotic factors [4,37]. While published studies have reported diverse factors that con-
tribute to aquatic bacterial community composition (e.g., [4,37], our study was designed to
determine the contribution of the water-flow regime to variation in aquatic bacterial com-
munity composition and connectivity (i.e., similarity) in the Huron–Erie corridor region of
the Great Lakes. Specifically, we assessed the connectivity and composition of aquatic bacte-
rial community composition along transects in high-flow (Little River (LR)), moderate-flow
(Detroit River (DR)), and low-flow (Lake Erie (LE)) aquatic habitats in Southern Ontario,
Canada. The common core bacterial taxa found across locations and sites in our study
(i.e., Betaproteobacteria, Flavobacteria, and Actinobacteria) are consistent with previous
freshwater-ecosystem studies that reported similar conserved taxa [38,39]. However, those
taxa are generally abundant in diverse aquatic ecosystems and are, thus, likely highly per-
sistent [38], making them poor candidates for bacterial community connectivity analyses.
The abundance of those taxa may have contributed to the lack of variation in bacterial
community alpha diversity among sample sites or locations, despite our expectation that
different flow regimes and other habitat characteristics would drive substantial differences
in bacterial community diversity. There were, however, substantial differences in bacterial
community composition among the three locations, and among sample sites within each
location, likely reflecting habitat and hydrological differences among the sample sites
(Table 1). We detected variation in bacterial community connectivity within our three
sample locations, and the pattern of connectivity generally agreed with our predictions.
The high-flow LR samples showed the highest connectivity (highest sample-site similarity),
and the sample sites in the DR and LE exhibited similar levels of bacterial community
connectivity. While we cannot conclude the observed differences were due to hydrology
alone, the pattern of connectivity is consistent with a water-flow threshold effect where
high flow rates (i.e., LR mean flow = 1.2 m/s) result in elevated connectivity while lower
flows (DR = 0.67 m/s, LE = 0.51 m/s) result in similar connectivity. Our work serves to
highlight the potential for hydrology to affect aquatic bacterial community connectivity
and, hence, bacterial community composition.

We observed substantial variation in bacterial community composition but not diver-
sity among the three sampled locations (LR, DR, and LE). While the pattern of location
effects was consistent with our predictions based on hydrological differences, the three
sampled locations likely also differed in other biotic and abiotic factors [5]. However,
our reported patterns of community divergence are not likely due to spatial distance
effects alone, as the three locations were separated by a maximum of 50 km and are con-
nected as part of the Huron–Erie corridor [40]. Furthermore, other studies have generally
shown that distance effects on bacterial community composition require greater spatial
scales [4,37,41]. While we specifically selected the three locations to differ in water flow, we
cannot conclusively determine the exact contribution of flow to the observed variation in
the bacterial communities. The within-location patterns of bacterial community composi-
tion are suggestive of a hydrological effect, as the lower-flow locations (Detroit River and
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Lake Erie) showed the highest level of among-site divergence, which is consistent with the
low connectivity at those low-flow locations.

Connectivity among ecological communities is the fundamental driver of the meta-
community concept in community ecology, where interactions among local communities
determine the pattern of community composition [26]. Variation in microbial diversity
and community composition in connected water systems is a well-known phenomenon.
For example, researchers have reported a pattern of high diversity in headwater stream
bacterial communities with decreasing diversity downstream [28,42], which is similar to
the pattern we report for LR alpha diversity. This change in diversity downstream may be
due to species sorting, where the community experiences a loss of terrestrial taxa and a
gain in the prevalence of common aquatic taxa [14,43]. Read et al. [44] described a down-
stream shift in the River Thames Basin (UK) bacterial communities and speculated it was
due to ecological succession effects. However, it is unlikely that the pattern of reduced
downstream bacterial community diversity in LR is due to ecological succession, since the
flow rate was high and the distance low.

Although all sites exhibited similar dominant taxa, we found significant variation
in bacterial community composition between sites within a given location, which was
an unexpected result, as our sampling transects had a maximum spatial extent of ~20km
(Figure 1). The observed pattern of beta diversity variation was consistent with a water-
flow rate effect on microbial connectivity as a high flow rate was associated with high
microbial community connectivity (and thus low divergence), as demonstrated in the
LR site samples. This agrees with the recent findings of Luo et al. [45], who reported
that higher flow rates increased bacterial community coalescence and connectivity. This
effect varied with season (with greater influence in summer than winter) and with habitat
(affecting the water column and adjacent soil bacteria more than sediment and biofilm
communities) [45]. Similarly, Stadler and del Giorgio [43] reported strong terrestrial–aquatic
connectivity and the importance of the upstream bacterial communities in determining
community composition and function; they also reported seasonal fluctuations in the extent
and nature of the connectivity. It is possible that the temporal fluctuations reported in
aquatic bacterial community composition may, in part, reflect changes in connectivity
associated with hydrological seasonality. Finally, it is important to note that the patterns of
variation in bacterial community composition reported here may reflect different sampling
spatial scales—the Little River was sampled over ~5 km, while both the Detroit River and
Lake Erie were sampled over ~20 km. While this transect length difference is substantial,
the spatial scale of our sampling is relatively small, and hydrological flow is likely to be a
larger factor in determining connectivity among sites.

Spatial surveys of aquatic bacterial community composition and diversity are common
in the literature, and many have identified stark contrasts in occurrence patterns of some
freshwater bacterial taxa [46–48]. Generally, those studies have concluded that environmen-
tal factors are dominant in determining the bacterial community composition of aquatic
ecosystems [47,48] and that dispersal limitation and biogeography are less important [28,49].
However, robust biogeographic patterns, such as distance–decay of community similar-
ity and taxa–area relationships, have been reported in aquatic microbes [50] and other
microbial systems [51]. Bacterial community composition variation and distance–decay
relationships are often a balancing act between dispersal rates and environmental selection,
with the dominant force varying depending on the characteristics of the water body [52].
Nevertheless, in systems with high dispersal rates (i.e., high water flow) the composition of
the bacterial community is expected to consist primarily of colonizers that have traveled
from upstream communities [52]. In our study, the high flow rate (LR) and moderate flow
rate (DR) locations consistently exhibited greater sample-site similarity, minimal beta diver-
sity, and no evidence for distance–decay relationships relative to the relatively low-flow LE
location. The role of hydrological flow in determining connectivity in aquatic microbial
communities is potentially important, especially for stream rehabilitation applications,
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where bacterial community function is critical for stream health but could be affected by
upstream conditions in complex ways.

The role of connectivity in the formation and maintenance of communities across all
ecosystem scales is recognized as pivotal, especially for conservation. Given the fundamen-
tal role of microbial communities in aquatic ecosystem health, a more detailed picture of
microbial connectivity in aquatic ecosystems needs to be developed. In this study, three
aquatic ecosystems that are connected and geographically close were selected to determine
the effects of hydrological flow on measures of bacterial community connectivity. We tested
whether bacterial community composition and diversity would vary among and within the
sampled locations despite the limited geographical scale and whether low-flow locations
would exhibit lower connectivity relative to higher-flow locations. Additionally, our work
highlights the potential for hydrologically driven variation in connectivity as a contributor
to bacterial community composition variation and, hence, as an important factor to consider
when interpreting community change in healthy and impacted aquatic ecosystems.
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