
Citation: Song, C.; Huang, R. Secure

Convolution Neural Network

Inference Based on Homomorphic

Encryption. Appl. Sci. 2023, 13, 6117.

https://doi.org/10.3390/app13106117

Academic Editor: Chihhsuan Wang

Received: 5 April 2023

Revised: 6 May 2023

Accepted: 11 May 2023

Published: 16 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Secure Convolution Neural Network Inference Based on
Homomorphic Encryption
Chen Song and Ruwei Huang *

School of Computer and Electronic Information, Guangxi University, Nanning 530004, China
* Correspondence: ruweih@gxu.edu.cn; Tel.: +86-136-0313-7282

Abstract: Today, the rapid development of deep learning has spread across all walks of life, and it
can be seen in various fields such as image classification, automatic driving, and medical imaging
diagnosis. Convolution Neural Networks (CNNs) are also widely used by the public as tools for
deep learning. In real life, if local customers implement large-scale model inference first, they need to
upload local data to the cloud, which will cause problems such as data leakage and privacy disclosure.
To solve this problem, we propose a framework using homomorphic encryption technology. Our
framework has made improvements to the batch operation and reduced the complexity of layer
connection. In addition, we provide a new perspective to deal with the impact of the noise caused
by the homomorphic encryption scheme on the accuracy during the inference. In our scheme, users
preprocess the images locally and then send them to the cloud for encrypted inference without
worrying about privacy leakage during the inference process. Experiments show that our proposed
scheme is safe and efficient, which provides a safe solution for users who cannot process data locally.

Keywords: convolution neural network; cloud computing; homomorphic encryption; privacy
preserving machine learning; CKKS FHE scheme

1. Introduction

Due to its high efficiency, automation, and wide coverage, deep learning technology
is widely used in many fields such as computer vision, natural language processing, and
automatic driving. In real life, computing power is mainly concentrated in some cloud
service providers. As a result, the combination of cloud computing and deep learning is
also developing rapidly. Local users and enterprises can upload their personal data to the
cloud, and use the computing power of the cloud service provider for model training and
inference. For example, a furniture company can upload the type and price distribution
of furniture purchased by different users to the cloud in the past year, and customize
a model on the cloud to predict the possibility and quantity of residents in the area to
buy different types of furniture in the next period of time. This forecasting model can
obtain the minimum inventory quantity that the enterprise should keep at a relatively low
cost, which is conducive to the turnover of the capital chain and also forecasts the future
development direction of the enterprise. At the same time, the user’s private data will
also be leaked to the cloud. If the cloud uses these private data maliciously, such as using
home address, phone number, and purchase tendency, the interests of these data providers
are likely to be violated. In September 2022, the security company SOCRadar found that
an improperly configured Azure Blob Storage server of Microsoft had a great possibility
of information leakage. This sensitive information was associated with more than 65,000
corporate customers in 111 countries (regions). If information is leaked, users could face
illegal activities such as extortion.

In order to protect the privacy data of these users, researchers focus their research on
statistical techniques and cryptography techniques. In recent years, with the introduction of
Differential Privacy (DP) [1], some researchers combined it with various machine learning

Appl. Sci. 2023, 13, 6117. https://doi.org/10.3390/app13106117 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13106117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5295-5357
https://doi.org/10.3390/app13106117
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13106117?type=check_update&version=2

Appl. Sci. 2023, 13, 6117 2 of 19

models and proposed various privacy protection schemes suitable for machine learning.
The main protection point of this technology focuses on the private data used to train
the model. Cryptography technologies such as Homomorphic Encryption (HE) and some
Secure Multi-Party Computation (SMC) protocols are combined with the model reasoning
stage, and some application solutions have emerged. However, these schemes require
adding noise to the original messages, which has a significant impact on the final inference
accuracy. Homomorphic encryption schemes can be traced back to 1978 when Rivest
et al. [2] proposed the idea of processing data without revealing the information by using
large prime factorization to ensure the security of the information. In 1982, Andrew
Yao proposed garbled circuits [3], and many homomorphic encryption schemes were
based on garbled circuits construction. However, these schemes had poor usability and
large communication overhead, making them difficult to use in practice. It was not until
2009 when Gentry proposed the bootstrapping process that the first fully homomorphic
encryption scheme was constructed [4], ushering in a new stage of development and
expanding the usage scenarios of homomorphic encryption. In recent years, according
to the mathematical problems on which the schemes are based and the differences in
construction processes, homomorphic encryption schemes have been divided into four
generations, which will be explained in Section 3.3.

1.1. Our Contribution

In this paper, we will use homomorphic encryption technology to protect user privacy
in the inference stage, which is also the key stage of protecting user privacy information, in
order to solve the privacy leakage problem of users using cloud providers. Users can use
the technology in this paper to encrypt and upload personal information to the cloud, and
the cloud uses a pre-trained model to infer the ciphertext. During the inference process, the
cloud cannot obtain any information about the user. Through this scheme, user privacy is
guaranteed. There are some schemes that use homomorphic encryption combined with a
neural network reasoning stage, but we found that there is still room for improvement in
combining the network structure with the ciphertext structure in these schemes, which will
effectively reduce the complexity of ciphertext transmission in different layers of the model.
To solve this problem, we adopt a more reasonable ciphertext allocation for the weight
matrix. In the batch processing part, we make full use of the ciphertext slots, which reduces
memory usage and computational complexity, thereby improving inference efficiency. In
addition, we found that the parameter selection of the homomorphic encryption scheme
will change the original image to a certain extent, and at the end of the inference stage, it will
have a certain impact on the accuracy rate. In order to deal with this problem, we provide
a new perspective , to enhance the robustness of the model by adding corresponding noise
during the training phase to adapt the model to slightly “blurred” images. In this way,
the influence of encryption scheme noise is reduced in the inference stage. At last, we use
the CKKS fully homomorphic encryption scheme that supports floating-point operations,
which can avoid the process of encoding floating-point numbers into integers in other
schemes. Our system architecture is illustrated in Figure 1.

1.2. Organization

In Section 2, we summarize some related work. Then we provide the relevant defini-
tion of the homomorphic encryption scheme and the design goal of the scheme in Section 3.
In Section 4, we provide the relevant algorithms and explanations of the scheme in this
paper, as well as the construction process of the overall scheme. Then in Section 5, we
provide the security analysis. In Section 6, we report the performance analysis and the
comparison with other schemes. And in Section 7, We discussed the versatility of the
technology in the article. The conclusion is shared in Section 8.

Appl. Sci. 2023, 13, 6117 3 of 19

Figure 1. System architecture.

2. Related Works

Some schemes combining CNN with homomorphic encryption have been proposed.
Gilad-Bachrach et al. [5] proposed one of the first works to combine homomorphic encryp-
tion with the inference stage of neural networks. The scheme uses the square function
f (x) = x2 to replace the activation function ReLU : f (x) = max(0, x), use the scaling and
summing function f (x) = ∑(xi) to replace the maximum pooling layer to deal with the
inability of homomorphic encryption to handle non-polynomial operations and comparison
operations. Due to the use of a homomorphic encryption scheme that only supports inte-
gers, polynomial encoding is used to approximate floating-point numbers. CryptoNets can
achieve a classification accuracy of 98.95% on the MNIST data set, and can make more than
51,000 predictions per hour, but the delay of a single prediction is 570 s and long inference
time per single run will greatly affect user experience. Chabanne et al. [6] combined the
BatchNorm layer in the neural network with the encryption scheme, constrained the input
of the nonlinear activation layer to a distribution, deepened the depth of the network, and
enabled the ciphertext inference scheme to be applied to deeper layers and some complex
data sets and practical applications. Chou et al. [7] proposed FasterCryptoNets, which
intelligently prunes the network parameters, reduces the calculation of ciphertext multipli-
cation, and uses the maximum sparse coding to derive the optimal quantization polynomial
approximation of the activation function, using f (x) = 2−3 ∗ x2 + 2−1x + 2−2 which re-
places the ReLU activation function. The optimized scheme is an order of magnitude faster
than the CryptoNets scheme. Bourse et al. [8] proposed a homomorphic encryption infer-
ence framework FHE-DiNN specifically for parameter discretized neural networks. This
scheme reduces the size of the input ciphertext and realizes homomorphic symbolic func-
tion operations. In the case of the same security level, the inference speed is two orders of
magnitude higher than that of CryptoNets, but there is a certain loss in accuracy. SANYAL
et al. [9] further refined the research focus to the binary parameter network, and proposed
the Reduce Tree Adder and sorting network technology, which effectively improved the
convolutional layer and dense layer. Ciphertext inference efficiency of dot product opera-
tion is also correspondingly improved. They transformed the network parameters from
{−1, 1} to {0, 2} to improve the sparsity of the model. Hesamifard et al. [10] proposed the
CryptoDL model in 2019 to optimize the approximation of non-polynomial functions, and
provided polynomial approximation and error theory guarantees for activation functions
such as ReLU, Sigmoid, and Tanh, which can be realized on the MNIST dataset reaching
99.25% classification accuracy. The Lola scheme proposed by Brutzkus et al. [11] designs
an optimized data encoding method based on the idea of vectorization, and introduces
transfer learning technology in ciphertext inference, and filters image sensitive information

Appl. Sci. 2023, 13, 6117 4 of 19

before inputting it into the network. Ishiyama et al. [12] conducted a detailed study on
the activation layer in homomorphic encryption neural network inference, using batch
normalization to constrain the input of the approximate activation function, and tested
the effects of accuracy on different approximate polynomials of Google Swish and ReLU
activation functions in Ciphertext Inference. They improve the classification accuracy of
MNIST to 99.29%. YuXiao LU et al. [13] aimed at the time-consuming problem of rotation
operation in ciphertext packaging technology, and proposed a low-rank matrix decom-
position scheme, which unifies the packaging operations of the convolutional layer and
dense layer, and decomposes the convolutional layer into a volume A convolutional layer
with a smaller kernel size; a convolutional layer with a kernel size of 1 improves the speed
of inference, but there is a certain loss in classification accuracy. Joon-Woo Lee et al. [14]
implemented the standard ResNet-20 model using the RNS-CKKS scheme with a bootstrap
function, and used the minimax synthesis method to make an approximate replacement
for the nonlinear activation function. In terms of ciphertext reasoning, it is very close to
the classification accuracy of the ResNet-20 model using unencrypted data. It opens the
possibility for FHE to be applied to deep PPML models. Using the CKKS homomorphic
encryption scheme, it supports receiving input from the real number field at the input
end, achieving higher-precision calculations, which better adapts to the data structure of
neural networks. The BFV scheme only supports integer field encryption, and to achieve
real number input adaptation, additional encoding processes are required, which adds
additional time and space overhead.

In addition to combining homomorphic encryption with model inference, some re-
searchers have adopted a hybrid protocol approach to further improve the speed of model
inference. Liu et al. [15] constructed an Oblivious Neural Network (ONN) scheme using
secret sharing technology. The security protocol in the scheme can satisfy data privacy
when the server is semi-honest. Juvekar et al. [16] proposed a secure neural network
reasoning framework GAZELLE using homomorphic encryption and obfuscated circuit
technology. The framework includes three parts: a homomorphic layer, linear algebra
core and network reasoning. In the network inference stage, a protocol that can convert
between homomorphic and confusing circuit coding is designed. This scheme can hide
more information of the neural network, provide higher security, and greatly shorten the
inference time. Shaohua Li et al. [17] give a CNN prediction framework based on the fast
Fourier transform, and for the first time give the privacy preserving protocol of the softmax
function. Lucien K.L.Ng et al. and Kumar et al. [18] proposed some protocals for multiparty
secure inference and gave a compiler for transforming normal models to secure inference
models. Mishra et al. [19] proposed a secure prediction system that allows two parties to
execute neural network inference without revealing either party’s data called Delphi. They
also used garbled circuits and linearly homomorphic public-key encryption but achieved
high performance in ResNet-32. Lucien K.L.Ng et al. [20] formulate stochastic rounding
and truncation (SRT) layers, making a quantization-aware training scheme SWALP more
compatible with their cryptographic tools, and they propose a suite of GPU-friendly pro-
tocols for both linear layers and common non-linear layers for GPU parallelism. They
use additive homomorphic encryption and additive secret sharing to avoids the step of
using polynomials to approximate nonlinear layers. However, privacy-preserving inference
schemes based on hybrid protocols have poor portability and scalability, making it difficult
to adapt to models of different types.

3. System Model, Encryption Scheme and Design Goals

In this section, we briefly describe the system model, formal definitions, and design goals.

3.1. System Model

We assume that in a common scenario, the data owner encrypts the data locally and
then uploads it to a third party for calculation. The third party has a pre-trained model.
The ciphertext is returned to the data owner, and then decrypted to restore the plaintext of

Appl. Sci. 2023, 13, 6117 5 of 19

the reasoning result. In the case where a third party is involved in the reasoning process,
the data may encounter the risk of data theft such as interception and side channel attacks.
This risk can be avoided through a multi-party secure computing protocol. However, what
is more worrying is that the cloud service provider could exploit the data provided by
data owners. This data may be sold, or used to carry out illegal activities. Homomorphic
encryption, a cryptographic method, can effectively deal with this problem. The data owner
uses the public key to encrypt the data, while the cloud can only obtain information in the
form of ciphertext, and use a dedicated evaluation key (evaluation key) to perform limited
operations on the ciphertext. This mode can guarantee the privacy of the data provider.
Our reasoning system process is illustrated in Figure 2.

Figure 2. Inference procedure.

3.2. Security Model

According to the intention of the participants in the protocol, we divide the security
model into two models: semi-honest model and malicious adversary model. The semi-
honest model means that during the execution of the agreement, the participants follow the
procedures stipulated in the agreement, but malicious attackers may monitor and obtain
their own input and output during the execution of the agreement and during the operation
of the agreement. The malicious adversary model (the malicious model) means that during
the execution of the protocol, the attacker can analyze the private information of honest
participants through illegal input or malicious tampering of input by the participants under
their control. A termination of the agreement can also be caused by early termination and
refusal to participate.

3.3. Homomorphic Encryption Scheme

The concept of homomorphism was proposed by Rivest et al. [2], and it means that
certain operations can be performed on data when the data is in ciphertext. Homomorphic
encryption refers to allowing a third party to perform certain types of operations on cipher-
text and to ensure that the ciphertext after the operation is decrypted, as well as making
the obtained plaintext equivalent to performing the same operation on the unencrypted
plaintext; in this process, no third party can obtain any information in plain text.

Homomorphic encryption schemes can be classified into three categories based on the
depth of computation: (1) partially homomorphic encryption: this scheme can only perform
one type of operation (addition or multiplication) on ciphertexts [21]. (2) Somewhat homo-
morphic encryption: this scheme allows for multiple operations on ciphertexts, but limits
the depth of computation [22]. (3) Fully homomorphic encryption: this scheme enables
arbitrary operations to be performed on ciphertexts an unlimited number of times [4]. As
homomorphic encryption has evolved over time, these schemes can be divided into four
generations based on their time of development. In Table 1, some characteristics of these
generations of homomorphic encryption schemes are presented.

Appl. Sci. 2023, 13, 6117 6 of 19

Table 1. The classification of homomorphic encryption schemes.

Generation Input Data Types Fast Packing or
Batching

Fast
Bootstrapping Applications Deficiency

First (Gentry09 [4]) Binary data Supported Unsupported SIMD Large ciphertext
size

Second (BGV [23],
BFV [22]) Integer Supported Unsupported Fast Escalar

Multiplication
Slow

Bootstrapping

Third (FHEW [24],
TFHE [25]) Bitwise Unsupported Supported Efficient Boolean

Circuits
No support for

Batching

Fourth (CKKS [26]) Real Number Supported Unsupported Fast polynomial
approx;SIMD

Slow
Bootstrapping

Definition 1. Given input data x and any operation f , if there exists an encryption scheme ε
that satisfies the following equation, where Enc is the encryption operation, Dec is the decryption
operation, f ′ is the corresponding ciphertext operation of f , then the scheme ε is a homomorphic
encryption scheme if it meets the following equation:

f (x) = Dec(f ′(Enc(x))) (1)

In the initial stage of the combination of homomorphic encryption technology and neural
network reasoning, many schemes used homomorphic encryption schemes that only supported
integers. The unified image representation is also a floating point number. This requires adding a
floating-point-to-integer mapping process.

3.4. Formal Definition

In our scheme, the homomorphic encryption scheme supporting floating point num-
bers proposed by Cheon et al. [26] is used. Some formal arithmetic definitions of the scheme
are given below:

Definition 2. Fix a base p > 0 and a modulus q0, and let ql = pl ·q0, for 0 < l < L, choose λ as a
security parameter, so we can choose a cyclotomic polynomial parameter M = M(λ, qL). For a level
0 < l < L and a fix k, we definite the `-th level ciphertext is a vector inRk

ql
. A leveled homomorphic

encryption scheme is described over the polynomial ringR = Z(X)/(φM(X)) which contains five
basic algorithms (KeyGen, Encpk, Decsk, Add, Multevk) and a rescaling procedure:

• KeyGen(1λ): choose a security parameter λ, generate a secret key sk, a public key pk and a
key evk used for evaluation process;

• Encpk(m): for a given polynomial m ∈ R, output a ciphertext c ∈ Rk
qL

. For some small noisy
e,the ciphertext c for message m satisfy 〈c, sk〉 = m + e(modqL). A constant Bclean denotes
an encryption bound, i.e., error polynomial of a fresh ciphertext satisfies ||e||can

∞ ≤ Bclean
with an overwhelming probability;

• Decsk(c): for a ciphertext c at a level `, output a polynomial m′ ← 〈c, sk〉(modql);
• Add(c1, c2): for the given encrypts of m1, m2, output an encryption of m1 + m2. An error of

output ciphertext is bounded by sum of two errors in input ciphertexts;
• Multevk(c1, c2): for a pair of ciphertexts (c1, c2), output a ciphertext cmult ∈ Rk

q` satis-
fies 〈cmult, sk〉 = 〈c1, sk〉〈c2, sk〉 + emult(mod ql) for some polynomial emult ∈ R with
||emult||can

∞ ≤ Bmult(`);
• RS`→`′(c): for a ciphertext c ∈ Rk

q` at level ` and a lower level `′ < `, output the ciphertext

c′ ←
⌊

q`′
q`

c
⌉

in cmult ∈ Rk
q` , i.e., c′ is obtained by scaling q`′

q`
to the entries of c and rounding

the coefficients to the closest integers. We will omit the subscript `′ ← `, when `′ = `− 1.

Appl. Sci. 2023, 13, 6117 7 of 19

3.5. Design Goals

A privacy-preserving neural network inference scheme built using the encryption
techniques described in Section 3.4 should obtain the following security and performance
guarantees:

• Correctness: after the user correctly implements our proposed scheme, the prediction
result should be correct. The correctness of homomorphic encryption schemes can
be understood as follows: encrypting a plaintext, evaluating the ciphertext, and then
decrypting the result is equivalent to evaluating the plaintext with the same operation
to obtain the same result [4];

• Privacy: after the cloud service provider obtains the ciphertext provided by the user, it
cannot obtain any valid information from the ciphertext, and can only perform certain
operations on the ciphertext to achieve the user’s expected goal;

• Verifiability: after the user obtains the ciphertext returned by the cloud service
provider, there is a way to verify the correctness of the result.

• Efficient: including channel transmission time and inference time, the total time should
be much shorter than the user’s own local inference time.

4. Our Scheme

In this section, we systematically explain how our solution works and introduce
the overall architecture of the solution. In the second summary, we explain in detail the
improvements we have made in batch processing, and then introduce our verification process
and solutions for the noise of the encryption scheme, and finally give the correctness analysis.

4.1. CNN Private Inference Scheme

We adopted a network architecture similar to that of Jiang et al. [27], and adjusted
the size of the convolution kernel, the number of channels, and the step size. The Swish
function mentioned in the article by Ishiyama et al. [12] is used in both activation layers to
improve the accuracy of inference. The comparison of our model architecture with that of
Jiang et al. [27] is shown in Table 2.

Table 2. Model comparison with another scheme which Jiang et al. [27] used.

Layer Basic Model Our Model

CONV 64 input images of size 28× 28, 4 kernels of
size 7× 7 (4 channels), stride size of (3, 3)

64 input images of size 28× 28, 5 kernels of
size 4× 4 (5 channels), stride size of (2, 2)

BN None 13× 13× 5 = 845 outputs

ACT-1 Squaring 256 input valus x← x2 x← 0.03347+ 0.5 · x+ 0.19566 · x2 − 0.005075x4

FC-1 Fully connecting with 8× 8× 4 = 256 inputs
and 64 (neural nodes) outputs

Fully connecting with 13× 13× 5 = 845 inputs
and 100 outputs

BN None 100 outputs

ACT-2 Squaring 64 input valus x← x2 x← 0.03347+ 0.5 · x+ 0.19566 · x2 − 0.005075x4

FC-2 Fully connecting with 64 inputs and 10 outputs Fully connecting with 100 inputs and
10 outputs

The dataset we used to validate the experiment is the MNIST dataset, which contains
70,000 images, of which 60,000 were used for training and 10,000 for testing, containing
ten types of handwritten digits from 0 to 9. The MNIST dataset, although old, is still a
benchmark for testing in the field of privacy-preserving neural network inference. Figure 3
is an example image from the MNIST dataset. CIFAR-10 is a 10-class image classification
dataset consisting of RGB color images of ten different categories. This dataset contains
50,000 training images and 10,000 testing images, with an image size of 32 × 32 pixels. The
ten categories in CIFAR-10 are airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. Unlike the MNIST dataset, CIFAR-10 [28] is a relatively larger dataset and more
challenging as the images have more details and complexity. CIFAR-10 is also widely used in

Appl. Sci. 2023, 13, 6117 8 of 19

machine learning and deep learning image classification tasks and is one of the benchmark
datasets for many computer vision algorithms. Both of these datasets are relatively small
in scale but suitable for model privacy protection in the inference field. When images are
encrypted, the size of the information will rapidly expand, which is also a challenge for
system performance. Therefore, we have chosen these two benchmark datasets.

Figure 3. Examples in MNIST dataset.

The training phase of the network and the add noise phase mentioned in Section 3.3
are implemented using Python and the Keras framework [29]. Keras is a Python-based
deep learning framework that provides many convenient interfaces for researchers to
use, and the inference stage is implemented using the SEAL library [30]. The following
Table 3 provides an introduction to the characteristics of some open-source libraries for
homomorphic encryption schemes.

Table 3. Available open-source libraries for homomorphic encryption.

Library BGV [23] TFHE [25] FHEW [24] BFV [22] CKKS [26] Language

SEAL [30] 3 7 7 3 3 C++/C

HElib [31] 3 7 7 7 3 C++

FHEW [24] 7 7 3 7 7 C++

TFHE [25] 7 3 7 7 7 C++/C

HEAAN [32] 7 7 7 7 3 C++

4.2. Batch Processing in Inference Stage

We propose a method to fully utilize the ciphertext slot for batch image encryption
in the inference process, addressing the issue of incomplete utilization of the ciphertext
slot. To implement this method, we first divide each image into corresponding convolution
windows, and then stitch together the images that need to be batched in a manner that
does not interfere with subsequent rotation operations. Specifically, we employ an image
segmentation algorithm to extract the convolutional windows used by the convolutional
layer, where p represents the resulting window matrix, with each row representing a
convolutional window. The implementation process of the image segmentation algorithm
is described in Algorithm 1.

Appl. Sci. 2023, 13, 6117 9 of 19

Algorithm 1 Image Divider
Input: A image I of the size h × w(matrix), the size k × k of a kernel, and a stride s of 2 (vertical and
horizontal), index of the position of image
Output: conv partial of the size f 2 × k2

1: f← (h − k)/strides +1;
2: for i := 0 to f do
3: for k := 0 to f do
4: for t := 0 to k do
5: for j := 0 to k do
6: p[i × f + k]← I[s × i + t][s × k + j]
7: end for
8: end for
9: end for

10: end for
11: return conv partial

Subsequently, we need to stitch the batched images together, and the necessary opera-
tions required for the subsequent inference steps need to be considered during the stitching
process, so we assign the number of plaintext slots of the convolution kernel area plus the
sum of the output dimensions of the first dense layer at the same window position for
each image. In the preprocessing picture stage, each position is filled with the value of the
window, then filled with the number of slots minus 0 of the window size, and then the
window in the same position as the next picture, and so on. In subsequent convolution
operations, the accumulation step of the vector after the dot product requires a rotation
operation. Assuming that there are values at positions 1–8 of the plaintext slot, then we
want to add them up, we need to shift them left 1 time and then add them to the original
vector, in this case the values in the slot are 1 + 2, 2 + 3, 3 + 4, . . . , 8 + 0. Next we need to
add the first slot to the third slot, so that we can obtain a value of 1–4 in the first slot, and
so on, adding up the eight slots needs to be rotated logs

2 times, and s is the number of slots
that need to be accumulated. In the encryption scheme, the plaintext slot is similar to the
structure of the loop queue, the left shifted slot will move to the end of the entire plaintext,
in order not to let the value moved to the back end affect the rotation accumulation process,
we need to reserve enough slots for each position as Algorithm 2.

Algorithm 2 Image Padding
Input: Image matrix of the size h× w, kernel size 4 (height and width), batch size bs, strides
2 (height and width), each slots of every window to batch operation
Output: The k cipertexts ct.S[i] for 1 ≤ i ≤ k, each cipher stores the same position of
convlution window of batch images

1: each slots← 4 × 4 + the number of dense outputs
2: W← Imagedivider (images, kernel, 0)
3: for i := 1 to batch size do
4: for k := 0 to W.rows do
5: for j := 0 to each slots-42 do
6: Wi ← 0
7: end for
8: for p := 0 to 42 do
9: Wi ← Imagedivider(images, kernel, i)

10: end for
11: end for
12: end for
13: for i := 0 to W. rows do
14: ct.C← Encpk(Wi)
15: Si ← ct.C
16: end for
17: return S

Appl. Sci. 2023, 13, 6117 10 of 19

After the image window is filled, each row of the window matrix contains a batch of
windows in the same position of the picture, and 0 in between. Then we need to perform
the same filling operation for the convolution kernel and the convolution deviation, so that
the convolution kernel is aligned with the image window. After the convolution kernel and
window dot product have passed, the convolution operation of the ciphertext is completed
by rotating the accumulation, and finally the bias is added, and the ciphertext feature
map matrix is output, and each column represents the characteristics of different channels.
Algorithm 3 shows the procedure.

Algorithm 3 Homomorphic Convlution
Input: A encrypted matrix(c × f) of convolution windows S, padding convlution bias
vector(plaintext) B, channel c, padding convlution weights vector(plaintext) P, each row
represents a channel, kernel size k2

Output: Encrypted feature map of convlution layer output M
1: for k := 0 to c do
2: for i := 0 to f do
3: ct.tempi ←MultP(ct.Si, p.Pk)
4: ct.tempi ← Rescale()
5: end for
6: Tk ← ct.temp
7: end for
8: for t := 0 to c do
9: for i := 0 to f do

10: for j := 0 to dlog2(k2)e do
11: temp← Rot(T[t][i], exp2(j))
12: T[t][i] ← Add(ct.T[t][i], temp)
13: end for
14: T[t][i] ← AddPlain(ct.T[t][i], ct.Bt)
15: end for
16: end for
17: for i := 0 to f do
18: for j := 0 to c do
19: M[i][j] ← T[j][i]
20: end for
21: end for
22: return M

Next, we will pass the eigenvalue ciphertext output by the convolutional layer through
the activation function, here we use the linear polynomial function polyswish(Mk) =
0.03347 + 0.5x = 0.19566x2 − 0.005075x4 proposed by Ishiyama et al. [12] to approximate
the Swish activation function. This step requires the convolutional layer to output the
values of each neuron through the activation function: Ct.A ← polyswish(Mk), 0 ≤ k ≤
channel × f eaturemapsize.

Since the highest order of the approximate polynomial is order 4, the highest-order in-
put is squared twice and then multiplied by the corresponding coefficient, thus consuming
three levels of the homomorphic encryption scheme.

The activated neuron will be fully connected through two dense layers, we expand
the activation layer output into a ciphertext vector with the size channel * feature map size,
and then the outputsize ∗ Inputsize of the first dense layer is batch expanded similarly to a
convolution window, aligned with the activation layer output. After encryption, there is an
input size ciphertext. In the ciphertext output of the previous layer, only the first slot per
position of each image is the correct result of accumulation, in order to perform the next
matrix multiplication, we will activate the output tensor of the layer to expand horizontally,
replacing the slots of the output dimension size of the subsequent dense layer with the value
of the first slot. To achieve this, we choose to consume one more level, multiply each line of

Appl. Sci. 2023, 13, 6117 11 of 19

the output ciphertext with the [1, 0, 0, . . . , 1, 0, 0] vector, which corresponds to the correct
slot and the 0 value empties the other slots. Then, we need to rotate logdo

2 times to expand
the value of the first slot to the same scale as the weight matrix, so it is the output dimension
of dense layer 1. The same area of the feature map of different images in each ciphertext is
spaced at the same interval, so the rotation operation can be synchronized to all images in
the batch. Figure 4 shows the simplified process of ciphertext slot transformation. When
the modulus is N = 32,678, the number of plaintext slots is N/2 = 16,384, 141 pictures can
be batched at the same time, if the N value is larger, more plaintext slots can be generated
for batch processing, but the SEAL library limits each plaintext to 260 bits. Algorithm 4
provides a detailed description of the specific implementation process. Figure 5 shows the
flowchart of Algorithm 4.

Figure 4. Simplified batch processes.

Figure 5. The flowchart of Algorithm 4.

Appl. Sci. 2023, 13, 6117 12 of 19

Algorithm 4 Homomorphic Dense
Input: An activation output ciphertext vector A of the size f, dense weights matrix W of
the size d × f, d is the dense layer output size, dense bias vector b of the size d × 1, each
image slots s, batch size bs
Output: Ciphertexts ct.D of dense output vector

1: dense weights plain dp← 0 . dp ∈ Rf×(bs×s)

2: for i := 0 to f do
3: for j := 0 to bs do
4: for q := 0 to d do
5: dpi.append(W[i][p])
6: end for
7: for k := 0 to s-d do
8: dpi.append(0)
9: end for

10: end for
11: dpi ← Encode(dpi)
12: end for
13: for i := 0 to bs do
14: V.append([1, 0, 0, . . . , 0, 0, 0]) . append a vector that size is bs to V evert round
15: end for
16: V← Encode(V)
17: ct.A←MultP(ct.A,V) . Only reserve the first slot of each window
18: for i := 0 to f do
19: for j := 0 to dlog2(s)e do
20: temp← Rot(ct.Ai, −exp(j)) . Move the first slot value to other slots
21: ct.Ai ← AddInplace(temp)
22: end for
23: end for
24: for i := 0 to f do
25: ct.Ai ← MultPInplace(dpi)
26: ct.Ai.RescaletoNext()
27: end for
28: ct.D← AddMany(A) . Add f ciphertexts from A together and store into ct.D

SIMD [33] technology has long been used by [5,15]. Cryptonets and MiniONN use
CRT technology to split a single large number into multiple small numbers for parallel
operations. We have expanded the use of SIMD technology to better integrate the input and
output structures of neural networks. It should be noted that the method proposed by us
can be applied to all matrix operations necessary for the output of the convolutional layer in
all CNNs to enter the dense layer. In the process of connecting neurons, unlike the previous
matrix multiplication, we expand each value of the output of the convolutional layer to
the same size as the output dimension of the dense layer, and then perform a dot product
operation with each row of the dense layer weight matrix, and finally add all the rows at
once to compress the output into a ciphertext, and the change of the matrix to the output
dimension is also indirectly transferred to the expansion process of the ciphertext slot.

4.3. Dealing with Noise Effects

In Section 3.4, the ciphertext encrypted using the CKKS scheme contains hierarchies,
messages, and noise boundaries in addition to the ciphertext itself to dynamically man-
age the size of the ciphertext. A complete ciphertext can be seen as a quadruple form:
(c, l, v, B), c ∈ Rk

ql
. Compared with the general homomorphic encryption scheme, the

CKKS scheme does not prepare an independent plaintext space for the embedded noise,
and the message m′ = m + e output by the decryption algorithm is slightly different from
the original message m, but when the maximum value ||e||can

∞ can of the noise vector

Appl. Sci. 2023, 13, 6117 13 of 19

is much smaller than the maximum value ||m||can
∞ can of the message vector, it can be

regarded as an approximation of the approximate calculation.
For two ciphertext (c1, l, v1, B1) and (c2, l, v2, B2), all parts of noisy if defined by

βi = Bi/vi, Bscale =
√

N/3 · (3 + 8
√

h), Bks = 8σN/
√

3, Bmult(l) = P−1 · ql · Bks + Bscale.
We multiply it once and scale the result to the next level, resulting in a relative error of:

β′ = β1 + β2 + β1β2 +
Bmult(l) + pl′−l Bscale

v1v2
(2)

We can approximate it as consuming one level for homomorphic operations, if it is
directly decrypted, it will bring β′/ql error to the message. Since our experimental process
is trained with ciphertext, ciphertext reasoning, and the training process is adjusted in
plaintext, this means that for the image of the ciphertext state, the weights originally trained
may be somewhat unmatched.

The decryption result of the CKKS scheme decryption algorithm is actually an ap-
proximation of the plaintext, so the noise growth caused by homomorphism may bring
some significant accuracy loss. Experimental tests are also carried out in the original text of
the encryption scheme, and the output of the x1024 polynomial is calculated under certain
parameters, and the accuracy of 10 bits is lost [26]. In our specific image classification
privacy protection scheme, we can understand that after the picture is encrypted, even
if it is immediately decrypted, the value of each pixel is not the original value, but this
error is very small, and the error of the entire picture will make the image “blurry”, which
will have a certain impact on the inference result at the macroscopic level. For example, if
we first scale a pixel with a grayscale value of 18 to the [0, 1] interval, the value is about
0.0705882353, and when the plaintext scale scale is 240, the noise carried by the encryption
scheme will cause an error to the value of the eighth decimal place after decryption. After
ciphertext inference, the error will rise to 5–6 decimal places, and the error of this size will
have a certain impact on the accuracy of network reasoning.

To solve this problem, we believe that if similar noise is added during the training
stage, the model can extract the information of the “blurred” state picture, so that the
model’s learning ability can resist the influence of noise after trying to add standard
σ = 5.0 Gaussian distribution random sampling to the image of the training process as an
approximate error, so as to achieve the accuracy effect generated by the above error analysis.

In the following Section 6.2, we show the validation experiment and the experimental
results, and it turns out that our method has a certain effect.

5. Security Analysis

In this Section, we provide the security analysis of the homomorphic encrypted neural
network inference scheme; for our solution, it needs to be proved that the ciphertext vector
packaged by the local client (each ciphertext contains an extended convolution window)
cannot obtain any valid information when the cloud service provider performs operations.

Definition 3. LetR
∨

be the dual fractional ideal ofR and writeR
∨
q = R

∨
/qR

∨
. For a positive

integer modulus q ≥ 2, s ∈ R
∨
q , r ∈ (R+)

N , and an error distribution X := bΨreR∨ , we define
AN,q,χ(s) as the RLWE distribution obtained by sampling a← Rq uniformly at random, e← X
and returning (a, a · s + e) ∈ Rq ×R

∨
q .

Definition 4. We define a problem to distinguish arbitrarily many independent samples chosen
according to AN,q,χ(s) for a random choice of s sampled from the distribution D overR

∨
from the

same number of uniformly random and independent samples from Rq ×R
∨
q to be the (decision)

ring learning with errors problem, denoted by RLWEN,q,χ(D).

Definition 5. We define encoding procedure Ecd(z; ∆) as: For a (N/2)−dimensional vector
z = (zi)i∈T of complex numbers, the encoding procedure first expands it into the vector π−1(z) ∈

Appl. Sci. 2023, 13, 6117 14 of 19

H,H =
{

z =
(
zj
)

j∈Z∗M
∈ CN : zj = z−j, ∀j ∈ Z∗M

}
and computes its discretization to σ(R)

after multiplying a scaling factor ∆. Return the corresponding integral polynomial m(X) =
σ−1(b∆ · π−1(z)σRe) ∈ R

Definition 6. For a real 0 ≤ ρ ≤ 1, we define ZO(ρ) as a distribution that draws each entry in
the vector from v ∈ {0,±1}N , with probability ρ/2 for each of −1 and +1, and probability being
zero 1− ρ.

Definition 7. We define DG
(
σ2) as a sample procedure that samples a vector in zN by drawing

its coefficient independently from the discrete Gaussian distribution of variance σ2

Theorem 1 ([34]). For and d that is a power of 2, ring R = Z[x]/
(

xd + 1
)

, prime integer

q = q(d) = 1mod2d, and B = ω
(
d
√

logd
)
, there is an efficiently samplable distribution χ that

outputs elements ofR of length at most B with overwhelming probability, such that if there exists
an efficient algorithm that solves RLWEd,q,χ then there is an efficient quantum algorithm for solving
f (d) · (q/B) -approximate worst-case SVP for ideal lattices over R, for every super-polynomial
factor f (d) = dω(1).

Theorem 2 ([34]). Let K denote an arbitrary number field of degree n. Let α = α(n) ∈ (0, 1) be
arbitrary, and let the (rational) integer modulus q = q(n) ≥ 2 be such that α− q ≥ ω

(√
logn

)
.

There is a probabilistic polynomial-time quantum reduction from K− DGSγ to OK − LWEq,Ψ≤α,
where γ = ηε I −ωlogn/α.

Our local client fills the convolution window of multiple images in the same position
into a vector s, and enters the vector si each into the encoding function Ecd(z; ∆) →
pi, returning the plaintext polynomial pi. Then specify the security level and call the
homomorphic encryption scheme KeyGen(1λ) → sk, pk, evk, described in Section 3.2 to
obtain the secret key sk which users keep themselves, the evaluation key evk is sent to
the cloud sever directly. Then call Encpk(pi) with the returned public key pk, sampling
vi ← ZO(0.5) and ei1 , ei2 ← DG

(
σ2), outputs vi · pk +

(
pi + ei1 , ei2

)
(mod qL), encrypts the

plaintext polynomial pi to ciphertext ci, ciphertext ci satisfy 〈ci, sk〉 = pi + ei(modqL), 〈·〉 is
the inner product operation. According to Definition 3, the ciphertext form satisfies the
uniform random sampling AN,q,χ(ci) on the RLWE distribution, thereby specifying the
RLWEN,q,χ(D) problem in Definition 4. From Theory 1, the approximate SVP problem
on the ideal lattice can be reduced to RLWEd,q,χ. Then, the difficulty of restoring the pi
from vi · pk +

(
pi + ei1 , ei2

)
(mod qL) can be based on the difficulty of the approximate SVP

problem on the ideal grid. Vadim Lyubashevsky et al. [34] also provide approximate SVP
(worst-case) to the search version of R-LWE on an ideal lattice (quantum reduction). When
specifying the encryption scheme parameters, we need to consider that the security level
of λ-bits [35,36] is met when N ≥ λ+110

7.2 log(P · qL) (P is the plaintext module), and the
security level of 192 bits can be achieved when N is 215, and the maximum bit length of the
coefficient modulo qL is 611 bits. The total length of the coefficient modulus used in our
scheme is 540 bits, so this scheme can meet the security level of λ = 192 bits. Therefore, the
security of the information uploaded by users on the cloud service side can be guaranteed.

6. Performance Evaluation

In this Section, we evaluate the performance of our proposed privacy-preserving
neural network security inference scheme. First, we test the time of atomic operations
required in various inference processes of homomorphic encryption schemes under specific
parameters, and calculate the total number of various operations in the entire inference
process, and the test results are shown in the table of Section 6.1. In Section 6.2, we
monitored the time spent by different network layers and memory usage during inference,
and the test results are presented in tabular form.

Appl. Sci. 2023, 13, 6117 15 of 19

Our experiment is outlined as follows: we propose a methodology for training neu-
ral networks on encrypted data using homomorphic encryption. Our approach involves
evaluating the computation depth required for the model inference and choosing suitable
encryption parameters, followed by evaluating the noise error generated by the cipher-
text produced by this parameter after undergoing homomorphic ciphertext evaluation
at this depth. We modify the model to adapt to the arithmetic range (linear, polynomial
operations) of homomorphic encryption and embed the noise into the original data to
generate adversarial samples for training the model. Our batched ciphertext inference
algorithm is embedded into the inference process, and we use both the model trained
with and without adversarial training to perform ciphertext inference simultaneously. We
observe the similarity between their output probabilities and the output probabilities of
plaintext inference to determine the impact of the noise and also observe the efficiency
improvement of our batched ciphertext inference algorithm.

Our experimental environment is a CPU with Intel-i7 3.6 Ghz, as well as 128 GB of
physical memory. The entire client-side encryption process and the inference process on
the cloud service side are completed by the experimental environment.

6.1. Numerical Analysis

In this Section, we evaluate the performance of our proposed privacy-preserving neu-
ral network security inference scheme, and first we analyze the computational complexity
of the entire cryptographic network at the arithmetic level.

We write the length and width of the image to be uploaded as h× w, the length and
width of the convolution kernel as k× k, the step size as st, the number of channels as c,
the length and width of dense layer 1 as wh× ww, wh as the width of the input end, the
length and width of dense layer 1 as di× do, the number of plaintext slots allocated for
each picture as s, and the time consumption of various homomorphic atomic operations is
shown in Table 4.

Table 4. Every evaluation operation time costs and evaluation times.

Operation Time Consumption(s) Evaluation Times

Encryption 0.43155 ((h− k)/s + 1)2

Multiplication(Ciphertext) 0.00714 4× ((h− k)/s + 1)2

Multiplication(Plaintext) 0.00198 (c + 4)× ((h− k)/s + 1)2 + (wh + di + 3)

Relinearization 0.07435 2× ((h− k)/s + 1)2 + 2

Rescale 0.01009 (c + 8)× ((h− k)/s + 1)2 + (wh + di + 3)

Rotation 0.01009 c× (dlog2(k2)e+ dlog2(s)e)× ((h− k)/s + 1)2

Add 0.00080 (c + 5)(dlog2(k2)e+ dlog2(s)e)× ((h− k)/s +
1)2 + (3 + do)

6.2. Evaluation of Results

Previously, in Section 4.2 we provided improvements to the batch algorithm, in
Section 4.3 we stated the effect of noise on the inference results in homomorphic schemes,
and in this chapter, our experimental results are shared.

In order to verify whether random noise will have an effect at the end of the inference
stage, and whether the above method has a certain effect, we verify it by the following
method: first randomly select 64 pictures from the test set, and in the case of adding noise
in the training phase, the test pictures with the same noise will be (so the test images all
contain noise, only show the extraction results) and the output (without classifier) vector
in the last layer of the network and the corresponding label vector (the correct result
index position is 1, the rest of the index position is 0) to enable cosine similarity with the
image without adding noise under the same model, and then compare the effect of the two
training modes (the image position is the same), and the comparison results are shown in
the Table 5. Under the parameters of ten epochs, we can see that there is a relatively large

Appl. Sci. 2023, 13, 6117 16 of 19

improvement ratio observed. We speculate that the larger numerical deviation observed
under this parameter is likely due to the use of a larger learning rate, which leads to
insufficient stability of the model when facing perturbed tests. However, it can be seen that
our method still maintains a stable similarity of about 10 between the model input and the
original output under this parameter.

Table 5. The cosine similarity result of two training methods.

Epochs Batch Size Learning Rate Cosine Similarity (Noisy) Cosine Similarity (Original) Promotion Ratio

10 64 1.0× 10−3 10.0167 7.0016 43.06%

10 64 2.0× 10−3 10.2742 4.9816 106.24%

20 64 1.0× 10−4 23.3822 21.3689 9.42%

10 128 1.0× 10−3 21.5057 21.3939 0.52%

15 128 8.0× 10−4 17.4479 17.0862 2.12%

12 64 2.0× 10−3 10.0247 6.0178 66.58%

In the model containing three convolutional layers and two fully connected layers for
inference of the CIFAR-10 dataset using the same activation function, the cosine similarity
of the output result and the target result increased by about 20% on average (under different
training parameters). After experimental analysis, the cosine similarity of adding matching
noise in the training stage is significantly improved compared with adding noise in the
training process. It can be said that this method should deal with the noise generated by
homomorphic operations, which can bring the prediction result closer to the target result.
Using the last row of parameters of the table, plus 0.1 momentum, training with added
noise can make the ciphertext inference containing noise reach 98.55% accuracy, and under
the same parameters, the training process can only achieve 98.12% accuracy without adding
noise, which can show that the noise of the homomorphic scheme has an impact on the
accuracy of the ciphertext inference results, and our method can indeed offset this effect to
a certain extent.

Next, we show the effect of the algorithm mentioned in Section 4.2 in a concrete
experiment. In the case of N = 32,768, there are 16,384 slots available for plaintext, and our
batch scheme prepares the convolution kernel area k2 plus the number of columns of the
dense layer 1 column at the input end for the convolution window of each picture, that
is, the output dimension wh, a total of left

(
k2 + wh

)
plaintext slots, in the specific imple-

mentation, occupies left(4× 4 + 100 = 116) plaintext slots. Theoretically, 16,384/116 = 141
pictures can be processed in parallel in the case of a single thread, and if you consider
multi-threaded parallel processing, the pictures that can be processed synchronously de-
pend on the performance of the actual environment, that is, the concurrency capacity of the
CPU and the total amount of memory. We use the C++ standard thread library to perform
16-thread concurrent encrypted inference computations, and the entire process takes 27.15 s,
(the time it took to contain the local client-side encrypted data), and this was obtained with
the addition of some noise effect in the test set. Table 6 shows the time consumed by each
stage of the ciphertext network inference process and the processing memory consumed by
the runtime.

Compared with the inference scheme containing the fourth-order approximation
Swish activation function mentioned in Takumi et al. [11], we consume about 4 s more
time, but we choose polynomial modulos twice as large as it to provide higher security and
deeper computational depth. We denote the output dimension of the last convolutional
layer as c, and the size of the first dense layer is h × w(c = h), Table 7 displays the inference
time, accuracy, and conversion complexity between different layers of the scheme.

Appl. Sci. 2023, 13, 6117 17 of 19

Table 6. Inference stage time and memory consumption.

Layer Evaluation Time (s) Memory Consumption (mb)

Local Pretreatment 0.0875 1539

Convlutional Layer 13.843 6018

Activation Layer-1 10.65 27,922

FC-1 2.425 2676

Activation Layer-2 0.07 17

FC-2 0.075 239

Total 27.15 38,411

Table 7. Comparison of scheme parameters.

Framework HE Inference Time(s) Accuracy Conv-Dense Multiplication

Cryptonets 249.6 98.95% h× w

CryptoDL 148.9 98.1% h× w

FCryptonets 39.1 98.71% h× w

Ours 27.15 99.05% h

Our scheme can compress the number of ciphertexts in the process of connecting
the convolutional layer and the dense layer, transfer the transformation of the network
structure to the movement of the ciphertext slot, effectively reduce the computational
complexity of the convolutional layer or pooling layer when connecting the dense layer in
the inference process, and reduce a certain amount of data traffic during use.

7. Discussion

The experiments have demonstrated the effectiveness of our batch processing algo-
rithm, and our noise handling method has also achieved some results. Therefore, during
the adversarial training process, the author suggests using different homomorphic encryp-
tion parameters to encrypt numbers within the input range of the model, observing the
magnitude of the error introduced by the encryption process, and then using adversarial
sample generation algorithms (such as FGSM) to generate adversarial samples with errors
similar to those introduced by encryption. The algorithm parameters can be adjusted until
the similarity between the two is high, after which adversarial and original data can be
jointly input into the model for training. This method can also be used for differential
privacy-based model protection schemes to stabilize model accuracy. In addition, for
privacy-preserving inference in language models, techniques such as secure multiparty
computation (MPC) and garbled circuits (GC) can be used to avoid the huge computation
and storage costs brought by homomorphic encryption schemes. It is worth further explor-
ing whether there are more post-quantum cryptography methods that can be applied to
the complex computing problems in deep learning.

8. Conclusions

In this paper, a batch method to optimize the inference of homomorphic encryption
neural network is proposed, which can make full use of the ciphertext slot provided by the
homomorphic encryption scheme, and the inference time when batching 141 pictures is
27.15 s, and the amortization time of a single image is 0.19 s, with an accuracy of 99.05%.
At the same time, a new perspective is provided to study how random noise added by
encryption schemes can add noise to the training process to counteract its effects. In our
scenario, users can encrypt private images locally, and then securely perform inference and
prediction on the cloud service side, for which we provide proof of security. One limitation
is that the application scenarios of homomorphic encryption are still not extensive enough,
and need to be further studied and expanded.

Appl. Sci. 2023, 13, 6117 18 of 19

Author Contributions: Conceptualization: C.S.; methodology, C.S.; validation, C.S., R.H.; formal
analysis, C.S.; writing—original draft preparation, C.S.; writing—review and editing, C.S.; funding
acquisition, R.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation Project of China
under Grant No. 62062009 and the Guangxi Innovation-driven Development Project under Grant
Nos. AA17204058-17 and AA18118047-7.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: I would like to thank my senior Kunhong Li for helping me with experimental
ideas, and my college classmate Guodong Zheng for answering my doubts in programming.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Dwork, C. Differential privacy: A survey of results. In Proceedings of the International Conference on Theory and Applications

of Models of Computation, Xi’an, China, 25–29 April 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–19.
2. Rivest, R.L.; Adleman, L.; Dertouzos, M.L. On data banks and privacy homomorphisms. Found. Secur. Comput. 1978, 4, 169–180.
3. Yao, A.C. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer

Science (SFCS 1982), Chicago, IL, USA, 3–5 November 1982; pp. 160–164.
4. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on

Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.
5. Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. Cryptonets: Applying neural networks to

encrypted data with high throughput and accuracy. In Proceedings of the International Conference on Machine Learning, PMLR,
New York, NY, USA, 20–22 June 2016; pp. 201–210.

6. Chabanne, H.; De Wargny, A.; Milgram, J.; Morel, C.; Prouff, E. Privacy-Preserving Classification on Deep Neural Network.
Cryptology ePrint Archive. 2017. Available online: https://eprint.iacr.org/2017/035 (accessed on 15 November 2022).

7. Chou, E.; Beal, J.; Levy, D.; Yeung, S.; Haque, A.; Li, F.F. Faster cryptonets: Leveraging sparsity for real-world encrypted inference.
arXiv 2018, arXiv:1811.09953.

8. Bourse, F.; Minelli, M.; Minihold, M.; Paillier, P. Fast homomorphic evaluation of deep discretized neural networks. In Proceedings
of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2018; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 483–512.

9. Sanyal, A.; Kusner, M.; Gascon, A.; Kanade, V. TAPAS: Tricks to accelerate (encrypted) prediction as a service. In Proceedings of
the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 4490–4499.

10. Hesamifard, E.; Takabi, H.; Ghasemi, M. Cryptodl: Deep neural networks over encrypted data. arXiv 2017, arXiv:1711.05189.
11. Brutzkus, A.; Gilad-Bachrach, R.; Elisha, O. Low latency privacy preserving inference. In Proceedings of the International

Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 812–821.
12. Ishiyama, T.; Suzuki, T.; Yamana, H. Highly accurate CNN inference using approximate activation functions over homomorphic

encryption. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December
2020; pp. 3989–3995.

13. Lu, Y.; Lin, J.; Jin, C.; Wang, Z.; Aung, K.M.M.; Li, X. FFConv: Fast factorized neural network inference on encrypted data. arXiv
2021, arXiv:2102.03494.

14. Lee, J.W.; Kang, H.; Lee, Y.; Choi, W.; Eom, J.; Deryabin, M.; Lee, E.; Lee, J.; Yoo, D.; Kim, Y.S.; et al. Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network. IEEE Access 2022, 10, 30039–30054. [CrossRef]

15. Liu, J.; Juuti, M.; Lu, Y.; Asokan, N. Oblivious neural network predictions via minionn transformations. In Proceedings of
the 2017 ACM Sigsac Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017;
pp. 619–631.

16. Juvekar, C.; Vaikuntanathan, V.; Chandrakasan, A. {GAZELLE}: A low latency framework for secure neural network inference.
In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018;
pp. 1651–1669.

17. Li, S.; Xue, K.; Zhu, B.; Ding, C.; Gao, X.; Wei, D.; Wan, T. Falcon: A fourier transform based approach for fast and secure
convolutional neural network predictions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8705–8714.

18. Kumar, N.; Rathee, M.; Chandran, N.; Gupta, D.; Rastogi, A.; Sharma, R. Cryptflow: Secure tensorflow inference. In Proceedings
of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 336–353.

https://eprint.iacr.org/2017/035
http://doi.org/10.1109/ACCESS.2022.3159694

Appl. Sci. 2023, 13, 6117 19 of 19

19. Mishra, P.; Lehmkuhl, R.; Srinivasan, A.; Zheng, W.; Popa, R.A. DELPHI: A Cryptographic Inference Service for Neural Networks.
In Proceedings of the 29th USENIX Conference on Security Symposium (SEC’20), Vancouver, BC, Canada, 16–18 August 2017.

20. Ng, L.K.; Chow, S.S. GForce: GPU-Friendly Oblivious and Rapid Neural Network Inference. In Proceedings of the 30th USENIX
Security Symposium (USENIX Security 21), Online, 11–13 August 2021; pp. 2147–2164.

21. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Advances in Cryptology, Proceedings of the
EUROCRYPT’99: International Conference on the Theory and Application of Cryptographic Techniques Prague, Czech Republic, 2–6 May
1999; Springer: Berlin/Heidelberg, Germany, 1999; Proceedings 18; pp. 223–238.

22. Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive. 2012. Available online:
https://eprint.iacr.org/2012/144 (accessed on 2 November 2022).

23. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans.
Comput. Theory (TOCT) 2014, 6, 1–36. [CrossRef]

24. Ducas, L.; Micciancio, D. FHEW: Bootstrapping homomorphic encryption in less than a second. In Advances in Cryptology,
Proceedings of the EUROCRYPT 2015: 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, 26–30 April 2015; Proceedings, Part I 34; Springer: Berlin/Heidelberg, Germany, 2015; pp. 617–640.

25. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast fully homomorphic encryption over the torus. J. Cryptol. 2020,
33, 34–91. [CrossRef]

26. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Proceedings of
the International Conference on the Theory and Application of Cryptology and Information Security, Hong Kong, China, 3–7
December 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 409–437.

27. Jiang, X.; Kim, M.; Lauter, K.; Song, Y. Secure outsourced matrix computation and application to neural networks. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018;
pp. 1209–1222.

28. CIFAR-10—Canadian Institute For Advanced Research. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed
on 1 May 2023).

29. Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017.
30. Microsoft SEAL (Release 4.0); Microsoft Research, Redmond, WA, USA, 2022. Available online: https://github.com/Microsoft/

SEAL (accessed on 15 July 2022).
31. Halevi, S.; Shoup, V. Algorithms in helib. In Advances in Cryptology, Proceedings of the CRYPTO 2014: 34th Annual Cryptology

Conference, Santa Barbara, CA, USA, 17–21 August 2014; Proceedings, Part I 34; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 554–571.

32. Cheon, J.H.; Kim, A.; Yhee, D. Multi-Dimensional Packing for Heaan for Approximate Matrix Arithmetics. Cryptology ePrint
Archive. 2018. Available online: https://eprint.iacr.org/2018/1245 (accessed on 15 November 2022).

33. Smart, N.P.; Vercauteren, F. Fully homomorphic SIMD operations. Des. Codes Cryptogr. 2014, 71, 57–81. [CrossRef]
34. Lyubashevsky, V.; Peikert, C.; Regev, O. On ideal lattices and learning with errors over rings. In Proceedings of the Annual

International Conference on the Theory and Applications of Cryptographic Techniques, Riviera, France, 30 May–3 June 2010;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–23.

35. Gentry, C.; Halevi, S.; Smart, N.P. Homomorphic evaluation of the AES circuit. In Proceedings of the Annual Cryptology
Conference, Santa Barbara, CA, USA, 19–23 August 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 850–867.

36. Lindner, R.; Peikert, C. Better key sizes (and attacks) for LWE-based encryption. In Proceedings of the Cryptographers’ Track at
the RSA Conference, San Francisco, CA, USA, 14–18 February 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 319–339.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://eprint.iacr.org/2012/144
http://dx.doi.org/10.1145/2633600
http://dx.doi.org/10.1007/s00145-019-09319-x
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2018/1245
http://dx.doi.org/10.1007/s10623-012-9720-4

	Introduction
	Our Contribution
	Organization

	Related Works
	System Model, Encryption Scheme and Design Goals
	System Model
	Security Model
	Homomorphic Encryption Scheme
	Formal Definition
	Design Goals

	Our Scheme
	CNN Private Inference Scheme
	Batch Processing in Inference Stage
	Dealing with Noise Effects

	Security Analysis
	Performance Evaluation
	Numerical Analysis
	Evaluation of Results

	Discussion
	Conclusions
	References

