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Abstract: We studied the N-species competitive coexistence model with direct effect on habitat
destruction to analyze the behaviors of abundant and extinct species in the system caused by habitat
loss. The nontrivial equilibrium points of the system are determined for a general habitat destruction
function. For the trivial equilibrium, species that survived the habitat destruction are identified
using eigenvalues of the Jacobian matrix. Solutions of the system are also presented using the
recursive method. Three special cases of habitat destruction functions are addressed: continuous
destruction, which is a typical habitat destruction; sudden habitat destruction, which is similar to
natural phenomena such as earthquakes or floods; and sudden habitat destruction with aftershocks.
The proportional abundances of 50 species are numerically portrayed in each case. We found that
the survival of a species is guaranteed if its corresponding eigenvalue is positive. However, the fact
that a species has negative corresponding eigenvalue does not guarantee its extinction, as this also
depends on the initial number of that species.

Keywords: mathematical model; eigenvalue; equilibrium analysis; recursive method; habitat destruction;
species extinction

1. Introduction

Habitat destruction is a known cause of species extinction over the past billion years.
Dominant species are not endangered if their habitat is not completely destroyed, as their
territory might be randomly spread across the whole habitat and, hence, they can survive
in undisturbed areas. Consequently, extinctions of rare species are assumed to be biased.
Early work in this area by Nee and May [1] analyzed the effect of habitat removal of two
species that are regionally abundant. Later, Tilman et al. [2] developed the coexistence
model, which became widely applied to competitive multi-species’ habitat loss. In the
Tilman study, extinction in abundant species may be due to habitat loss with time delay. In
a subsequent work by Tilman et al. [3], an analytical model of competitive coexistence in
spatial habitats is introduced. Here, the extinct species with the poorest distribution are
the best competitors. However, since the model assumptions are on dispersal ability and
mortality rates, this extinction model is considerably biased.

Tilman’s models have been widely studied over the past three decades. A wider range
of parameters is investigated by Klausmeier [4], and a critical habitat size for a single species
was also examined using a spatially explicit model. A prey–predator metapopulation model
in Bascompte and Solé [5] indicates that dispersal rate is crucial for habitat destruction. The
extension of this model by Swihart et al. [6] shows that the effect of habitat destruction on
the coexistence of prey and predator depends on the invasion or colonization rate of prey
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and predator. More works related to space utilization on prey-predator interaction model
can be found in [7–9].

Accounting for spatial structure and heterogeneity, the work of Prakash and de
Roos [10] demonstrates that a predator–prey metapopulation is affected by habitat de-
struction. Their model is similar to the NMH model of Nee et al. [11]. However, in their
model, prey are dispersed in inhabited patches of both predator and prey. The single-species
argument NMH model is generally not enough to explain the effects of predator–prey
interaction since it allowed the feedback loop into the model. In a later work by Prakash
and de Roos [12] on metacommunities of mutualistic species, they vary the strength of
mutualistic interaction and fraction of suitable habitat.

In Ovaskainen [13], an eigenvalue–eigenvector relationship was analytically studied
to find the effects of habitat destruction and restoration in a metapopulation model using
simple models. Earlier, Mean-field theory (MFT) had been used by Nakagiri et al. [14] to
develop a model of ecosystems containing two or three species and study the relationships
between habitat destruction and species extinction. A nonlinear n-population metapopula-
tion model was also improved from Tilman’s model by Lin et al. [15], whose work showed
that the extinction number of superior competitors is related to the disharmony exponent
of metapopulation. Lin and Zhen-Shan [16] demonstrated the odd-even evolution rule
to show that the extinctions of some species are biased. Nakagiri et al. [17] used MFT to
simulate and showed that a parity law reveals even-odd species different behaviors.

Species–area and endemics–area relationships (SAR and EAR) models have also been
used to predict extinctions. Rybicki et al. [18] showed that EAR underestimated extinctions
due to habitat loss while SAR gave a good approximation of short-term extinction unless
the remaining habitat is so highly fragmented that SAR also underestimated the extinctions.
Rompre et al. [19] used SAR model to predict the rates of bird species loss in fragmented
forests and the results showed that SAR underestimated actual losses in the Panama Canal
region due to nonrandom patterns of species distributions. Due to a lack of temporal
data, long-term losses have not been widely investigated compared to short-terms losses.
However, a recent study by Dri [20] showed that habitat losses reduced bird species
diversity in urban South America over a time span of only 10 years.

More works on metapopulation model have been undertaken by Xu et al. [21] and
Morozov and Li [22]. Through existence and equilibrium stability, the work by Xu et al.,
showed that the condition of extinction depended on habitat destruction and creation.
Based on the original deterministic model, their model is a stochastic differential equations
model. Another extension to Tilman’s model was carried out by Morozov and Li [22]. In
their work, three scenarios on the abundant species are studied: the most abundant species
being the best competitors; equally abundant species; and the most abundant species being
the poorest competitors. Explicit expressions for species equilibrium in these different
scenarios are derived in their study.

Tilman’s model was further modified by Liu et al. [23]. In this work, the rates of
temporal heterogeneity are introduced via H(t) function. The parameters used are similar
to Tilman’s input parameters and three types of destruction were simulated: instantaneous
destruction, continuous-complete destruction, and continuous-partial destruction. With a
slight modification to the model in Tilman et al. [2], the direct effects of habitat destruction
on species abundance are captured. Weak and strong Al-lee-like effects are studied in
Chen et al. [24] whose work is also based on Tilman’s model with a drastically shortened
time delay of the species extinction.

In Pongvuthithum and Likasiri [25], the metapopulation model was improved by
approximating the direct effect rate of habitat destruction using differentiable function.
This approximation allowed analytical discussion on the equilibrium and stability of the
model. Various habitat destruction functions were also studied and discussed including
cyclical habitat destruction. Due to the superiority of Pongvuthithum and Likasiri’s model
to Liu et al., and Tilman’s model, we are interested in extending this model and predicting
the survival species. We also aim to analyze the equilibrium and stability of the model.
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Further, due to the model’s specific form, we are able to present a recursive method to find
the model solution. Several habitat-loss behaviors will also be studied numerically.

2. The Models and Analyses

The model in Pongvuthithum and Likasiri [25] describing the habitat proportion
occupied by species i, pi, can be written as follows:

F1 = dp1
dt = c1 p1(h(t)− p1)−m1 p1 + f (t)p1

Fi =
dpi
dt = ci pi

(
h(t)−

i
∑

j=1
pj

)
−mi pi −

i−1
∑

j=1
cj pi pj + f (t)pi, i = 2, 3, . . . , n

(1)

where ci is the colonization or invasion rate of ith species. In this study, the (i + 1)th species
is a better colonization or invasion species compared to the ith species,

mi is the mortality rate of ith species,
h(t) represents the remaining habitat,

f (t)pi is the direct effect of habitat destruction where f (t) = h′(t)
h(t) is the ratio between the

rate of change of the remaining habitat and the remaining habitat; in other words, f (t) is
the balance between the two figures. If f (t) is a decreasing function, the direct effect of the
habitat loss will be decreasing. Otherwise, it will be increasing over time.

The Jacobian of the system (1) can be expressed as a lower triangular matrix:

J =



c1h− 2c1 p1−m1 + f 0 · · · · · · 0
−(c2 + c1)p2 c2h− (c2 + c1)p1−2c2 p2 −m2 + f 0 · · · 0
−(c3 + c1)p3 −(c3 + c2)p3

∂F3
∂p3

· · · 0
...

... · · · · · ·
...

−(cn + c1)pn −(cn + c2)pn · · · −cn pn − cn−1 pn
∂Fn
∂pn



where
∂Fj
∂Pj

, the jth diagonal element is cjh− cj

j−1
∑

i=1
pi −

j−1
∑

i=1
ci pi − 2cj pj −mj + f .

System (1) has the trivial equilibrium point at pi = 0, ∀i with the Jacobian at the
equilibrium:

J0 =


c1h−m1 + f 0 · · · 0

0 c2h−m2 + f
...

...
. . . 0

0 · · · 0 cnh−mn + f


From the structure of Jo, the linearized system is decoupled. Therefore, to guarantee

the survival of the ith species, it is sufficient to show that there exists a time T ≥ 0 in
which the ith term of the diagonal of Jo (or the ith eigenvalue of Jo) is positive for all t ≥ T.
However, it does not mean that the species having negative eigenvalues for all t ≥ 0 will
be extinct since the associated solution of (1) might not converge to the origin depending
on the initial condition. There are several special cases worth exploiting explicitly for the
trivial equilibrium case:

Case 1: cih−mi + f (t) = λi case when λi are constant and h(t) is a solution to the
equation:

h′ + kih = cih2

where ki = λi + mi are constant.
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Solving the above differential equation yields

h = ki/
(

ci + ĉkie−kit
)

,

where ĉ = 1
h(0) −

ci
ki

. Hence, in order for h = ki
ci+ĉkie−ki t , ∀i, we must have ki = k and ci = c

for some constants k and c. Thus, in this case the habitat is equally distributed among
species and λi = k− mi. Hence, for any i, if λi > 0, the ith species survives the habitat
destruction.

Remark 1. For constant h, i.e., f (t) = 0, we have that λi = cih−mi is constant and is a special
case to this case.

Case 2: A more general cih−mi + f (t) case. In order for the ith species to survive the
habitat loss, cih−mi + f (t) needs to be positive, ∀t > T, for some large enough T.

Remark 2. We assume in this study that ci+1 > ci, ∀i ∈ {1, 2, . . . , n}. Consider the ith and
(i + 1)th diagonal elements in the Jacobian J0, corresponding to the two adjacent species ith and
(i + 1)th,

ci+1h−mi+1 + f (t) > cih−mi + f (t) iff h >
mi+1 −mi
ci+1 − ci

Hence, if cih − mi + f (t) > 0, ∀t > T and h >
mi+1−mi
ci+1−ci

, the (i + 1)th species will
survive as well as the ith species.

A special case when mi = m, ∀i ∈ {1, 2, . . . , n} studied in Tilman et al. [2,3] and
Liu et al. [23], if the ith species survives, all other higher ranked species will also survive
the habitat destruction.

Case 3: h(t) is a monotone decreasing function. If the ith diagonal element of the
Jacobian matrix J0, cih−mi − f > 0, the ith species survive the habitat loss. Since h(t) > 0,
we have h′ < mih− cih2. While h is decreasing as the habitat is being destroyed, we have
that h′ < 0. As a consequence, the ith species will survive the habitat loss if h < ci

mi
, ∀t > T,

for some large enough T. In particular, if lim
t→∞

h
′
= 0 and lim

t→∞
h = h∞ we have that the ith

species will survive so long as h∞ < lim
t→∞

ci
mi

. We will illustrate this case in the simulation.

2.1. Finding a Nontrivial Equilibrium Point

For Complete Survival Equilibrium: p∗i 6= 0, ∀i with f (t) = 0, the abundance equilib-
rium in a recursive form shown in Tilman et al., (1994) [2] is

p∗i = h− mi
ci
−

i−1

∑
j=1

p∗j ·
(

1 +
cj

ci

)
, i = 2, . . . , n,

where p∗1 = h− m1
c1

,
In general, if f (t) 6= 0, the equilibrium, p∗f i, can be written as

p∗f i = p∗i + (−1)i f (t)
d i

2 e

∏
j=1

c2j−2/
d i

2 e

∏
j=1

c2j−1 , i = 1, . . . , n (2)

where p∗i is the equilibrium when f (t) = 0, written explicitly in Pongvuthithum and
Likasiri [25], are governed by the following equations:
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p∗2i = (−1)2i+1h

2i−1
∏
j=1

cj

2i
∏
j=2

cj

+
i

∑
k=1

(m2k−1 −m2k)

2i−1
∏

j=2k+1
cj

2i
∏

j=2k
cj

+
i

∑
k=1

(m2k−1 −m2k)

2i−2
∏

j=2k
cj

2i−1
∏

j=2k−1
cj

, (3)

and

p∗2i+1 = h

2i−1
∏
j=1

cj

2i
∏
j=2

cj

+
i

∑
k=1

(−m2k−1 + m2k)

2i−1
∏

j=2k+1
cj

2i
∏

j=2k
cj

+
i

∑
k=1

(−m2k−1 + m2k)

2i
∏

j=2k
cj

2i+1
∏

j=2k−1
cj

, (4)

where p∗1 = h− m1
c1

.
This equilibrium point is useful in determining habitat abundance. It has been known

that the equilibrium is locally stable if the eigenvalues of the Jacobian matrix λi = cih−

ci
i−1
∑

j=1
p f j
∗−

i−1
∑

j=1
cj p f j

∗− 2ci p f i
∗−mi + f < 0, ∀i. All species will converge to the equilibrium

p∗f i 6= 0, if the initial conditions are close enough to p∗f i. Unfortunately, finding the region
of attraction of an equilibrium point for a nonlinear system is very difficult and usually
impossible. As a result, we generally cannot conclude where the solution will converge
analytically. However, due to the special form of the model, an analytic solution can be
written explicitly, as in the next section.

2.2. Finding a Solution

The system (1) can be rewritten as

dp1

dt
= (c1h(t)−m1 + f )p1 − c1 p2

1,

dp2

dt
= (c2h(t)− (c1 + c2)p1 −m2 + f )p2 − c2 p2

2,

dp3

dt
= (c3h(t)− (c1 + c3)p1 − (c2 + c3)p2 −m3 + f )p3 − c3 p2

3, . . . ,

dpn

dt
=

(
cnh(t)−

n−1

∑
i=1

(ci + cn)pi −mn + f

)
pn − cn p2

n

Since An(t) = cnh(t)−
n−1
∑

i=1
(ci + cn)pi −mn + f is a function of t, it can be viewed as

a special case of the Bernoulli equation in the following form:

dpn

dt
= An(t)pn − cn p2

n, ∀n

where A1(t) = c1h(t)−m1 + f and An(t) = cnh(t)−
n−1
∑

i=1
(ci + cn)pi −mn + f , ∀n = 2, . . .,

whose solution can be solved analytically and recursively as

1
Pn(t)

=
1

Pn(0)
exp

− t∫
0

An(τ)dτ

+ cn

t∫
0

exp

 τ̂∫
t

An(τ)dτ

dτ̂, ∀n (5)

3. Varieties of Habitat Destruction and Their Simulation Results

Three special cases of h(t) are considered in this study.
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3.1. Basic Continuous Destruction

To illustrate the case when h(t) is a decreasing function or the habitat is continuously
being destroyed, we use the exponentially decay function for the remaining habitat, which
is defined as h(t) = h∞ − (h∞ − 1) · e−t. Shown in Figure 1, the final ratio of habitat
destruction, h∞ = limt→∞h(t), is equal to 0.20, which is to say 20% of the habitat remains
after the destruction.
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Figure 1. (a) shows the habitat destruction function when h(t) = e−t and h∞ = 0.20. (b) compares
h∞ = lim

t→∞
h(t) and the ratio ci

mi
of species i. In this particular example, the ratio ci

mi
> h∞ for all i ≥ 27.

The ratio (c) shows the proportional abundance of all 50 species. The first 26 species become extinct
whereas the remaining 24 species survive the habitat loss.

3.2. Sudden Habitat Destruction

Habitat destruction such as flooding or earthquake can be described using a unimodal
function where the remaining habitat shown in Figure 2 can be written as h(t) = 1−
0.94(4)

[
e−t − e−2t]− 0.1

[
1− e−t]. We assume that the habitat is destroyed by a natural

disaster until there is only 1% of the habitat remaining, and then it is restored back to 90%
of the original level.
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Figure 2. The function of the remaining habitat governed by h(t) = 1 − 0.94(4)
[
e−t − e−2t] −

0.1
[
1− e−t] when h∞ = 0.90.

Using the parameters given in Tilman et al., (1994) [2], we consider the case where all
species experience the same loss, i.e., mi = m = 0.02, ∀i, and ci = m/(1− q)2i−1, where
q = 0.03. These parameters will ensure the competitiveness assumed in this study, that is,
the (i + 1)th species has a better ratio of colonization compared to the ith species.

In this case, lim
t→∞

h = h∞ = 0.90. The analysis shows that the ith species will survive so

long as h∗ > lim
t→∞

ci
mi

.

To capture this case, we then simulate the proportional abundance of species 1–50
using a unimodal function giving h(t) = 1− 0.94(4)

[
e−t − e−2t]− 0.1

[
1− e−t] as shown

in Figure 2 and h∞ = 0.90 or 10% of the habitat has been completely destroyed. Simulations
of Equation (1) in this case are shown in the Figure 3a–d.
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Figure 3. Proportional abundance of 50 species when h(t) = 1− 0.94(4)
[
e−t − e−2t]− 0.1

[
1− e−t],

10% of the habitat is completely destroyed. The simulation shows 48 out of 50 species converging to
the second equilibrium (2.2) in (a). Species 1 and 2 converge to the trivial equilibrium; therefore, they
both will become extinct while the remaining 48 species will survive the habitat loss. (b–d) shows
the proportional abundance of species 1–10 and 41–50 of the first 10 years, 100 years, and 1000 years,
respectively. Better competitors approach their equilibria faster and they oscillate closer around the
equilibria. The simulation closely shows how the proportional abundances of species 41–50 oscillate
around their equilibriums.

3.3. Sudden Habitat Destruction with Aftershock

Habitat destruction with aftershock such as flooding or earthquake with a smaller
amplitude aftershock can be described using a bimodal function. Here, the remaining
habitat shown in Figure 4 is governed by h(t) = 1− 0.935(4)

(
e−t − e−2t)− 0.375

(1+5(t−5)2)
−

0.1
(
1− e−t)where we assume that the habitat is first reduced to only 1% and then naturally

restored. There is one aftershock, which destroys the habitat to 50%, which happens as
the habitat is being restored to 80%. Eventually, only 10% of the habitat is completely
destroyed.
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Figure 4. The remaining habitat function of sudden habitat destruction with one after shock governed
by h(t) = 1− 0.935(4)

(
e−t − e−2t)− 0.375

(1+5(t−5)2)
− 0.1

(
1− e−t) where h∞ = 0.90.
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To capture this case, we simulate the proportional abundance of species 1–50 using
h(t) as shown in Figure 4 and h∞ = 0.90 or 10% of the habitat having been completely
destroyed. Simulations of Equation (1) in this case are shown in Figures 5 and 6. While
Figure 5a–d show 10,000-year simulations of specific groups of species, Figure 6a–d capture
the first 10, 100, 1000 and 2000 years of species 1–10 and 41–50, respectively. Note that all
other parameters are also taken from Tilman et al., (1994) [2].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 13 
 

destroyed. Simulations of Equation (1) in this case are shown in Figures 5 and 6. While 
Figure 5a–d show 10,000-year simulations of specific groups of species, Figure 6a–d cap-
ture the first 10, 100, 1000 and 2000 years of species 1–10 and 41–50, respectively. Note that 
all other parameters are also taken from Tilman et al. (1994) [2]. 

  
(a) (b) 

  
(c) (d) 

Figure 5. (a) shows the simulation of the proportion abundance of species 1–50 when ℎ(𝑡) = 1 −

0.935(4)(𝑒 − 𝑒 ) −
.

( ( ) )
− 0.1(1 − 𝑒 ) and ℎ = 0.90. Only species 1 and 2 are eventu-

ally extinct. The other 48 species converge to the second equilibrium in (2.2). The species with lower 
colonization rate approach the equilibrium faster than the ones with higher colonization rate. (b) 
shows the details on species 1–10 and 41–50, the higher ranked groups of species oscillate closer to 
the equilibrium. (c) compares the group of 1–10 species and the group of 31–40 species while (d) 
compares the groups of 11–20 and 41–50 species. 

0 2000 4000 6000 8000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

time(year)

pr
op

or
tio

n 
ab

un
da

nc
e

P
1

P
2 P

50

0 2000 4000 6000 8000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

time(year)
pr

op
or

tio
n 

ab
un

da
nc

e

P
2P

1

P
3
-P

10

P
41

-P
50

0 2000 4000 6000 8000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

time(year)

pr
op

or
tio

n 
ab

un
da

nc
e

P
2P

1

P
3
-P

10

P
31

-P
40

0 2000 4000 6000 8000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

time(year)

pr
op

or
tio

n 
ab

un
da

nc
e

P
11

-P
20

P
41

-P
50

Figure 5. (a) shows the simulation of the proportion abundance of species 1–50 when h(t) =

1 − 0.935(4)
(
e−t − e−2t) − 0.375

(1+5(t−5)2)
− 0.1

(
1− e−t) and h∞ = 0.90. Only species 1 and 2 are

eventually extinct. The other 48 species converge to the second equilibrium in (2.2). The species
with lower colonization rate approach the equilibrium faster than the ones with higher colonization
rate. (b) shows the details on species 1–10 and 41–50, the higher ranked groups of species oscillate
closer to the equilibrium. (c) compares the group of 1–10 species and the group of 31–40 species while
(d) compares the groups of 11–20 and 41–50 species.
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Figure 6. Proportional Abundance of 50 species when h(t) = 1− 0.935(4)
(
e−t − e−2t)− 0.375

(1+5(t−5)2)
−

0.1
(
1− e−t) and h∞ = 0.90, where 10% of the habitat cannot be restored. The 10-year simulation is

shown in (a), where we can see species 1 has the maximum occupancy rate. (b) shows a 100-year
simulation, where lower ranked species still show high occupancy rate, especially species 1 and
2, appearing in the top two. (c) shows 1000-year simulation where we start to see species 1 and 2
dropping from the top two and species 1 eventually becoming minimal near the end of the simulation.
(d) shows 2000 years simulation; here species 1 and 2 are approaching their zero equilibrium.

In the analyses, we show in Remark 2 that the survival of the ith species can be
guaranteed by the sign of its corresponding eigenvalue. That is, it is sufficient for a species
to survive if there exists a time T ≥ 0 in which its corresponding eigenvalue is positive
for all t ≥ T. We have plotted the eigenvalues of the system in the previous simulation
to illustrate this. Figure 7a shows the corresponding eigenvalues of all 50 species over
10 years. A closer look at Figure 7b shows that the eigenvalues of species 1–3 are negative
for some time T ≥ 0. However, species 3 does not become extinct. As mentioned earlier in
the analysis, having a negative eigenvalue for all t ≥ 0 does not necessarily mean that the
species will become extinct since the associated solution of (1) might not converge to the
origin depending on the initial condition.
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Figure 7. (a) shows corresponding eigenvalues for all 50 species over 10 years. (b) shows the
eigenvalues of species 1-4 over 100 years. We can see that species 1-3 have negative eigenvalues for
all t ≥ 0.

4. Summary and Discussion

We study the generalized N-species competitive coexistence model proposed in
Pongvuthithum and Likasiri (2010) [25]. Due to the specific form of the model, each
equation can be reduced to the Bernoulli equation where we show how to construct a
solution in integral form recursively. The model considered is a smooth direct effect on
habitat destruction on the abundance and extinction of species in the system. We analyze
the behaviors of survival and extinction species and predict the survival species by using
the corresponding eigenvalues of the Jacobian matrix, and the equilibrium and stability of
the model.

Special cases of continuous habitat destruction and sudden habitat destruction, such as
flooding and earthquakes with and without aftershocks, are discussed numerically. In the
simulations, we can see that we can predict the survival of a species by its corresponding
eigenvalue. If there exists a time T ≥ 0 in which its corresponding eigenvalue is positive
for all t ≥ T, that species’ survival of the habitat loss is abundant. However, corresponding
negative eigenvalues for all t ≥ 0 of a specific species does not predict the extinction of
a species since the solution of the system may or may not converge to its equilibrium
depending on the initial condition.

Author Contributions: Conceptualization, R.P. and C.L.; methodology, K.C. and E.D.; software, R.P.;
validation, E.D. and K.C.; formal analysis, R.P.; investigation, E.D.; resources, E.D.; data curation,
K.C.; writing—original draft preparation, C.L.; writing—review and editing, C.L.; visualization, R.P.;
supervision, C.L.; project administration, C.L.; funding acquisition, K.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research funded by Research Group in Mathematics and Applied Mathematics,
Department of Mathematics, Faculty of Science, Chiang Mai University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research is supported by the Research Group in Mathematics and Applied
Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University; and School
of Science, King Mongkut’s Institute of Technology Ladkrabang. The authors would like to thank
Wiriya Sungkhaniyom for her proofreading help.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2022, 12, 8693 12 of 12

References
1. Nee, S.; May, R.M. Dynamics of metapopulations: Habitat destruction and competitive coexistence. J. Anim. Ecol. 1992, 61, 37–40.

[CrossRef]
2. Tilman, D.; May, R.M.; Lehman, C.L.; Nowak, M.A. Habitat destruction and the extinction debt. Nature 1994, 371, 65–66.

[CrossRef]
3. Tilman, D.; Lehman, C.L.; Yin, C. Habitat destruction, dispersal, and deterministic extinction in competitive communities. Am.

Nat. 1997, 149, 407–435. [CrossRef]
4. Klausmeier, C.A. Extinction in multispecies and spatially explicit models of habitat destruction. Am. Nat. 1998, 152, 303–310.

[CrossRef] [PubMed]
5. Bascompte, J.; Solé, R.V. Effects of habitat destruction in a prey–predator metapopulation model. J. Theor. Biol. 1998, 195, 383–393.

[CrossRef] [PubMed]
6. Swihart, R.K.; Feng, Z.; Slade, N.A.; Mason, D.M.; Gehring, T.M. Effects of habitat destruction and resource supplementation in a

predator–prey metapopulation model. J. Theor. Biol. 2001, 210, 287–303. [CrossRef] [PubMed]
7. Keitt, T.H.; Johnson, A.R. Spatial heterogeneity and anomalous kinetics: Emergent patterns in diffusion-limited predatory-prey

interaction. J. Theor. Biol. 1995, 172, 127–139. [CrossRef]
8. Hanski, I.; KorpimÄki, E. Microtine rodent dynamics in northern Europe: Parameterized models for the predator-prey interaction.

Ecology 1995, 76, 840–850. [CrossRef]
9. De Roos, A.M.; McCauley, E.; Wilson, W.G. Pattern formation and the spatial scale of interaction between predators and their

prey. Theor. Popul. Biol. 1998, 53, 108–130. [CrossRef]
10. Prakash, S.; de Roos, A.M. Habitat destruction in a simple predator–prey patch model: How predators enhance prey persistence

and abundance. Theor. Popul. Biol. 2002, 62, 231–249. [CrossRef]
11. Nee, S.; Hassell, M.P.; May, R.M. Two-species metapopulation models. In Metapopulation Biology; Elsevier: Amsterdam, The

Netherlands, 1997; pp. 123–147.
12. Prakash, S.; de Roos, A.M. Habitat destruction in mutualistic metacommunities. Theor. Popul. Biol. 2004, 65, 153–163. [CrossRef]

[PubMed]
13. Ovaskainen, O. Habitat destruction, habitat restoration and eigenvector–eigenvalue relations. Math. Biosci. 2003, 181, 165–176.

[CrossRef]
14. Nakagiri, N.; Tainaka, K.-I.; Tao, T. Indirect relation between species extinction and habitat destruction. Ecol. Model. 2001, 137,

109–118. [CrossRef]
15. Lin, Z.-S.; Qi, X.-Z.; Li, B.-L. Can best competitors avoid extinction as habitat destruction? Ecol. Model. 2005, 182, 107–112.

[CrossRef]
16. Lin, Z.-S. The ecological order of persisting species during habitat destruction. Ecol. Model. 2005, 184, 249–256. [CrossRef]
17. Nakagiri, N.; Tainaka, K.-I. Indirect effects of habitat destruction in model ecosystems. Ecol. Model. 2004, 174, 103–114. [CrossRef]
18. Rybicki, J.; Hanski, I. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 2013, 16,

27–38. [CrossRef]
19. Rompré, G.; Robinson, W.D.; Desrochers, A.; Angehr, G. Predicting declines in avian species richness under nonrandom patterns

of habitat loss in a Neotropical landscape. Ecol. Appl. 2009, 19, 1614–1627. [CrossRef]
20. Dri, G.F.; Fontana, C.S.; de Sales Dambros, C. Estimating the impacts of habitat loss induced by urbanization on bird local

extinctions. Biol. Conserv. 2021, 256, 109064. [CrossRef]
21. Xu, D.; Feng, Z.; Allen, L.J.; Swihart, R.K. A spatially structured metapopulation model with patch dynamics. J. Theor. Biol. 2006,

239, 469–481. [CrossRef]
22. Morozov, A.; Li, B.-L. Abundance patterns in multi-species communities exposed to habitat destruction. J. Theor. Biol. 2008, 251,

593–605. [CrossRef]
23. Liu, H.; Lin, J.; Zhang, M.; Lin, Z.; Wen, T. Extinction of poorest competitors and temporal heterogeneity of habitat destruction.

Ecol. Model. 2008, 219, 30–38. [CrossRef]
24. Chen, L.-L.; Hui, C. Habitat destruction and the extinction debt revisited: The Allee effect. Math. Biosci. 2009, 221, 26–32.

[CrossRef] [PubMed]
25. Pongvuthithum, R.; Likasiri, C. Analytical discussions on species extinction in competitive communities due to habitat destruction.

Ecol. Model. 2010, 221, 2634–2641. [CrossRef]

http://doi.org/10.2307/5506
http://doi.org/10.1038/371065a0
http://doi.org/10.1086/285998
http://doi.org/10.1086/286170
http://www.ncbi.nlm.nih.gov/pubmed/18811394
http://doi.org/10.1006/jtbi.1998.0803
http://www.ncbi.nlm.nih.gov/pubmed/9826492
http://doi.org/10.1006/jtbi.2001.2304
http://www.ncbi.nlm.nih.gov/pubmed/11397130
http://doi.org/10.1006/jtbi.1995.0010
http://doi.org/10.2307/1939349
http://doi.org/10.1006/tpbi.1997.1345
http://doi.org/10.1006/tpbi.2002.1611
http://doi.org/10.1016/j.tpb.2003.10.004
http://www.ncbi.nlm.nih.gov/pubmed/14766189
http://doi.org/10.1016/S0025-5564(02)00150-5
http://doi.org/10.1016/S0304-3800(00)00417-8
http://doi.org/10.1016/j.ecolmodel.2004.02.017
http://doi.org/10.1016/j.ecolmodel.2004.10.006
http://doi.org/10.1016/j.ecolmodel.2003.12.047
http://doi.org/10.1111/ele.12065
http://doi.org/10.1890/08-1207.1
http://doi.org/10.1016/j.biocon.2021.109064
http://doi.org/10.1016/j.jtbi.2005.08.012
http://doi.org/10.1016/j.jtbi.2008.01.011
http://doi.org/10.1016/j.ecolmodel.2008.06.026
http://doi.org/10.1016/j.mbs.2009.06.003
http://www.ncbi.nlm.nih.gov/pubmed/19559716
http://doi.org/10.1016/j.ecolmodel.2010.08.012

	Introduction 
	The Models and Analyses 
	Finding a Nontrivial Equilibrium Point 
	Finding a Solution 

	Varieties of Habitat Destruction and Their Simulation Results 
	Basic Continuous Destruction 
	Sudden Habitat Destruction 
	Sudden Habitat Destruction with Aftershock 

	Summary and Discussion 
	References

