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Abstract: Optical neural networks (ONNs) are getting more and more attention due to their ad-
vantages such as high-speed and low power consumption. However, in a non-ideal environment,
the noise and low-bits control may heavily lead to a decrease in the accuracy of ONNs. Since there is
AD/DA conversion in a simulated neural network, it needs to be quantified in the model. In this
paper, we propose a quantitative method to adapt ONN to a non-ideal environment with fixed-point
transmission, based on the new chip structure we designed previously. An MNIST hand-written
data set was used to test and simulate the model we established. The experimental results showed
that the quantization-noise model we established has a good performance, for which the accuracy
was up to about 96%. Compared with the electrical method, the proposed quantization method can
effectively solve the non-ideal ONN problem.

Keywords: optical neural network; noise; quantization; image classification

1. Introduction

With the explosion of information, more data need to be processed. The neural
network is considered to be a promising candidate for bulk information processing [1].
Thus far, we have many optimization methods and non-iterative linear supervised learning
predictors that can improve computing power, such as multilayer perceptron, support vec-
tor machines, and neural-like structures of the successive geometric transformations model
(SGTM) [2]. In recent years, optical neural networks (ONNs) have gained a large amount
of attention due to their high-speed, low power consumption, and low delay [3–6]. It has
been shown that matrix multiplication and parameterization can be obtained on an optical
neural network made by Mach–Zehnder interferometer (MZI) arrays [7–9].

With the development of ONNs, some important issues have occurred in the non-ideal
case, which may reduce the accuracy of the optical neural network. Therefore, these issues
need to be understood deeply. In practice, the following conditions may increase the error of
the optical device. One is the phase shift generated by optical devices, which cannot achieve
arbitrary precision in physics [3,4,10,11]. The other is quantum-limit noise on optical
devices [10–12]. Up to now, the goal of large-scale, rapidly reprogrammable photonic
neural networks has not been realized. There are still plenty of opportunities for improving
ONNs [13,14]. Processing large amounts of data remain challenging for ONNs for computer
vision in real life.

Most research on ONN has focused on different types of devices and novel archi-
tectures, while limited work has been undertaken on the impact of noise problems on
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accuracy in photonic chips. Several groups have begun to study these issues. In 2017,
Yichen Shen’s chip implemented a neural network that can recognize four basic vowels [3].
In 2019, Ryan Hamerly presented a new type of photon accelerator based on coherence
detection capabilities [4]. They also simulated noise in this device. Other papers propose a
noise perception quantization scheme to help design a robust ONN model [10]. The above
work illustrates that ONN architecture requires special hardware implementation and,
ideally, low-bit control.

In this paper, based on the new chip structure we designed previously [15], a noise
quantization model is proposed to analyze the influence of quantization on the accuracy of
ONNs, so as to make it closer to reality. We also optimize the algorithm so that the chips
that are run in real conditions can achieve high precision. A method that solves ONNs’
low-bit control and simulation on devices is proposed for the first time.

2. Architecture
2.1. Neural Networks and ONNs

A fully connected neural network consists of an input layer, hidden layers, and an
output layer, as shown in Figure 1 [16]. The image of the handwritten data set (MNIST [17])
is input into the network for simulation [18]. Since the handwritten data set is composed
of 0–9, the output layer has 10 outputs.

Figure 1. FCNN structure.

In our previous work [15], we designed an image classification and recognition model
based on a fully connected neural network (FCNN) and mapped it to a silicon-based
photonic integrated circuit, as shown in Figure 2 [15]. Previous simulation experiments
showed that the optical modulator enabled the chip to perform fast and high-precision
classification of hand-written numbers with an accuracy greater than 97%. Speeds of up to
80 Gbps can be achieved at the currently reported rates of silicon-based modulators. Up to
80 Gbps can be achieved in the recently reported rates of silicon-based modulators.

A silicon ONN chip is mainly composed of five parts. In the first part of Figure 2a,
the input port can be realized by a side coupler or grating coupler. The fan-out structure
can be realized by cascading 1 × 2 multi-mode interference (MMI). The second part is the
input light divided into 128 parts, with one Mach–Zehnder modulator (MZM) for every
two channels. The third part consists of 256 MZMs, half of which are used to encode the
target file and the other half to load the weight signal. Then, two waveguides, a silicon
waveguide and a sinusoidal waveguide, are used to realize the matching structure of the
target file signal and the weight signal. In the fourth part, there are 128 balance detectors,
each of which multiplies the one-way target file signal with the weight signal. The final
addition and activation functions can be implemented via circuits, which are composed of
the fifth part.
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Figure 2. Chip design (a) of an ONN chip structure. (b) Matrix multiplication concept diagram. The chip is implemented
for each layer of the network structure. Matrix multiplication is performed by combining the input target signal (yellow)
and the weight signal (blue) and translating them to the balance detector for detection.

The ONN chip is designed to recognize 10 complete (0 to 9) handwritten digital images
simultaneously. We resize the digital images into 11 × 11 grayscale matrices with 8-bit
resolution and flatten them into vectors. These vectors are fed through parts one and two,
and are multiplexed in the time domain. Next, in the third and fourth part, the pairing of
the encoded target file and the loaded weight signal and the multiplicative accumulation
operations are performed. Finally, different node/neuron outputs are obtained by sampling
the results of the previous step. The final output of the ONN is represented by the intensity
of the output neurons, with the highest intensity of each test image corresponding to the
prediction category. The peripheral system, including signal sampling, nonlinear functions,
and merging, is implemented electronically by means of digital signal processing hardware.

Figure 3 shows the schematic diagram of the optoelectronic system. After being input
through the input port, the signal is multiplied and added by the optical neural network
chip, and output through the balance detector. Shot noise is generated in the balanced
detector. The balanced detector enters the circuit through AD/DA conversion, and the
computer is used to process the data in the nonlinear part. In this part, quantization of the
data is required. Since the optical neural network we designed has three layers, this process
needs to be cycled three times to get the final output. We will elaborate on the specific
models for noise and quantization in the following sections.

Figure 3. Schematic diagram of the optoelectronic system.
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The power consumption of this ONN chip comes mainly from the modulator, which uses
a PIN structure electro-optical phase modulator with a single loss of 1 mW and a speed of
100 MHz, and a CMOS (Complementary Metal-Oxide-Semiconductor) process to make
the chip suitable for mass production. The cost is related to volume. If the volume
gets higher, the cost becomes lower. The production process is a conventional silicon
optical chip processing technology, which can be performed in all major international
foundry platforms.

2.2. Noise

Some factors could affect the accuracy of the chip in reality. Among them, quantum-limit
noise is the root of the fundamental limit of optical devices [3,14]. As we mentioned in
Section 2.1, shot noise would be produced in the balanced detector during transmission.

In a neural network, each layer of neurons xi is transmitted to the next layer of neurons
xi+1. Each neuron is a homodyne detector that interferes with the broadcast signal to the
weighted signal Aij [16,19]. Aij and xi multiply and accumulate (MAC), as shown in
Equation (1):

xi+1 = f (∑
j

Aijxi) (1)

xi is the input of the current layer, where xi+1 is the output of the current layer. As reminded
in Section 2.1, input vector xi is encoded temporally as pluses. Then, the weights enter
into channels in the form of time coding, the same as input vectors. These data will be
processed optically by MAC calculations. The nonlinear activation function is implemented
by electrical methods. Finally, we get the output. Power consumption can be calculated by
P(t) = |E(t)|2.

Assuming that the input signal and the weight signal have a perfect spatiotemporal
mode match, this can be normalized so that |xi|2,

∣∣Aij
∣∣2 correspond to the number of

photons per pulse. When a pulse with an amplitude of u enters, the output current can
be described by Poisson distribution: Q

e ∼ Poisson
(
|u|2

)
. Each photocurrent Q(±) is the

sum of many Poisson random variables. In the useful limit of many photons per neuron
(although not necessarily per MAC), this will approximately lead to a Gaussian random
variable as follows:

Q(±)
i
e

= ∑
j

1
2
(

Aij ± xij
)2

+ wi
(±)
(

∑
j

1
2
(

Aij ± xij
)2
)1/2

(2)

where wi(k) ∼ N(0, 1) are Gaussian random variables.
Then, the next layer of neurons xi+1 with the influence of noise can be represented in

Equation (3) [3].

xi+1 = f (∑
j

Aijxi + wi
‖A‖‖x‖√

N2N′

√
N√

nMAC
) (3)

where ||·|| is the 2-norm, nMAC is the number of photons per MAC, N is the number of
input neurons, and N′ is the number of output neurons. nMAC is related to the total energy
consumption of the layer which is given by Etot = NN′nMAC. We can figure out that the
total energy consumption between computation layers is 1.64× 107 J.

In the previous work, we simulated a layer and multi-layer model with granular
noise [15]. To get closer to reality, the noise effect expressed by Equation (3) was added to
the simulation process exactly following the procedure mentioned in Section 2.1. The result
in Figure 4 shows that when the photon/nMAC is large enough, the error rate is not affected.
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Figure 4. Error rate vs. photon/nMAC.

2.3. Quantization

As we mention in Section 3.2, quantization is needed to ensure higher accuracy when
converting analog and digital circuits. Integer quantization is an optimization strategy that
converts a 32-bit floating-point number (FP32), such as weights and activation outputs,
to the nearest 8-bit fixed-point number (INT8). This leads to smaller models and faster
reasoning, which is valuable for low-power devices such as microcontrollers [18].

Two main methods are used in the quantification process: (1) post-training integer
quantification—using FP32 weight and input to train the model, and then quantifying
the weight [20]. The main advantage of this is that it is easy to use. The drawback is
the decrease in accuracy. (2) Quantization-aware training—weights are quantified in the
training process, and calculated for quantization [21]. This is the best result when using
INT8 quantization, but is much more complex than other methods.

A large amount of work has shown that a more efficient deep neural network (DNN)
can be achieved through low bit quantization [22,23]. Experimental results using low
precision numerical representations indicate that these experiments require higher precision
than eight bits to deal with backward propagation and gradient [2,24,25]. This will make
the implementation of the training more complicated. Therefore, after training the model,
it is reasonable to only use the quantized weight for reasoning [21].

The quantization equation from FP to INT is shown as Equation (4):

Q =
R
S
+ Z (4)

The inverse quantization equation from INT to FP is shown as Equation (5):

R = (Q− Z)× S (5)

where R represents the real FP value, Q represents the quantized INT value, Z represents
the quantized INT value corresponding to the FP value, and S is the minimum scale that
can be represented after the quantization of INT. The evaluation equations of S and Z are
shown in Equations (6) and (7), respectively:

S =
Rmax − Rmin
Qmax −Qmin

(6)
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where Rmax represents the maximum FP value, Rmin represents the minimum, Qmax repre-
sents the maximum INT value, and Qmin represents the minimum.

Z = Qmax − Rmax ÷ S (7)

where each symbol represents the meaning as in the description above.
Here, S and Z are quantized parameters, while Q and R can be evaluated by the

equation. Truncation would be needed where the quantized Q or the FP value R obtained
by backward derivation are beyond their maximum range.

3. Simulation and Results

In normal electrical neural networks, float numbers are generally used in the model.
In the analog neural network, due to the AD/DA conversion, we needed to quantify the
FP32 into INT8 in the model. Quantification is common in deep learning and is faster
because there are fewer bits, making models lighter. In order to verify the influence of
quantization on optical neural networks, we conducted two steps. First, we quantify the
model as INT8 after training. Then, we added a noise model for inference. Python language,
TensorFlow framework, and MNIST data set were used for simulation.

3.1. Evaluation Criteria

Different classification algorithms use different variants. We need to select the algo-
rithm according to the specific task. A suitable algorithm must be selected out according
to the specific task. Accuracy is the most common evaluation index in the classification
algorithm, as shown in Equation (8):

accuracy =
TP + TN

P + N
(8)

where TP is the number of cases that are correctly detected positive, and TN is the number of
cases correctly classified as negative. P and N are positive and negative cases, respectively.
‘TP + TN’ presents all numbers that have been recognized correctly. ‘P+N’ presents all
numbers obtained in MNIST. Accuracy means the proportion of the samples that are
correctly predicted in all samples. Generally speaking, the higher the accuracy, the better
the classifier.

3.2. Model Establishment

The model is established to classify and identify MNIST by the common fully con-
nected network and evaluated with 3.1 evaluation standard, and the accuracy rate was 98%.
Up to 98% accuracy rate was obtained through the evaluation standard. Then, the model
is frozen to obtain a protocol buffer (PB) model file. Data can be viewed from each node
in Neuron, as shown in Figure 5, where each node is FP. FP32 is converted to INT8 using
TensorFlow Graph, and the result can also be viewed in Neuron.

The models we established are shown in Figure 5. In Figure 5, M represents Matmal
and QM represents quantization of the results of Matmal. AF represents activation function,
and QAF represents quantization activation function. S represents Softmax, which is a
classification function.
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Figure 5. Compare models (a) before and (b) after quantization.

3.3. Model Training

We conducted a quantitative inference test on the FCNN mentioned in Section 2.1 and
the evaluation method used in Section 3.1. The results are shown in Table 1 and Figure 6.

Table 1. Accuracy comparison between FP32 and INT8 in different layers.

Number of Layers FP32 INT8 Total
Consumption

Layer 1 0.7903 0.7791 3.32× 107

Layer 2 0.9371 0.9366 4.96× 107

Layer 3 0.9417 0.9386 6.59× 107

Layer 4 0.9551 0.9501 8.23× 107

Layer 5 0.9635 0.9602 9.87× 107

In Table 1, the results show that the optimized quantitative model is effective, and a
high prediction accuracy was obtained when the INT8 model parameter size was 1/4 of the
FP32. The neural network is too parameterized to contain enough redundant information,
and cutting out such information will not result in a significant reduction in accuracy.
For a given quantization method, there is no significant accuracy gap between the over-
parameterized large FP32 and INT8 network; Figure 6 shows the reduction in training time
when the INT model is used instead of FP. Since the inference of the network takes time,
the reduction in training time is not proportional to the reduction in model size.
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Table 1. Accuracy comparison between FP32 and INT8 in different layers.

Number of Layers FP32 INT8 Total
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Layer 1 0.7903 0.7791 3.32× 107
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Figure 6. Training time of models before quantization.

In Table 1, the results show that the optimized quantitative model is effective, and a
high prediction accuracy was obtained when the INT8 model parameter size was 1/4 of the
FP32. The neural network is too parameterized to contain enough redundant information,
and cutting out such information will not result in a significant reduction in accuracy.
For a given quantization method, there is no significant accuracy gap between the over-
parameterized large FP32 and INT8 network; Figure 6 shows the reduction in training time
when the INT model is used instead of FP. Since the inference of the network takes time,
the reduction in training time is not proportional to the reduction in model size.

3.4. Noise

The basic components of the FCNN layer are MAC operations, which can be easily
parallelized. The model structure is shown in Figure 7. Figure 7a shows the model with
noise before quantization. The model we designed is based on Equation (3). Figure 7b
shows the model with noise after quantization. All the parameters are quantized. In order
to achieve high-performance, highly parallel computing paradigms, the method we used is
post-training integer quantification.

Figure 6. Training time of models before quantization.

3.4. Noise

The basic components of the FCNN layer are MAC operations, which can be easily
parallelized. The model structure is shown in Figure 7. Figure 7a shows the model with
noise before quantization. The model we designed is based on Equation (3). Figure 7b
shows the model with noise after quantization. All the parameters are quantized. In order
to achieve high-performance, highly parallel computing paradigms, the method we used is
post-training integer quantification.

Figure 7. Model with noise (a) before and (b) after quantization.

In Figure 7, M, QM, and S are the same means as Figure 6. Q+ represents quantiza-
tion plus.
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We found that when the MAC reached a certain size, the noise had little impact on
accuracy. The result is shown in Figure 8.

Figure 8. Train accuracy with noise (a) Accuracy from step 1. (b) Accuracy form step 100.

We quantified the noise model and carried out the inference test. The results are
shown in Table 2.

Table 2. Accuracy comparison between FP32 and INT8 in different layers with noise.

Number of Layers FP32 INT8

Layer 1 0.9117 0.9038
Layer 2 0.9663 0.9627
Layer 3 0.9678 0.9675
Layer 4 0.9727 0.9721
Layer 5 0.9749 0.9743

The results in the table show that our model has high accuracy and stability. When the
model was shrunk by 1/4, the evaluation index was reduced by only 0.3–1%. According to
the results, it can be observed that there is no significant increase in accuracy when the
number of layers is increased to more than two layers. This is caused by the excessive
redundant information due to the insufficient amount of data.

Compared with the model in Section 3.3, the neural network with noise has more pa-
rameters. Therefore, the search space of the model will be larger, so the spatial distribution
of the model can be better described only if there are enough data. As a result, the model
with noise has higher accuracy.

4. Conclusions

In this paper, we propose a quantitative method for adapting ONN to a non-ideal
environment with INT transmission based on a fully connected neural network image clas-
sification and recognition model proposed in previous work [15]. Through the comparison
before and after quantization, the optimized quantization model in this paper is effective
and has good enough prediction accuracy. Accuracy can be achieved up to about 96%.
The experimental results show that, compared with the electrical method, the proposed
quantization method can effectively solve the non-ideal ONN problem. We believe that the
quantization model established in this paper can be of great help to optical chips in the
near future. However, it is still difficult to implement large-scale photonic neural networks
based on current technology. Besides, ONNs have a limited number of neurons. In future
research, we will extend the model and address photon limitations. Larger datasets for
training experiments such as ImageNet will also be used.
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