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Abstract: When urban subway tunnels cross existing bridge pile foundations, having a pile foun-
dation underpinning that ensures the safe operation of existing bridges while enabling the safe
construction of subway tunnels is the focus of attention. This paper takes the running tunnel project
from Huaguoyuan West Station to Huaguoyuan East Station of Rail Transit Line 3 in Guiyang City,
Guizhou Province as the background. The reasonableness and feasibility of the passive underpinning
construction scheme for the Guihuang Viaduct was studied. The construction plan includes the
following steps: underpinning pile construction, foundation pit excavation, the concreting of the
underpinning bearing platform, and existing pile truncation. In order to ensure the structural safety
of the existing viaduct during the construction of the pile foundation underpinning, a 3D numerical
model of the construction of pile foundation underpinning and the whole process of tunnel construc-
tion was established. The settlement calculation results of the foundation pit and bridge pier were
compared and analyzed with the field monitoring data to verify the accuracy of the numerical model.
Further detailed analysis of the settlement of the bridge deck, the deformation of the existing piles,
the axial forces of the existing piles, and the forces on the underpinning bearing platform was carried
out. The results show that the bridge superstructure load can be transferred to the underpinning
bearing platform smoothly after the existing pile truncation construction. The removal of obstacle
piles during tunnel excavation has a very limited impact on the superstructure of the bridge, proving
the reasonableness and feasibility of the construction plan.

Keywords: passive underpinning; interval tunnel crossing excavation; numerical simulation; field
monitoring

1. Introduction

With the development of urban rail transit and underground tunnel engineering in
China, tunnel engineering has gained popularity as an effective way to relieve the pressure
of surface traffic. During the construction process of a large number of urban tunnels,
there will be situations where construction will need to be carried out through the bottom
foundation of an existing building or bridge. Pile foundation underpinning technology
is often used in engineering to ensure the safety of the original superstructure in the
construction process, specifically referring to the expansion of the foundation of existing
buildings or foundation reinforcement. In particular, research on tunnel underpass bridge
pile foundations has been a hot topic in recent years [1].

Previous studies on pile foundation underpinning have focused on theoretical empiri-
cal formulations [2–6], indoor similar model tests [7–12], and numerical simulations [13–19].
Specifically, Shan [2] proposed a new excavation scheme for urban high-rise buildings, and
the theoretical equations of lateral frictional resistance and end resistance of existing piles
influenced by adjacent boreholes were derived. Liang [3] developed a computational model
for the effect of foundation pits on the dynamic impedance of supported piles, considering
the effect of stress history. Zhu [7] conducted indoor model tests based on the pile founda-
tion underpinning design scheme. The changes in existing piles and underpinning piles
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(pile vertical displacement, pile axial force, and lateral friction resistance) before and after
underpinning were studied. Wang [10] simulated the construction process by indoor model
tests, studying the pile foundation underpinning the construction process and the pile
bearing characteristics. Li [13] used a three-dimensional finite element method to compare
and analyze the effectiveness of the protection scheme in mitigating the impact of tunnel
excavation on the adjacent group piles. The results show that the pile foundation under-
pinning scheme is effective in reducing the structural settlement and ground deformation
of the bridge. Song [16] detailed the key technologies for pile foundation underpinning
construction in tunnels, and conducted theoretical analysis, numerical calculation, and field
monitoring to verify the reasonableness of the method. Wang [19] used the engineering
example of a double-line shield tunnel crossing Fengqi Bridge in Hangzhou Metro Line 2,
discussed strengthening options for Fengqi Bridge, and analyzed the monitoring data
before and after the shield crossed the bridge.

There have also been many studies on underpinning structural load-bearing systems.
Xu [20] used the beam wrapped pile cap method for pile foundation underpinning con-
struction. Due to the limited technical conditions at that time, the effect of the connection
between the old and new concrete after its construction could not be effectively monitored.
He [21] concluded that the passive pile foundation underpinning project is feasible and
reasonable when applied in an eight-story frame structure building. Xu [22] used numerical
simulation and theoretical derivation to investigate the reasonable excavation exposure
length of pile foundations during the construction of pile foundation underpinning, the
force conversion mechanism of a piled raft system, and the influence of shield cut piles on
the superstructure. Zhang [23] used underpinning beams as the underpinning structural
load-bearing system; at the same time, in order to prevent the cracking of the underpin-
ning bearing platform concrete, several prestressing steel strands were placed inside it.
Zhang [24] used an underpinning beam as a load-bearing structure for the underpinning
structure. Numerical simulations of pile foundation underpinning construction and tunnel
crossing construction processes were carried out using finite element software. Xu [25]
used the foundation reinforcement and raft construction of the pile foundation underpin-
ning technique and verified the feasibility of the construction plan by using numerical
simulation. Li [26] used an underpinning beam as a construction method for underpin-
ning structures, studied the mechanism of stress transfer during the construction of pile
foundation underpinning, and investigated the impact of shield tunnel construction on the
stability of pile foundations.

In general, the existing papers on bridge substructure pile foundation underpinning
have the following two characteristics: the underpinning structural load-bearing system
mainly adopts a raft structure, beam structure, and prestressed beam structure, and the
pile foundation underpinning technology mostly adopts the form of active underpinning
(using jacking to control the bridge superstructure deformation). There are not many
research results on the pile foundation underpinning of bridge substructures using passive
underpinning and the underpinning pile cap as the underpinning structural load-bearing
system, and no systematic feasibility evaluation has yet been conducted. In this paper,
based on previous related studies, we use Midas GTS software to establish a simulation
of the entire construction phase, conduct detailed analysis of the mechanical properties of
underpinning structures at different construction stages of pile foundation underpinning,
and by comparison with the actual monitoring data, the reasonableness and feasibility of
the construction plan are verified.

2. Project Overview
2.1. Engineering Background

In Guiyang City, Guizhou Province, the Rail Transit Line 3 phase 1 project takes the
following route from Huaguoyuan West Station to Huaguoyuan East Station: the interval
tunnel out of Huaguoyuan West Station through the lion rock mountain, undercrossing
the school, Guihuang elevated bridge, Chuanqian Railway roadbed, sidecrossing the
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Guiguang High-speed Railway bridge pile, undercrossing the Zunyi Middle Road antislip
pile and concert hall, and finally arriving at Huaguoyuan East Station. The interval
mileage of the piled section under the Guihuang Viaduct is YDK29+255~YDK29+290,
ZDK29+280~ZDK29+315. The geographical location of the pile foundation underpinning
is shown in Figure 1.
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Figure 1. Geographical location of the underpinned pile foundation (Chinese name of the place in
the picture).

The tunnel is a horseshoe-shaped single-hole double-line tunnel, and the surrounding
rock level of this section of the tunnel is level III, using the upper and lower steps alongside
the core soil method of construction. The tunnel is 6.52 m wide and 7.17 m high, and has
a double-line spacing of approximately 15 m and a tunnel burial depth of approximately
8.5 m. The tunnel cross section is shown in Figure 2.
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Figure 2. Tunnel cross section.

Guihuang Viaduct is located west of the intersection of Zunyi Middle Road and Park
Middle Road, on the north side of Guihuang Road. The bridge is a bidirectional eight-lane
reinforced concrete continuous box girder bridge. The girder height is 1.4 m, and the width
of the bridge deck varies with the road curve; the cover beam is 1.8 m (height) × 1.6 m
(width); the bridge pier is a 1.5 m × 1.5 m square pile and is 7.7 m long; and the old bearing
platform is a 7.5 m (length) × 3 m (width) × 2.5 m (height) rectangular bearing platform.
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2.2. Engineering Geological Conditions

The interdistrict tunnel at the pile foundation underpinning belongs to a mound and
valley landform of the dissolution type. According to the engineering geologic investigation
report, the main strata at the pile foundation underpinning are miscellaneous fill, plastic
red clay, and medium-weathered limestone. The uppermost layer is <1–2> miscellaneous
fill (Q4ml), mainly composed of construction waste and artificial backfilled gravel, etc. The
gravel blocks are mainly dolomite, the voids are filled by clayey soil, and the structure is
looser. The middle layer is <4–1–3> plastic red clay (Q4el+dl); the soil is brownish-yellow,
maroon, etc., and is locally distributed in the stratum, with engineering properties such
as softening in water, fissure development, and easy flaking. The lower layer is <20–2–3>
medium-weathered limestone (P1m), with a greenish gray, gray-black, medium-layered
structure. The rock is relatively complete, and the mineral composition is mainly composed
of calcite and biological debris.

To determine the deformation modulus of the rock formation, we conducted an indoor
rock test, as shown in Figure 3. The uniaxial compressive strength of the rock was measured
to be 37.909 MPa, while the rock integrity index provided by the geological survey report
was 0.44 and the rock wave speed was 3.42 km/s. In this paper, research results from the
literature [27] are used to determine the deformation modulus of the rock mass, which is
calculated by Equation (1).

Em =


(

1+Kv
2

)√
σc

100 · 10
(

15Vp−17.5
40

)
, (σc ≤ 100 MPa)(

1+Kv
2

)
· 10
(

15Vp−17.5
40

)
, (σc > 100 MPa)

(1)

where Em is the deformation modulus of the rock mass; σc is the uniaxial compressive
strength of intact rock masses; Kv is the rock integrity index; and Vp is the rock body wave
speed.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 20 
 

  
(a) (b) 

Figure 3. Indoor rock test: (a) rock samples for testing; (b) rock uniaxial compression test. 

The main mechanical properties of the strata are listed in Table 1. The thickness of 
the soil strata shown in Table 1 is the thickness of the soil strata at the time of modeling. 
Since the actual stratum is not a homogeneous stratum, the stratum thickness is taken as 
the average thickness of the actual stratum for the simplification of numerical modeling. 
Regarding the swelling angle of the soil, the empirical formula is as follows: swelling an-
gle = internal friction angle −30°. When the internal friction angle is less than 30°, the ex-
pansion angle can be regarded as close to 0°. Therefore, the swelling angle of the soil is 
not considered in this paper. Soil cohesion is denoted by c, and the angle of internal fric-
tion by φ. Standard statistical values for the consolidation of fast shear tests were used 
according to the ground investigation report. 

Table 1. Main physical and mechanical parameters of the stratum. 

Stratigraphic Name Depth (m) γ (kN/m3) Em (GPa) μ c (kPa) φ (°) 
Miscellaneous fill 5.6 19 0.006 0.3 8 17 

Red clay 1.4 17.76 0.015 0.35 40 10 
Medium-weathered limestone - 27.1 2.0 0.26 450 40 

Rock surrounding reinforcement area 2.0 27.1 4.0 0.26 650 60 
Note: γ is the stratum unit weight; Em is the deformation modulus; μ is Poisson’s ratio; c is cohesion; 
and φ is the angle of internal friction. 

3. Pile Foundation Underpinning Program 
3.1. Construction Scheme of Pile Foundation Underpinning 

As Guiyang Rail Transit Line 3 crosses the bridge piles of Guihuang elevated bridge, 
some of the original bridge piles are truncated by the tunnel. In order to ensure the struc-
tural and operational safety of the Guihuang Viaduct, the pile foundations of piers 15 and 
16 of the Guihuang Viaduct need to be underpinned. The construction solution is to use 
passive underpinning. The plan for the underpinned pile foundation is shown in Figure 
4. A total of six bridge piles within the upstream and downstream lanes need to be under-
pinned; the piles to be underpinned are 15-5, 15-6, 16-1, 16-2, 16-4, and 16-5 of the Gui-
huang Viaduct, and the diameter of the pile to be replaced is 1.8 m, which is cast with C30 
steel concrete. The diameter of the underpinning pile is 1.5 m, with a total of 16 piles. 
There are four underpinned bearing platforms, and both the underpinned bearing plat-
form and underpinning pile are cast with C35 reinforced concrete. A total of three foun-
dation pits are excavated, to an excavation depth of 5.4 m, from Huaguoyuan West Station 
to Huaguoyuan East Station in the direction of construction. The relationship between 

Figure 3. Indoor rock test: (a) rock samples for testing; (b) rock uniaxial compression test.

Finally, the deformation modulus of the medium fractionated limestone is estimated
to be 3.75 MPa. Combined with the field monitoring data and the experience of metro
construction in the Guiyang area, the deformation modulus of this paper is taken as 2 MPa.
The cohesion and internal friction angle of the rock layer and other parameters of the soil
layer are taken from the geological survey report and the experience of metro construction
in the Guiyang area.

The main mechanical properties of the strata are listed in Table 1. The thickness of
the soil strata shown in Table 1 is the thickness of the soil strata at the time of modeling.
Since the actual stratum is not a homogeneous stratum, the stratum thickness is taken as
the average thickness of the actual stratum for the simplification of numerical modeling.
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Regarding the swelling angle of the soil, the empirical formula is as follows: swelling
angle = internal friction angle −30◦. When the internal friction angle is less than 30◦, the
expansion angle can be regarded as close to 0◦. Therefore, the swelling angle of the soil
is not considered in this paper. Soil cohesion is denoted by c, and the angle of internal
friction by ϕ. Standard statistical values for the consolidation of fast shear tests were used
according to the ground investigation report.

Table 1. Main physical and mechanical parameters of the stratum.

Stratigraphic
Name Depth (m) γ (kN/m3) Em (GPa) µ c (kPa) ϕ (◦)

Miscellaneous fill 5.6 19 0.006 0.3 8 17
Red clay 1.4 17.76 0.015 0.35 40 10
Medium-

weathered
limestone

- 27.1 2.0 0.26 450 40

Rock surrounding
reinforcement area 2.0 27.1 4.0 0.26 650 60

Note: γ is the stratum unit weight; Em is the deformation modulus; µ is Poisson’s ratio; c is cohesion; and ϕ is the
angle of internal friction.

3. Pile Foundation Underpinning Program
3.1. Construction Scheme of Pile Foundation Underpinning

As Guiyang Rail Transit Line 3 crosses the bridge piles of Guihuang elevated bridge,
some of the original bridge piles are truncated by the tunnel. In order to ensure the
structural and operational safety of the Guihuang Viaduct, the pile foundations of piers
15 and 16 of the Guihuang Viaduct need to be underpinned. The construction solution
is to use passive underpinning. The plan for the underpinned pile foundation is shown
in Figure 4. A total of six bridge piles within the upstream and downstream lanes need
to be underpinned; the piles to be underpinned are 15-5, 15-6, 16-1, 16-2, 16-4, and 16-5
of the Guihuang Viaduct, and the diameter of the pile to be replaced is 1.8 m, which is
cast with C30 steel concrete. The diameter of the underpinning pile is 1.5 m, with a total
of 16 piles. There are four underpinned bearing platforms, and both the underpinned
bearing platform and underpinning pile are cast with C35 reinforced concrete. A total of
three foundation pits are excavated, to an excavation depth of 5.4 m, from Huaguoyuan
West Station to Huaguoyuan East Station in the direction of construction. The relationship
between stratigraphy and pile foundation location and the profiles of the underpinning
pile foundations 1-1, 2-2, and 3-3 are shown in Figure 5 (unit: cm).
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Figure 5. Underpinned pile foundation cross-section diagram: (a) Section 1-1; (b) Section 2-2; and
(c) Section 3-3.

The construction process of the underpinned pile foundation is divided into a total
of six construction stages, with the following construction steps: (1) underpinned pile
and retaining pile for foundation pit construction; (2) the excavation of the foundation
pit, pouring a 10 cm C20 concrete bedding layer at the bottom of the foundation pit, and
welding connection steel on the side of the existing pile cap; (3) the underpinning pile
cap is cast with C40 concrete; (4) in the underpinned bearing platform bottom, the local
excavation of a 0.3 m~0.5 m deep trench, the wire saw cutting of the existing pile into a
working surface, using the mechanical vibrationless linear cutting process to cut the existing
pile, and backfilling the trench at the bottom of the platform with mortar; (5) backfilling
the foundation pit to the original ground level, restoring the surrounding ground and
road surface; and (6) tunnel construction, breaking up the existing pile foundation when
encountered. These steps are shown in Figure 6.
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Figure 6. Underpinned pile foundation step diagram. (The serial number in the figure corresponds
to the step sequence of pile foundation underpinning construction).

3.2. Analysis of Technical Difficulties

(1) The pile foundation underpinning section is very dense around the viaduct, and the
location of the underpinning pile has invaded Guihuang Road. The process needs
to occupy Guihuang Road into and out of the city-direction lanes for semiclosed
construction.

(2) The location of the underpinning pile is close to the original bearing platform of
Guihuang elevated bridge, which is an operational bridge. The bridge settlement and
deformation control requirements during construction are high, and the disturbance
to the old bearing platform during underpinning pile construction should be reduced
by as much as possible.

(3) The foundation pit is surrounded by a rain–sewage pipeline and gas pipeline (as
shown in Figure 4), and the construction may cause a large differential settlement of
these pipelines, which may lead to the destruction of the pipelines.

(4) The process of underpinning the pile foundation is not completed at once, requiring
multiple excavations and pile foundation truncation construction, which has a more
complex impact on the settlement and deformation of the bridge structure.

4. Three-Dimensional Numerical Model
4.1. Finite Element Calculation Model

In this paper, the effects of underpinned pile foundation and tunnel construction on the
existing elevated bridge were simulated using the 3D finite element analysis software Midas
GTS. In order to simplify the model and weaken the influence of tunnel boundary effects on
the simulation results, the dimensions of the model strata were calculated using 3 to 5 times
the tunnel excavation diameter: longitudinal (80 m) × transverse (80 m) × vertical (50 m).
The mesh used in this numerical model consists of 57,555 nodes and 94,142 elements. For
the accuracy of calculation, the grid size of the tunnel excavation, pile foundation, and
bearing platform area is divided by local encryption. Fixed constraints are added to limit
the displacement of the model in the horizontal and bottom directions, while the upper
part of the model has a free boundary without the addition of constraints. The lane loads
were applied to the bridge deck, the same as they were to the uniform and concentrated
loads, while RZ directional restraints were added to all pile foundations to limit their rigid
body rotation displacement. The spatial dimensions of the computational model are shown
in Figure 7a, and the internal schematic of the computational model is shown in Figure 7b.
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4.2. Finite Element Calculation Parameters

In this paper, the geotechnical body adopts the Mohr–Coulomb yielding criterion as
the intrinsic model [28], and the strata are divided into a total of three layers, all of which
are assumed to be ideal elastic materials. The simulation of the bridge superstructure
is simplified to a bridge slab, which is convenient for the analysis of the bridge deck
settlement later. The simulated cover beam is a plate unit, and both the existing bearing
platform and underpinning pile cap are simulated as solid units. A one-dimensional beam
unit is used to simulate bridge piers, existing piles, and buttress piles. The advantage of
the beam unit is that the pile–soil coupling can be ensured while the contact coefficient
between piles and soil does not need to be set. According to the stiffness equivalence
principle, the simplified foundation pit enclosure pile is an underground continuous wall,
and the underground continuous wall and the initial support are simulated by the shell
unit. The tunnel undercrosses Guihuang Viaduct in the level III surrounding rock, using
Φ159 advanced pipe shed and grouting as presupport, and in the tunnel support system,
the difference in stiffness between the anchor and the surrounding rock is large. The role of
the anchor rod is mainly to improve the continuity and integrity of the surrounding rock,
limiting the development of the surrounding rock plastic zone. In order to simplify the
model, in this paper, the C and ϕ values and deformation modulus Em of the surrounding
rock around the tunnel are increased to form a surrounding rock reinforcement zone to
simulate the effect of advanced pipe shed support when conducting numerical simulations.
The physical and mechanical parameters of the surrounding rock reinforcement zone are
shown in Table 1. The calculated model material parameters are shown in Table 2.

4.3. Numerical Simulation Process

The numerical simulation process is divided into three main stages: (1) the construction
of Guihuang elevated bridge; (2) the construction of the underpinned pile foundation; and
(3) the construction of the internal tunnel. In this paper, we mainly study the influence
of the underpinning pile foundation and tunnel construction throughout the process of
the settlement of existing elevated bridges, without considering the influence of existing
elevated bridge construction; therefore, the displacement caused by the construction of
Guihuang Viaduct is cleared.
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Table 2. Material parameters of the computational model.

Material Type Concrete Grade E (GPa) µ γ (kN/m3)

Cover beam C50 34.5 0.2 23.5
Bridge panel C40 32.5 0.2 23.5

Underpinned bearing
platform; underpinned pile C35 31.5 0.2 23.5

Existing pile; existing
bearing platform C30 30 0.2 23.5

Bridge pier; underground
continuous wall C30 30 0.2 23.5

Initial support C25 29 0.2 23.5
Foundation pit concrete

backfilling C20 25.5 0.2 23.5

Note: The parameters in the table are the same as above except that E represents the modulus of elasticity.

According to the actual construction situation on site, construction is divided into
a total of 17 stages to simulate the whole construction process of the interval tunnel
crossing the existing bridge foundation. The main construction steps are as follows:
(0) construction of the diaphragm wall and underpinning piles; (1) foundation pit 1 exca-
vation; (2) No. 1 and 2 underpinning platform construction; (3) No. 15-5, 15-6, and 16-5
existing piles cut off; (4) foundation pit 1 backfill; (5) foundation pit 2 excavation; (6) No. 3
underpinning platform construction; (7) No. 16-4 existing piles are cut off; (8) foundation
pit 2 backfill; (9) foundation pit 3 excavation; (10) No. 4 underpinning pile cap construction;
(11) No. 16-1 and 16-2 existing piles are truncated; (12) foundation pit 3 backfill; (13) tunnel
construction (left line first, staggered construction of two tunnels, left and right line tunnels
face staggered distance of 36 m; during the tunnel construction process, the construction
step length of the surrounding rock reinforcement area is 2 m, and the step length is 2 m),
close to the existing piles of the viaduct; (14-15) the tunnel passes through the bridge pile
foundation and the barrier pile is removed; and (16) tunnel construction, away from the
existing bridge pile foundation area.

4.4. Numerical Model Loads

(1) Self-weight

The self-weight coefficient of the calculation model is taken as g = 9.81 m/s2 (because
the tunnel burial depth is not large, the influence of the tectonic stress field is small, and
the ground stress field is considered using the self-weight stress field).

(2) Bridge superstructure loading

The superstructure load is the main factor causing the structure to settle during the
construction period. In this project: the bridge reinforced concrete and prestressed concrete
unit weight is 26 kN/m3, and the left and right deck of the second-phase paving take the
value of 107.3 kN/m. In order to simplify the calculation, the superstructure load of the
bridge is converted to the self-weight of the bridge deck slab (concrete grade C40).

(3) Lane load

The automobile design load of Guihuang Road Viaduct is calculated according to
the City—Class A load, where the automobile load includes the lane load and vehicle
load. This paper aims to calculate and analyze the overall structure of the bridge, so the
lane load is used. Referring to the relevant provisions of the national standard “Code for
design of urban bridges” (CJJ11-2011), the lane load is composed of concentrated load and
uniform load, the standard value of the uniform load is taken as qK = 10.5 kN/m, and the
concentrated load is taken as PK = 302 KN.
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5. Numerical Simulation Result Analysis
5.1. Verification of the Numerical Model

In order to verify that the established numerical model is reasonable and reliable,
numerical simulation results and field monitoring data were compared for the settlement
of the foundation pit enclosure (ground connection wall) and the settlement of bridge piers
at different construction stages. In the bridge pile foundation underpinning construction
site monitoring, the models Trimble-Dini0.3-748408 digital level (measurement accuracy
of 1 mm) and LeicaTS09plus-1890787 total station (measurement accuracy of 1 mm) were
used to monitor the foundation pit enclosure structure and bridge pier settlement.

It can be seen from Figure 8 that the measured data in the field of the foundation pit
enclosure structure and the calculated results of numerical simulation are in the range of
the settlement control requirements (<20 mm), so the numerical simulation results of this
paper are reliable.
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The settlement variation curve of the bridge pier monitoring is shown in Figure 9b.
From the figure, we can see that the maximum settlement of the bridge pier appears in
pier 2, at 2.72 mm (<8 mm); the uplift of the bridge pier occurs at the foundation pit
excavation, with a maximum value of 0.73 mm; and the settlement of the bridge pier meets
the monitoring requirements. Overall, the numerically simulated bridge pier settlement
is close to the monitoring results, which further indicates that the numerical simulation
results in this paper are reliable.

5.2. Settlement Analysis of Foundation Pit Enclosure Structure

The settlement curve of the underground diaphragm wall with the construction
process of pile foundation underpinning is shown in Figure 8 (this paper only takes
foundation pit 1 as an example). From the figure, we can see that with the excavation of
foundation pit 1, the underground diaphragm wall produces uplift, and the maximum
amount of uplift is 1.2 mm. Underpinning bearing platform construction, existing pile
truncation construction, foundation pit backfill, and other stages will cause the settlement
of the diaphragm wall, with a maximum settlement amount of 2.2 mm. The settlement
of the diaphragm wall slowly stabilized when the tunneling was carried out after the
completion of the underpinning system.
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5.3. Bridge Superstructure Deformation Characteristics

(1) Settlement analysis of bridge piers

As shown in Figure 9a, the vertical deformation of the bridge pier caused by each
construction stage is analyzed (where pier 1 indicates the pier corresponding to the No. 1
underpinning bearing platform, as shown in Figure 4). It can be seen from the figure that
the excavation of the foundation pit causes the piers to bulge, with a maximum bulge of
0.3 mm (occurring during the foundation pit 1 excavation phase). During the construction
stage of the underpinning bearing platform, the settlement of the bridge pier was caused
by the self-weight of the underpinning bearing platform, and the maximum settlement
was 0.64 mm (bridge pier No. 2). During the existing pile truncation construction stage,
the lower pile bearing capacity suddenly reduced, which caused the bridge superstructure
to deform, and then the underpinning structure system transformation was completed, in
which the existing pile truncation construction caused a large change in pier settlement.
The settlement of piers 1, 2, 3, and 4 caused by the existing pile truncation construction
stage accounted for 41%, 42%, 43%, and 43% of the total construction stage settlement,
respectively. During the tunnel construction phase, the settlement of piers 1, 2, 3, and 4 was
stabilized at around 1.6 mm, 2.4 mm, 1.9 mm, and 2.5 mm, respectively, which can be seen
to have little effect on the bridge superstructure during this phase.

Four piers showed the same settlement trend, among which the superstructure loads
of piers 1 and 3 were mainly shared by the underpinning system (underpinning bearing
platform and underpinning pile) and the existing piles that were not truncated, so the
settlement was smaller, being only 1.98 mm. The existing pile foundation corresponding
to pier 2 and 4 needs to be truncated completely, and the entire upper load is transferred
to the underpinning bearing platform and underpinning pile, so the settlement value is
greater compared with pier 1 and 3. The maximum settlement value appeared in pier 4,
with a value of 2.55 mm (<8 mm), meeting the settlement control requirements.

(2) Deformation analysis of the bridge deck

Similarly to Figure 10, which shows the settlement of the bridge deck during the
construction of the underpinning pile foundation, it can be seen from Figure 9a that the
diaphragm wall and the underpinning pile construction have minimal impact on the
superstructure of the bridge; this is therefore not repeated below. From Figure 10b, it
can be seen that soil loss during foundation pit excavation causes soil rebound inside the
foundation pit, which drives the uplift deformation of the superstructure, and the maximum
uplift of the bridge deck is approximately 0.37 mm; as can be seen in Figure 10c, when
the underpinning bearing was poured, the new bearing settled under its own weight and
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the maximum settlement of the bridge deck was approximately 0.6 mm. From Figure 10d,
it can be seen that the existing pile truncation construction leads to the direct transfer of
the superstructure load to the underpinning bearing platform, and that due to the loss of
the original pile bearing capacity, the settlement of the bridge deck becomes dramatically
large, with a maximum settlement of 2.55 mm. From Figure 10e,f, it can be seen that
the backfilling of the foundation pit (equivalent to soil loading) further causes a slow
increase in superstructure settlement after the completion of the underpinning system,
while the tunnel construction phase has almost no effect on the superstructure. The final
settlement of the bridge deck was approximately 3 mm maximum (<8 mm), which satisfied
the settlement control requirements.
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Figure 10. Major construction phases of bridge deck settlement: (a) diaphragm wall, underpinning
pile construction; (b) foundation pit excavation; (c) underpinning bearing platform construction;
(d) existing pile truncation; (e) foundation pit backfill; and (f) tunnel construction.

(3) Analysis of the monitoring results of surrounding pipelines

Due to the existence of a large number of pipelines around the foundation pit, the pile
foundation underpinning and tunnel construction may cause a large differential settlement
of the pipelines, which may lead to damage to the pipelines. In this project, the gas pipeline
and rain–sewage pipeline near the foundation pit (as shown in Figure 4) were monitored
using a digital level (measurement accuracy of 1 mm) of the model Trimble Dini0.3-748408.
As shown in Figures 11 and 12, the maximum settlement of the rain–sewage pipe is 3.85 mm,
and the maximum settlement of the gas pipe is 5.27 mm. The maximum differences in the
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settlement of the rain–sewage pipe and gas pipe are 0.25% Lg and 0.3% Lg, which both
meet the monitoring control value (Lg indicates the length of the pipe section; L indicates
the distance from the center of the adjacent foundation).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 20 
 

Figure 10. Major construction phases of bridge deck settlement: (a) diaphragm wall, underpinning 
pile construction; (b) foundation pit excavation; (c) underpinning bearing platform construction; (d) 
existing pile truncation; (e) foundation pit backfill; and (f) tunnel construction. 

(3) Analysis of the monitoring results of surrounding pipelines 
Due to the existence of a large number of pipelines around the foundation pit, the 

pile foundation underpinning and tunnel construction may cause a large differential set-
tlement of the pipelines, which may lead to damage to the pipelines. In this project, the 
gas pipeline and rain–sewage pipeline near the foundation pit (as shown in Figure 4) were 
monitored using a digital level (measurement accuracy of 1 mm) of the model Trimble 
Dini0.3-748408. As shown in Figures 11 and 12, the maximum settlement of the rain–sew-
age pipe is 3.85 mm, and the maximum settlement of the gas pipe is 5.27 mm. The maxi-
mum differences in the settlement of the rain–sewage pipe and gas pipe are 0.25% Lg and 
0.3% Lg, which both meet the monitoring control value (Lg indicates the length of the pipe 
section; L indicates the distance from the center of the adjacent foundation). 

 
Figure 11. Settlement change curve of the rainwater and sewage pipeline. 

 
Figure 12. Settlement change curve of the gas pipeline. 

  

2020/3/20 2020/5/1 2020/6/12 2020/7/24 2020/9/4 2020/10/16
-4

-3

-2

-1

0

1

Ra
in

 se
w

ag
e 

pi
pe

lin
e 

se
ttl

em
en

t  
(m

m
)

Date

 GXC−YS01−01
 GXC−YS01−01

Foundation pit excavation

Construction of 
underpinning platform

Existing pile truncation

Foundation pit backfill

Tunnel 
construction

2020/7/5 2020/8/4 2020/9/3 2020/10/3 2020/11/2 2020/12/2
-6

-5

-4

-3

-2

-1

0

1

G
as

 p
ip

el
in

e 
se

ttl
em

en
t  

 (m
m

)

Date

 GXC−RQ01−01
 GXC−RQ01−02

Foundation pit − 4
 excavation

Construction of 
underpinning platform

Existing pile
 truncation

Tunnel construction

Foundation pit − 4 backfill

Figure 11. Settlement change curve of the rainwater and sewage pipeline.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 20 
 

Figure 10. Major construction phases of bridge deck settlement: (a) diaphragm wall, underpinning 
pile construction; (b) foundation pit excavation; (c) underpinning bearing platform construction; (d) 
existing pile truncation; (e) foundation pit backfill; and (f) tunnel construction. 

(3) Analysis of the monitoring results of surrounding pipelines 
Due to the existence of a large number of pipelines around the foundation pit, the 

pile foundation underpinning and tunnel construction may cause a large differential set-
tlement of the pipelines, which may lead to damage to the pipelines. In this project, the 
gas pipeline and rain–sewage pipeline near the foundation pit (as shown in Figure 4) were 
monitored using a digital level (measurement accuracy of 1 mm) of the model Trimble 
Dini0.3-748408. As shown in Figures 11 and 12, the maximum settlement of the rain–sew-
age pipe is 3.85 mm, and the maximum settlement of the gas pipe is 5.27 mm. The maxi-
mum differences in the settlement of the rain–sewage pipe and gas pipe are 0.25% Lg and 
0.3% Lg, which both meet the monitoring control value (Lg indicates the length of the pipe 
section; L indicates the distance from the center of the adjacent foundation). 

 
Figure 11. Settlement change curve of the rainwater and sewage pipeline. 

 
Figure 12. Settlement change curve of the gas pipeline. 

  

2020/3/20 2020/5/1 2020/6/12 2020/7/24 2020/9/4 2020/10/16
-4

-3

-2

-1

0

1

Ra
in

 se
w

ag
e 

pi
pe

lin
e 

se
ttl

em
en

t  
(m

m
)

Date

 GXC−YS01−01
 GXC−YS01−01

Foundation pit excavation

Construction of 
underpinning platform

Existing pile truncation

Foundation pit backfill

Tunnel 
construction

2020/7/5 2020/8/4 2020/9/3 2020/10/3 2020/11/2 2020/12/2
-6

-5

-4

-3

-2

-1

0

1

G
as

 p
ip

el
in

e 
se

ttl
em

en
t  

 (m
m

)

Date

 GXC−RQ01−01
 GXC−RQ01−02

Foundation pit − 4
 excavation

Construction of 
underpinning platform

Existing pile
 truncation

Tunnel construction

Foundation pit − 4 backfill

Figure 12. Settlement change curve of the gas pipeline.

5.4. Deformation Force Analysis of Existing Piles

As can be seen from above, the most significant impact on the deformation of the bridge
superstructure during the construction of the pile foundation underpinning is the truncation
phase of the existing piles. It is essential to study the deformation and axial force changes
during the truncation of existing piles. Since the existing piles in this paper are mainly
located in medium-weathered limestone, which can limit the displacement of the piles in
the horizontal direction, this paper focuses on the vertical displacement of existing piles. We
take the 16-3 (uncut) and 16-4 (cut) existing piles as an example to compare the deformation
law of existing piles without underpinning and with underpinning construction. Taking
the 16-5 and 16-1 existing piles as an example, we also compare the deformation and force
change law of existing piles when underpinning one existing pile and underpinning two
existing piles.

(1) Settlement analysis of existing piles 16-3 and 16-4
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From Figure 13a, it can be seen that the settlement values of the pile tops of the
existing pile 16-3 (untruncated) in the excavation of foundation pit 2, the construction of
the underpinning bearing platform, the construction of the truncated existing pile, and
the backfilling of foundation pit 2 are 0.1 mm, −0.55 mm, −1.22 mm, and −1.58 mm,
respectively. The pile end settlement values are 0.13 mm, −0.49 mm, −1.15 mm, and
−1.42 mm, respectively. The pile settlement is continuously varying; the settlement at the
top of the pile is greater than the settlement at the end of the pile because it is in the upper-
soft and lower-hard stratum (miscellaneous fill and medium-weathered limestone). The
16-3 existing pile settlement changes the most in the existing pile truncation construction
stage; this stage of settlement accounts for 0.42% of the total settlement. From Figure 13b,
it can be seen that the settlement change in the existing pile (truncated) No. 16-4 in the
excavation stage of foundation pit 2 and the construction stage of the underpinning bearing
platform is similar to that in Figure 13a, while in the construction stages of the truncation
of the existing pile, the backfilling of foundation pit 2, and the breaking of the upper and
lower step pile foundation, etc., the settlement change in the pile is discontinuous and can
be divided into two parts from the truncated position of the existing pile, with settlement
occurring at the top and uplift at the bottom. The maximum settlement of 1.81 mm occurs at
the top of the pile. Comparing the maximum settlement of the existing piles in Figure 13a,b,
the settlement of the truncated existing piles is slightly larger than the settlement of the
untruncated existing piles, and uneven settlement occurs on both sides of the existing
bearing platform.
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(2) Settlement analysis of existing piles 16-5 and 16-1

Comparing Figure 14a,b, it can be seen that the excavation phase of the foundation pit
caused the upward displacement of the existing piles, with pile 16-5 bulging by approxi-
mately 0.35 mm and pile 16-1 bulging by approximately 0.2 mm; during the construction
stage of the underpinning bearing platform, the existing piles settled under the self-weight
of the underpinning bearing platform, and the settlement of the existing piles slowly de-
creased from top to bottom due to the action of pile side friction. The maximum settlement
of the top of the existing pile is approximately 0.54 mm and the maximum settlement of
the end of the existing pile is approximately 0.35 mm. With the truncation of the existing
piles, the loss of bearing capacity at the end of the existing piles leads to the deformation
of the superstructure; at this time, the upper load produces stress redistribution and is
transferred to the underpinning structure, which mainly bears the upper structure load.
The overall vertical displacement of the existing pile from the location of pile truncation
can be divided into two parts: in the upper part, settlement occurs, with a 16-5 and 16-1
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pile settlement of 1.45 mm and 1.82 mm, respectively; the lower part does not bear the
upper load (equivalent to unloading) of the issued bulge, with a 16-5 and 16-1 pile bulge of
0.3 mm and 0.15 mm, respectively. In the foundation pit backfill stage, the upper part of
the existing pile still bearing the load continues to produce settlement, with a 16-5 and 16-1
pile settlement of 1.81 mm and 2.37 mm, respectively, and the lower part of the existing
pile no longer bears the load, which is slowly stabilized with a settlement amount close to
0. Then, pile foundation underpinning can be considered to be completed, with the upper
part of the load having been transferred to the underpinning bearing platform and the
underpinning pile. During the tunnel construction phase, the settlement of the existing
piles stabilized when the tunnel passed through the barrier pile and was removed, with
a maximum settlement of 2.46 mm (pile 16-1). The difference between the 16-5 and 16-1
existing pile settlements is large because the No. 4 existing bearing platform in the existing
pile truncation needs to remove these two existing piles. The existing pile bearing capacity
loss is greater; therefore, the settlement of the existing pile 16-1 is also even greater.
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(3) Force analysis of existing piles 16-5 and 16-1

Figure 15 shows the axial force variation in the existing piles at different construction
stages of piles 16-5 and 16-1. The analysis shows that before the truncation of the existing
piles, the maximum axial forces at the top of piles 16-5 and 16-1 were 3536 KN and 3133 KN,
respectively, and the maximum axial forces at the pile ends were 1466 KN and 1620 KN,
respectively. The piles are located in better ground conditions, and the friction between the
pile and soil reduces the pressure transmitted to the pile by the superstructure; therefore,
the axial force of the existing pile gradually decreases with the increase in pile depth.
Meanwhile, during pile truncation construction, the maximum axial force at the top of piles
16-5 and 16-1 is 2880 KN and 2583 KN, respectively, and it can be seen that the bearing
capacity of the remaining pile foundation is smaller when both piles are underpinning.
The load of the superstructure is transferred to the underpinning bearing more strongly
at this time. The pile foundation below the truncated part does not bear the upper load,
so the axial force is reduced and tends to zero. The axial force of the existing piles did
not change significantly during the construction of the interval tunnel and the removal of
the barrier piles, which also indicates that the tunnel construction has little impact on the
superstructure of the bridge after the construction of the pile foundation underpinning is
completed.
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Figure 15. Axial forces of existing piles at different construction stages: (a) pile 16-5; (b) pile 16-1.

5.5. Deformation Force Analysis of Bearing Platform

(1) Settlement analysis of existing bearing platform

Figure 16 gives the settlement curves of the two ends of the existing bearing platform
at different construction stages, where P1 and P2 are the settlement of the two ends of
the existing bearing platform No. 3 (one existing pile truncated), and P3 and P4 are the
settlement of the two ends of the existing bearing platform No. 4 (two existing piles
truncated). It can be seen that for P1 and P2 during existing pile truncation construction,
the ends of the No. 3 existing bearing platform generated uneven settlement. The bearing
platform was tilted to the end of the existing truncated pile, which at this time was not
conducive for the existing bearing platform to transfer the upper load to the underpinning
bearing platform. The settlement curves of P3 and P4 basically overlap, indicating that the
settlement of the existing bearing platform No. 4 is uniform, and it is more favorable for the
existing bearing platform to transfer the upper load to the underpinning bearing platform.
However, the settlement of the No. 4 existing bearing platform is slightly larger than that
of the No. 3 existing bearing platform. In general, the settlement law of the existing bearing
platform is similar to the settlement law of the bridge pier in each construction stage.
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(2) Force analysis of underpinned bearing platform
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After the underpinning structure system transformation is completed, the super-
structure load is mainly borne by the underpinning bearing and is transferred to the
underpinning piles. As shown in Figure 17, the diagram shows the tensile stresses applied
to the underpinning bearing platform at each stage of construction (damage to concrete
occurs predominantly through tensile damage).
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As can be seen from Figure 17, the underpinning structure began to work after the
completion of the truncated construction phase of the existing piles, under the joint action
of the upper load and the uneven settlement of the existing bearing platform. There was a
sharp increase in the local maximum tensile stress of the underpinning bearing platform,
with the local maximum tensile stress of the underpinning bearing platforms No. 1, 2, 3,
and 4 being 1.48 MPa, 1.69 MPa, 1.76 MPa, and 1.63 MPa, respectively. The local maximum
tensile stress of the underpinning bearing platform appears at the junction between the
bearing and the pile foundation, and most of the area is below the design value of C35
concrete tensile strength of 1.52 MPa, except for a very small part of the area where the
stress is concentrated (refer to the Design Specification for Highway Reinforced Concrete
and Prestressed Concrete Bridges and Culverts (JTG 3362-2018)). After the completion of
the pile foundation underpinning, the maximum tensile stress curve on the underpinning
bearing platform during the tunnel construction phase changes smoothly, and tunnel
construction can be considered to have no significant effect on the underpinning bearing
platform.

6. Conclusions

This paper investigates the effect of using passive underpinning construction on
existing bridges when undercrossing existing bridges in interval tunnels. The main findings
are as follows:

(1) By combining numerical simulation and measured data, we compared the settlement
of the foundation pit and bridge piers caused by the main construction stages. The
numerical simulation results and the measured data results were consistent, which
proves the accuracy of the numerical model.

(2) The settlement change law of the bridge deck is expressed as follows: the foundation
pit excavation stage, equivalent to the foundation pit bottom unloading; the founda-
tion pit bottom uplift drives the bridge superstructure to uplift; and the underpinning
bearing platform construction, existing pile truncation, and foundation pit backfill
stages cause the bridge deck to sink, with the existing pile truncation construction
stage causing the largest settlement of the bridge deck, accounting for approximately
40% of the total settlement during the entire construction process. At the same time,
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tunnel undercrossing construction removes obstacle piles, the impact on the bridge
superstructure is very limited, and the settlement of the bridge deck tends to stabilize,
so the impact of tunnel construction on the existing bridge can be ignored.

(3) Through the comparison of the settlement of existing piles requiring underpinning
and existing piles not requiring underpinning in the same existing bearing, we found
that the settlement of the truncated existing piles was larger than the settlement of
the untruncated existing piles, which caused uneven settlement on both sides of the
existing bearing platform. In the comparison of underpinning one existing pile and
underpinning two existing piles, we found that the superstructure load of the former
is shared by the existing pile without underpinning and the underpinning structure;
the settlement of the latter is larger, and the superstructure is completely borne by the
underpinning bearing and the underpinning pile.

(4) The settlement law of the existing bearing platform and that of the bridge pier are
similar. Further analysis of the forces in the underpinning bearing reveals that the
maximum tensile stress is generated during the truncated construction phase of the
existing pile, with a maximum local tensile stress of 1.76 MPa. It appears at the
junction of the existing bearing and existing pile, and most of the area is lower than
the design value of C35 concrete tensile strength of 1.52 MPa. The reinforcement at
the junction of the existing bearing and existing pile should be strengthened during
construction to meet the safety requirements for the force of the underpinning bearing
platform.

(5) When using passive underpinning and an underpinning bearing platform as con-
struction solutions for underpinning the structures of pile foundations, the settlement
of the upper bridge structure, the internal force of the underpinning bearing plat-
form, and the settlement of the surrounding pipelines are all within safe ranges. It is
therefore reasonable and feasible to use passive underpinning for similar projects.
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