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Abstract: Deep data-driven methodologies have significantly enhanced the automatic facial beauty
prediction (FBP), particularly convolutional neural networks (CNNs). However, despite its wide
utilization in classification-based applications, the adoption of CNN in regression research is still
constrained. In addition, biases in beauty scores assigned to facial images, such as preferences for
specific, ethnicities, or age groups, present challenges to the effective generalization of models, which
may not be appropriately addressed within conventional individual loss functions. Furthermore,
regression problems commonly employ L2 loss to measure error rate, and this function is sensitive
to outliers, making it difficult to generalize depending on the number of outliers in the training
phase. Meanwhile, L1 loss is another regression-loss function that penalizes errors linearly and is less
sensitive to outliers. The Log-cosh loss function is a flexible and robust loss function for regression
problems. It provides a good compromise between the L1 and L2 loss functions. The Ensemble of
multiple loss functions has been proven to improve the performance of deep-learning models in
various tasks. In this work, we proposed to ensemble three regression-loss functions, namely L1,
L2, and Log-cosh, and subsequently averaging them to create a new composite cost function. This
strategy capitalizes on the unique traits of each loss function, constructing a unified framework that
harmonizes outlier tolerance, precision, and adaptability. The proposed loss function’s effectiveness
was demonstrated by incorporating it with three pretrained CNNs (AlexNet, VGG16-Net, and FIAC-
Net) and evaluating it based on three FBP benchmarks (SCUT-FBP, SCUT-FBP5500, and MEBeauty).
Integrating FIAC-Net with the proposed loss function yields remarkable outcomes across datasets
due to its pretrained task of facial-attractiveness classification. The efficacy is evident in managing
uncertain noise distributions, resulting in a strong correlation between machine- and human-rated
aesthetic scores, along with low error rates.

Keywords: facial beauty prediction (FBP); knowledge transfer; regression-based CNN; Log-cosh loss
function; ensemble learning

1. Introduction

The beauty-related industries have witnessed significant expansion globally, owing to
their multifarious beneficial applications in the entertainment, digital media, plastic surgery,
and cosmetic sectors. To this end, various studies have been conducted by researchers,
medical practitioners, and artists to investigate and measure facial beauty [1–3]. The task
of predicting facial attractiveness is a complex and important undertaking in the field
of computer vision and machine learning. Building robust and effective FBP models
is challenging due to the variability of facial appearance and the complexity of human
perception. Conventional methods for predicting face beauty were based on hand-crafted
features; these features are manually extracted and then fed to a classifier or a regressor [4].
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Facial geometry, color, texture, and other local characteristics are some examples of feature-
based representation. Nonetheless, the effectiveness of statistical and traditional machine-
learning techniques for extracting and predicting beauty features diminishes with the
emergence of sophisticated deep neural networks [5]. The remarkable capability of CNNs
to learn discriminative features has led to significant advancements in computer vision. In
addition, both deep and machine learning are characterized by applying statistical methods
to allow computers to learn from the data supplied.

The machine-learning predictions error is measured using loss and cost functions.
Loss functions quantify the error per observation, whereas cost functions quantify the
error across all observations. Therefore, loss functions are the core aspects of the training
process in the machine-learning system. The ideal values of parameters are derived
by mitigating the mean value of the loss, given a labeled training set; hence, selecting
the appropriate loss function is the greatest priority. FBP may assume various forms,
including classification, regression, or ranking problems [6]. However, CNN is mostly used
in classification-based applications, and its implementation in regression studies is still
developing. Thus, predicting a collection of dependent, continuous variables is the focus of
the latest suggested deep-learning techniques that tackle the facial-image-attractiveness
assessment task. Consequently, choosing a loss function that matches the specific predictive
modeling issue, such as classification or regression, is critical so that CNN models can learn
from the data.

The mean square error (MSE), which is based on L2 loss, is commonly employed for
regression problems, aiming to reduce the squared difference between the predicted and
the actual values. However, it is sensitive to outliers, making it hard to generalize based on
how many outliers might be present via the training phase [7]. While the mean absolute
error (MAE) based on L1 loss can cover the MSE downside as it takes the absolute value
into account, the errors will be penalized linearly, and it is less sensitive to outliers [8].
However, with the MAE, all errors are equally weighted. In addition, it is not a differentiable
function. A viable solution was proposed in [9] to manage the actual and predicted values
when data are susceptible to unknown noise distributions by applying the logarithmic
hyperbolic cosine (lncosh) as a loss function. This outcome makes sense, given that the
Log-cosh function takes advantage of L2 loss for small values and the L1 loss for large ones.
Moreover, the Log-cosh loss function is a type of robust loss function that does not require
the adjustment of hyperparameters. This contrasts with other robust loss functions, such
as Huber loss [10] and Tukey loss [11], which require tuning hyperparameters for optimal
performance. Additionally, the Log-cosh loss function has a smooth gradient, which allows
for more efficient optimization and convergence during model training. The Log-cosh
loss function provides a simple yet effective solution for robust regression tasks, without
extensive hyperparameter tuning.

In machine learning, the bias–variance dilemma emerges from the endeavor to min-
imize bias and variance simultaneously. Complex models often possess low bias and
high variance, whereas relatively simple models tend to have high bias and low variance.
This predicament encapsulates the challenge of enabling a model to grasp the optimal
input-output relationship while maintaining the capacity to generalize beyond the original
training data samples. Model ensembles, much like voting systems, involve each member
contributing equally through predictive votes [12]. This incorporation of varied perspec-
tives fosters diversity within the ensemble, ultimately leading to diminished variance and
enhanced generalization capabilities beyond training data. The voting regressor utilizes
the ensembling concept by averaging individual predictions for a conclusive outcome.

Facial-beauty data may exhibit biases, which can affect data distribution. For example,
there may be a bias towards images of certain beauty scores, ethnicities, or age groups
which can affect the generalizability of the model trained on the dataset. The integration of
multiple loss functions in a linear combination has proven to enhance results, as supported
by previous studies [13–15]. Thus, the most effective solution in addressing these biases
and ensuring the generalizability of the model is using a combination of loss functions to
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integrate diverse data-driven techniques and leverage their benefits. This work represents
a pioneering effort at incorporating the Log-cosh loss function into FBP, combined with L1
and L2 losses, using ensemble average in a CNN-regression-based model for predicting
facial-image beauty scores. This distinctive contribution highlights the originality and
uniqueness of our work in the field of FBP through ensembling the average of L2, L1, and
Log-cosh regression-loss functions within a deep network. Accordinhgly, the model can
better capture the underlying patterns and relationships in the data, leading to improved
generalization and robustness in FBP across various demographic factors, such as gender,
age, and ethnicity. Recognizing the significance of improving prediction reliability and
precision, the fusion of diverse data-driven techniques into an ensemble has become
a prominent research domain in recent times. The key contributions of this paper are
as follows:

1. Leveraging the Log-cosh loss function within the context of FBP to enhance the
learning process; to the best of our knowledge, we are the first to use it in quantifying
the beauty in facial images.

2. Refining the performance of three distinct pretrained CNNs, namely AlexNet, VGG16,
and FIAC-Net, for the purpose of estimating the beauty score within facial images.
This enhancement is achieved through the process of tuning and retraining these
networks on separate regression-loss functions, namely L1 loss, L2 loss, and Log-cosh,
on an individual basis for each network.

3. Proposing a new ensemble average cost function that effectively combines L2, L1,
and Log-cosh loss functions to enhance the model’s generalization and robustness
in predicting the beauty scores across subjects with diverse gender, age, and ethnic
characteristics, and further integrating this ensemble cost function with diverse CNN
models demonstrate its efficacy in enhancing the capabilities of various deep-learning
architectures for the FBP task.

4. Utilizing distinct FBP benchmarks with the aim of comparing the performance of
the proposed models in both restricted environments, represented by the SCUT-FBP
and SCUT-FBP5500 datasets, and wild facial images captured under unconstrained
conditions, as represented by the MEBeauty dataset.

This paper is structured in a manner that includes a brief overview of the relevant
studies in Section 2, followed by a description of the suggested framework in Section 3.
The empirical findings are presented in Section 4, while Section 5 provides a concluding
summary of the study.

2. Related Work

FBP has received significant attention within computer vision as an emerging research
area. Estimating the beauty level from a facial image could be treated as a classifica-
tion [16–18], regression [19,20], or ranking [21,22] task. Two distinct categories of FBP
exist. The first category employs a combination of hand-crafted features and conventional
machine learning, whereas CNN and deep-learning techniques facilitate the second. Earlier
research on FBP focused mostly on a set of hand-crafted features (geometric and texture)
that led to the shallow machine-learning algorithms used to estimate facial aesthetics.
Hong et al. [23] considered a set of facial ratios as an objective of facial beauty criteria to be
incorporated into ensemble-regression-based predictors to obtain the beauty score. How-
ever, geometric-feature-based techniques have limited performance due to the influence
of facial-expression variation, and it demands a computational burden through landmark
localizations. Psychological studies confirm that facial color, smoothness, and lightness
are crucial for perceiving facial beauty [24–26]. Iyer et al. [27] implemented conventional
image descriptors for texture feature extraction and combined them with putative facial
ratios to predict the attractiveness score. In their experiments, the K-nearest neighbors
(KNNs) achieved the highest performance for the combined features, with a Pearson cor-
relation of 0.7836 and MSE of 0.0963, to outperform the other suggested models, such as
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linear regression, random forest, and artificial neural network (ANN), when evaluated on
SCUT-FBP5500 dataset.

Feature engineering was once considered a crucial part of computer vision applications
before the emergence of deep learning. Recently, there has been an increasing demand
for the automatic extraction of features from facial images. CNNs provide an end-to-
end learning approach that can learn the mapping from the input to the desired output,
eliminating the need for manual feature engineering. An ensemble CNN-based regression
model was proposed in [28] to estimate the facial-beauty score automatically by utilizing a
diverse learning environment and fuse the decision made by these ensembled networks to
obtain a more reliable aesthetic score. However, sometimes the dominance of people with
average beauty scores in the facial-beauty data space may pose a challenge when optimizing
models using traditional loss functions, potentially resulting in extremely attractive and
unattractive faces being treated as outliers.

It is imperative to employ a hybrid loss function tailored based on the estimated
tasks to predict multiple distinct but beauty-related tasks efficiently. Consequently, re-
searchers have begun to explore models capable of handling outliers and multiple tasks
simultaneously, resulting in improved performance compared to conventional regression
approaches that rely heavily on L1 and L2 loss functions [29,30]. For instance, Gao et al. [31]
utilized multiple loss functions for a CNN that simultaneously performed facial landmark
localization and FBP tasks. Furthermore, a multitask CNN named HMTNet was intro-
duced in [32]. HMTNet can predict the attractiveness score of a facial image, along with
its race and gender. They devised a loss function called “Smooth Huber Loss”. Similarly,
Lebedeva et al. [33] employed the Huber loss function to assess various known pretrained
CNNs on their recently introduced multi-ethnic dataset, as they anticipated a substantial
number of outlier faces. However, the choice of the delta parameter in Huber loss can
significantly impact the optimization process and ultimately the prediction accuracy, which
may require additional hyperparameter tuning. Zhai et al. [34] developed an effective CNN
based on the pretrained face-recognition model (CASIA-WebFace) and utilized a double
activation layer with a new Softmax-MSE loss function to predict the facial beauty in Asian
females. In the same context, Lu et al. [15] introduced a new cost function by incorporat-
ing a weighted cross-entropy loss for classification, along with an expectation loss and
a regression loss called ComboLoss to direct the SEResNeXt50 FBP network to improve
model training. However, their combination may increase computational complexity and
difficulty in tuning the hyperparameters. More recently, Dornaika et al. [35] suggested a
two-branch net (REX-INCEP) based on the ResneXt-50 and Inceptionv3 structures, and
then the ParamSmoothL1 regression-loss function was developed to estimate face beauty.
However, the dynamic parameterized smoothL1 loss function can be computationally
expensive compared to other loss functions. This is because it involves a piecewise function
that requires additional calculations, which can slow down the training process.

3. Methodology

The general framework of the proposed method is depicted in Figure 1. First, the
input data were partitioned into training and testing folds based on 5-fold cross-validation.
The training data were then fed to a deep network to learn the pattern of estimating the
beauty score in a facial image. Then, the network was trained on the proposed cost function
that ensembles three regression-loss functions: L2 loss, L1 loss, and Log-cosh loss. This
ensemble objective function can improve the learning efficiency by inheriting the benefits
of each loss and minimizing the loss value to validate the model performance. Ultimately,
the trainable model was evaluated on the test data to show the model efficiency. The next
subsections elaborate on these stages in further detail.
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Figure 1. Schematic representation of the proposed model.

3.1. Image Preprocessing

FBP datasets have a variety of image sizes that are required to be resized according to
the size of the network’s input layer. Moreover, the limited sample size and unbalanced data
present a concern that may lead to an overfitting problem. Consequently, partitioning data
samples based on a cross-validation technique can help to avoid overfitting by providing a
more accurate estimate of how well the model works on data it has not seen before. This
work employed the 5-fold cross-validation procedure, which usually involves randomly
separating all the data into five folds. The model is then trained on four folds (80%), and
the remaining fold is utilized to test the model (20%).

The SCUT-FBP was subjected to a stratified partitioning scheme with five folds. Each
fold consisted of 400 images allocated for training purposes, while 100 images were re-
served for testing. Similarly, the SCUT-FBP5500 dataset underwent the same partitioning
process, resulting in five folds with 4400 images for training and 1100 images for testing.
Furthermore, the MEBeauty dataset was subjected to a similar partitioning strategy, where
each of the five folds contained 2040 training images and 510 testing images. This rigorous
partitioning scheme ensured a systematic evaluation of the models’ performance on distinct
subsets of the datasets.

3.2. The Loss Functions

A crucial component of a learning system is a loss function that quantifies the accuracy
of the predicted value relative to the ground-truth value. In machine learning, there are two
loss functions: those based on the margin employed in the classification process and those
based on distance in regression problems [36]. The loss function is denoted as follows:

loss function = L(
→
x , yt; yp) (1)

yp = f (
→
w

T
.
→
x ) (2)

where
→
x denotes the input, yt is the target (actual) value, and yp is the predicted value. The

weight in the network is represented by w. Meanwhile, f () refers to the learning algorithm.
The smaller loss value indicates the model’s efficiency. The choice of training loss func-

tion considerably impacts the model’s performance and generalizability [37]. More detail
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regarding the regression-loss functions used in this study is presented in the subsequent
subsection. The pertinent variables and notations employed in the proposed methodology
are summarized in Table 1.

Table 1. The description of the pertinent variables and notations.

Parameter Description
→
x Input image

yt Target ground truth of beauty score
y The average of the ground-truth scores

yp Predicted beauty score
p The average of the predicted scores
n Number of data samples
f () Learning function or algorithm
w Weight of the input data
L Loss function
j Number of loss functions

L1 L1 loss
L2 L1 loss

Log-cosh Hyperbolic cosine h

3.2.1. L2 Loss

The regression theorem and least-squares approach are the origins of this function. It
is the sum of the squared distances between the target value yt and the predicted value yp.
The L2 loss formulation is presented as:

L2 =
(
yt − yp

)2 (3)

3.2.2. L1 Loss

L1 loss refers to the average of the absolute differences between actual and predicted
values. It is more effective as a loss function when the data have several outliers. Due to
the squaring of errors, even a few outliers can have a huge impact on the L2 loss, leading to
overestimating the errors associated with the outliers. While L1 loss is a linear function that
gives equal weight to all deviations, it is less responsive to outliers than L2 since it does not
penalize the high deviations caused by the outliers. The formula of L1 is shown as follows:

L1 =
∣∣yt − yp

∣∣ (4)

3.2.3. Log-cosh Loss

The Log-cosh is the hyperbolic cosine of the difference between the predicted value,
yp, and the true value, yt. The notion of the Log-cosh loss is described as follows:

Log_cosh = log(cosh(y p − yt)) (5)

where we have

cosh(yp − yt) =
e(yp−yt) + e−(yp−yt)

2
(6)

More specifically,

Log_cosh
(
yp − yt

)
= log(

e(yp−yt) + e−(yp−yt)

2
)

The Log-cosh function is smoother than quadratic loss. It works like L2, but it is not
affected by substantial prediction errors, and it also mimics a smoothed version of the L1
loss that is differentiable everywhere [38].
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3.3. The Proposed Ensemble Cost Function

Ensemble learning is a widely recognized approach that involves combining the
predictions of multiple learning models to improve the overall performance [39]. Using
three diverse loss functions balances individual strengths and weaknesses. Averaging
these losses can enhance the model’s ability to address a wider range of prediction errors.
For instance, if one loss function is sensitive to outliers, including others with distinct
characteristics can mitigate their impact on optimization. This strategy promotes a more
holistic optimization landscape, potentially improving the generalization and robustness of
predictions. To identify patterns for prediction tasks, discriminative deep-learning models
are employed for supervised learning. This article introduces a new ensemble cost function
that leverages three distinct loss functions, namely, L1 loss, L2 loss, and Log-cosh loss, to
enhance the performance of CNN in regression tasks. The proposed ensemble-learning
approach exhibits a key strength in enabling the effective fusion of multiple sources of
information. Moreover, the method offers a robust solution for handling unknown noise
distributions commonly encountered in real-world applications.

Based on Equations (1) and (2), the aggregation of the proposed ensemble average loss
functions is formulated as follows:

Ensemble cos t function =
1

3n∑n
i=1 ∑3

j=1 Lj(
→
x , yi

t; yi
p) (7)

where n is the number of data samples, Lj represents the loss function, and j denotes the
number of loss functions. It could be formulated more specifically as follows:

Ensemble cos t function =
1

3n∑n
i=1

∣∣∣yi
t − yi

p

∣∣∣+(yi
t − yi

p

) 2
+ (log(cosh(yi

p − yi
t)))

The computational cost and time associated with utilizing multiple loss methods
warrant consideration. While a single loss function might appear to be computationally
efficient, combining multiple functions could introduce added complexity due to calculating
and merging multiple loss terms. Nevertheless, potential performance gains might offset
the heightened computational demands.

3.4. Beauty Pattern Deep Learning and Knowledge Transfer

Transfer learning is a recent deep-learning baseline that overcomes overfitting when
training samples are limited. Furthermore, the pretrained networks are regarded as im-
portant in machine-learning-model evaluation. To show the effectiveness of the proposed
loss function in estimating the beauty score of the facial image, three pretrained CNNs
(AlexNet [35], VGG16-Net [36], and FIAC-Net [37]) were fine-tuned to obtain benefit from
the gained knowledge of each network, utilizing the transfer-learning aspects.

In theory, deeper networks should outperform shallower ones. However, in practice,
deeper networks tend to have higher computational complexity and can be susceptible to
overfitting, especially when trained on relatively small datasets. Consequently, the CNN
models utilized in this work adopt a moderate layer configuration. Notably, both AlexNet
and VGG16-Net have demonstrated efficacy across diverse computer vision tasks due to
their pretraining on the large-scale ImageNet dataset [40] to recognize and classify objects
across thousands of different categories.

Meanwhile, FIAC-Net [41] is a lightweight CNN that is pretrained to classify attractive-
ness levels in facial images, using FBP datasets, including the CelebA dataset [42], which
encompasses more than 200K facial images of celebrities. The selection of these CNNs
represents a comprehensive approach considering performance, architecture complexity,
and their original training task in computer vision.

Fine-tuning the pretrained network involves adjusting the hyperparameters of a CNN,
including the number of layers, neurons, epochs, learning rate, and the associated cost
function. Additionally, it improves the performance of the training model to achieve
the finest performance accuracy and aims to obtain the optimal set of parameters. The
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proposed methodology fine-tunes these networks to be more suitable for the facial-photo
beauty-estimation problem. Moreover, to address the overfitting concern, training-data
augmentation is implemented. This involves augmenting the training images with random
rotations, translations, and reflections.

To train the utilized CNNs, the Adam optimizer was utilized, and the number of
training epochs was set to 150, with a batch size of 32. Furthermore, the initial learning rate
was established at 1 × 10−4. Table 2 depicts the training hyperparameters’ setting details.

Table 2. The hyperparameters’ configuration for model training.

Parameter Setting

Initial learning rate 1 × 10−4

Batch size 32
MaxEpochs 150
Optimizer Adam

The pseudocode represented in Algorithm 1 outlines the implementation of knowledge
transfer in the proposed models which leverages a pretrained network to enhance the
performance of an FBP task. By freezing certain layers, modifying the network architecture,
and applying regression-loss functions, the model learns to predict beauty scores from
facial images.

3.4.1. FBP Based on AlexNet

The AlexNet [43] is an eight-layer CNN comprising five convolutional layers and
three fully connected layers. Figure 2 and Table 3 show the layer configurations of the
proposed AlexNet-regression-based for FBP. The ReLU activation function is employed in
all layers except for the output layer that uses the Softmax activation function. To accurately
estimate the facial attractiveness score, the knowledge of AlexNet was transferred, and
its architecture was modified. This involved substituting the regression-loss function for
Softmax, which transformed the classification process into a regression task. Moreover, this
was due to the fact that the lower layers of a CNN can learn general low-level features,
while higher layers capture task-specific features. We proposed reusing the pretrained
weights of lower layers and tuning higher ones. This approach saves time, lets the network
adapt efficiently, prevents overfitting, and preserves generalization ability; it was applied
to freeze the first two convolutional layers and tune the rest of the layers to be adapted for
facial aesthetic assessment.

Table 3. The configurations of the proposed AlexNet-regression-based for FBP.

Layer Name Kernels Size Stride

Input 227 × 227 × 3
Convolutional_1 + BN + ReLU 96 11 × 11 4

Max pooling_1 3 × 3 2
Convolutional_2 + BN + ReLU 256 5 × 5 1

Max pooling_2 3 × 3 2
Convolutional_3 + ReLU 384 3 × 3 1
Convolutional_4 + ReLU 384 3 × 3 1
Convolutional_5 + ReLU 256 3 × 3 1

Max pooling_3 3 × 3 2
Fully Connected fc6
Fully Connected fc7
Fully Connected fc8

The proposed ensemble loss with
response

Regression
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Algorithm 1: The pseudocode of the knowledge-transfer implementation for the proposed
models

Input: Training, validation sample sets: (X train, y train), and (X validation, y validation).
Output: Predicted facial beauty score r: y.

• Start.

1. Load the pretrained network:
net = pretrainedNetwork;

2. Freeze the required number of layers based on the network’s architecture and its initial task
design:
numFrozenLayers = desiredNumFrozenLayers;

for i = 1:numFrozenLayers
net.Layers(i).Trainable = false;

End.
3. Remove fully connected layers:

net = removeLayers(net, {‘ClassificationLayer_softmax’, ‘fc’}).
4. Replace Softmax and classification layer with a regression-loss function:

outputLayer = regressionLayer(‘Name’, ‘regressionLayer’).
5. Add a new fully connected layer for beauty score prediction:

numOutputNodes = 1;
fc = fullyConnectedLayer(numOutputNodes, ‘Name’, ‘fc’).

6. Adjust hyperparameters and training options.
7. Train the model with 5-fold cross-validation (tuning the rest of the unfrozen layers):

numFolds = 5;
partitionedData = cvpartition(numSamples, ‘KFold’, numFolds);
for fold = 1:numFolds

trainingIdx = training(partitionedData, fold);
trainingDataFold = augmentedData(trainingIdx).

# Train the model using different regression-loss functions individually, namely
L1 loss, L2 loss, Log-cosh, and the proposed ensemble average loss
function:trainedModel = trainNetwork(net, trainingDataFold, layers(fc,
outputLayer), options);

# Save the trained model and evaluation metrics for this fold.

End.
8. Evaluate model performance on testing data:

predictions = predict(trainedModel, validationData);
pc = calculatePearsonCorrelation(predictions, validationScores);
mae = calculateMeanAbsoluteError(predictions, validationScores);
mse = calculateMeanSquaredError(predictions, validationScores).

• Stop.

In this work, AlexNet was trained separately, using each of the three loss functions,
and the incorporation of the suggested ensemble loss was subsequently examined. The
alteration of the AlexNet architecture leads to a more efficient deep-learning network for
predicting facial-image attractiveness in regression tasks.

3.4.2. FBP Based on VGG16-Net

The VGG16 network [44] is structured with 3 × 3 convolution layers that extract
features, five 2 × 2 max-pooling layers, and three dense layers, as shown in Figure 3 and
Table 4. To utilize the VGG16 network in FBP, we fine-tuned it and replaced the final dense
layer comprising a large number of neurons with a single neuron to investigate the training
of the VGG16 network on each of the three loss functions individually and proposed
their combination for the FBP. By incorporating the proposed ensemble loss function into
the output layer instead of the Softmax function and freezing the initial three layers, the
accuracy and robustness of the fine-tuned model in estimating the facial attractiveness
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score were enhanced. The alteration of the VGG16 architecture to include the ensemble
loss function led to a more efficient performance in the regression task of FBP.
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Table 4. The configurations of the proposed VGG16-Net-regression-based for FBP.

Layer Name Kernels Size Stride

Input 224 × 224 × 3
Convolutional1_1 + ReLU1_2 64 3 × 3 1
Convolutional1_2 + ReLU1_2 64 3 × 3 1

Max pooling_1 2 × 2 1
Convolutional2_1 + ReLU2_1 128 3 × 3 1
Convolutional2_2 + ReLU2_2 128 3 × 3 1

Max pooling_2 2 × 2 1
Convolutional3_1 + ReLU3_1 256 3 × 3 1
Convolutional3_2 + ReLU3_2 256 3 × 3 1
Convolutional3_3 + ReLU3_3 256 3 × 3 1

Max pooling_3 2 × 2 1
Convolutional4_1 + ReLU4_1 512 3 × 3 1
Convolutional4_2 + ReLU4_2 512 3 × 3 1
Convolutional4_3 + ReLU4_3 512 3 × 3 1

Max pooling_4 2 × 2 1
Convolutional5_1 + ReLU5_1 512 3 × 3 1
Convolutional5_2 + ReLU5_2 512 3 × 3 1
Convolutional5_3 + ReLU5_3 512 3 × 3 1

Max pooling_5 2 × 2 1
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Table 4. Cont.

Layer Name Kernels Size Stride

Fully Connected fc6 + ReLU + Dropout
Fully Connected fc7 + ReLU + Dropout

Fully Connected fc8
The proposed ensemble loss with response

Regression

3.4.3. FBP Based on FIAC-Net

FIAC-Net is a lightweight CNN that we developed in [41]. It stands for Facial Image
Attractiveness Classification Network. It is constructed with six convolutional layers of
varying kernel sizes, accompanied by five layers of 2 × 2 Max pooling. An average-pooling
layer precedes the final layer, which is one fully connected layer. The ReLU activation
function is uniformly utilized across all layers, with the exception of the output layer
that employs the Softmax activation function. FIAC-Net was pretrained to classify the
attractiveness level in a facial image by utilizing different FBP benchmarks, including the
CelebA dataset. The CelebA dataset [42] contains over 200K facial images of celebrities that
represent a diverse range of facial characteristics, poses, and expressions. This variability
presents significant challenges for facial-attractiveness classification. This variability allows
the deep-learning model to learn and capture informative and robust features related
to facial attractiveness. Pretraining on the CelebA dataset can provide a rich source of
facial-image data that can aid in learning patterns of facial attractiveness. The FIAC-Net is
fine-tuned through the substitution of Softmax with the regression layer that results in the
alteration of the classification process into a regression task. Furthermore, the freezing of
the initial four convolutional layers is executed, succeeded by the calibration and tuning of
the subsequent layers to conform with the prerequisites of FBP adaptation. Figure 4 and
Table 5 illustrate the structure of the proposed FBP based on the FIAC-Net model.
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Table 5. The configurations of the proposed FIAC-Net-regression-based for FBP.

Layer Name Kernels Size Stride

Input - 128 × 128 × 3 -
Convolutional-1 (BN + ReLU) 64 11 × 11 1

Max pooling 2 × 2 2
Convolutional-2 (BN + ReLU) 64 9 × 9 1

Max pooling 2 × 2 2
Convolutional-3 (BN + ReLU) 32 7 × 7 1

Max pooling 2 × 2 2
Convolutional-4 (BN + ReLU) 16 5 × 5 1

Max pooling 2 × 2 2
Convolutional-5 (BN + ReLU) 12 3 × 3 1

Max pooling 2 × 2 2
Convolutional-6 (BN + ReLU) 8 3 × 3 1

Average pooling 2 × 2 1
Fully Connected + Dropout

The proposed ensemble loss with response
Regression

4. Experimental Results

This section begins by introducing the evaluation metrics, followed by describing the
utilized FBP datasets. Subsequently, individual fine-tuning and retraining of the employed
CNNs with different regression-loss functions (L1 loss, L2 loss, Log-cosh loss, and the
proposed ensemble loss functions) are highlighted to assess the model’s FBP performance.
Finally, a comparison is made between the proposed model’s findings and the state-of-the-
art approaches.

4.1. Metrics of Evaluation

The evaluation of FBP models is mainly based on three metrics: Pearson correlation
(PC), mean absolute error (MAE), and root-mean-square error (RMSE). PC ranges from 1 to
−1, where 1 indicates a perfect positive linear correlation, 0 denotes no correlation, and
−1 represents a perfect negative correlation. MAE and RMSE assess the model’s efficiency,
with values close to zero indicating a good performance. Given a set of n tests in samples,
we have the following:

PC =
∑n

i=1
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yi

t − y
)(

yi
p − p

)
√

∑n
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(
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)2
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)2
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where the ground-truth beauty score is represented by yi
t, and the estimated score for the Ith

image is written as yi
p. Meanwhile, y is the average of all of the beauty scores in the ground

truth, and p is the average of the scores that were predicted by the model. Additionally, a
better performance is shown by higher PC values and lower MAE and RMSE values.

4.2. Dataset

The evaluation of integrating the proposed loss into different CNN models was
conducted on three prominent FBP benchmarks, encompassing both restricted (SCUT-FBP
and SCUT-FBP5500) and unconstrained (MEBeauty) environments. More details on the
datasets and evaluation process can be found in the subsequent sections.
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4.2.1. SCUT-FBP

SCUT-FBP was created by Xie et al. [45] in 2015. It includes 500 high-quality frontal
facial images of Asian females with neutral expressions, simple backgrounds, and little
occlusion. The evaluations of attractiveness (scores), which range from 1 to 5, are the
outcome of averaging different ratings of 70 raters for each image.

4.2.2. SCUT-FBP5500

The SCUT-FBP5500 [46] dataset comprises a total of 5500 frontal facial images of males
and females from both Asian and Caucasian ethnicities, covering a wide range of ages.
Each image is assigned a beauty score within the range of 1–5, based on assessments by
60 independent raters. The dataset is evenly split between genders, with 2750 male and
2750 female images. The images were taken in a controlled environment, with uniform
lighting and neutral backgrounds, to ensure consistent and accurate capture of facial
features.

4.2.3. MEBeauty

MEBeauty is a recently produced multi-ethnic collection comprising 2550 in-the-wild
facial photos presented by Lebedeva et al. [33] in 2021. It has the facial images of 1250 men
and 1300 women, comprising six ethnic groups, namely Black, Asian, Caucasian, Hispanic,
Indian, and Middle Eastern people, with various ages, poses, backgrounds, and expressions
represented. The beauty scores within this dataset range 1–10 obtained as an average score
of 300 raters per image. Furthermore, the MEBeauty dataset is extremely diverse, with
challenging data samples, thus making the beauty quantifying process harder.

4.3. Performance Evaluation and Discussion

The investigation in this work focused on the effectiveness of individually integrating
three distinct regression-loss functions—L2, L1, and Log-cosh—along with their ensemble
average combination for predicting facial aesthetic scores. The proposed methodology’s
validation was achieved via a five-fold cross-validation, employing the SCUT-FBP, UT-
FBP5500, and MEBeauty datasets, as elaborated upon in subsequent sections.

4.3.1. Performance Evaluation on SCUT-FBP

The distribution of beauty scores in the SCUT-FBP dataset was found to be approxi-
mately Gaussian [45,47]. However, this non-perfect normal distribution of beauty scores
suggests that relying solely on the traditional L2 loss function may not be optimal in certain
scenarios. Table 6 exhibits the performance of three pretrained CNNs on the SCUT-FBP
dataset under five-fold cross-validation, using various loss functions. Based on the eval-
uation metrics, L1 loss produced slightly higher PC values and lower error rates than
L2 loss for the three investigated pretrained CNNs. Similarly, the Log-cosh loss function
outperformed both the L1 and L2 loss functions among the utilized networks because
it provides a more balanced error calculation between large and small residuals. The
proposed ensemble loss functions yielded better results for all three fine-tuned CNN mod-
els. Specifically, AlexNet achieved a PC value of 0.903758, MAE of 0.26348, and RMSE
of 0.348266. On the other hand, VGG16-Net, with more layers than AlexNet, achieved a
slightly higher PC value of 0.905851 and lower error rates of 0.222954 and 0.292028 for
MAE and RMSE, respectively.

FIAC-Net, unlike pretrained object classification models such as AlexNet and VGG1-
Net, was trained specifically for facial aesthetic classification, making it better suited to
estimating the beauty scores of faces. The proposed ensemble loss function yielded the
best performance with FIAC-Net, achieving a PC value of 0.9100582, the lowest MAE of
0.185949, and an RMSE of 0.259156. Model prediction on test data samples from SCUT-
FBP using fine-tuned FIAC-Net is demonstrated in Figure 5. In order to evaluate the
effectiveness of the proposed model, Figure 6 visualizes the predictions in a scatter plot.
It plots the predicted values on the x-axis against the ground-truth values on the y-axis
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based on the utilized loss functions, with different pretrained CNNs, namely (a) AlexNet,
(b) VGG16-Net, and (c) FIAC-Net, implemented on the SCUT-FBP dataset. The results
clearly indicate that the integration of the ensemble loss into FIAC-Net resulted in the most
effective scatter-plot representation.

Table 6. Five-fold cross-validation of FBP, assuming different loss functions, using three diverse
CNNs on SCUT-FBP.

AlexNet VGG16-Net FIAC-NET

Loss Fold # PC ↑ MAE ↓ RMSE ↓ PC ↑ MAE ↓ RMSE ↓ PC ↑ MAE ↓ RMSE ↓

L2

Fold 1 0.886792 0.309923 0.387405 0.885873 0.233409 0.288079 0.902156 0.159987 0.229707
Fold 2 0.890809 0.387383 0.461403 0.900324 0.272331 0.364368 0.894374 0.30578 0.462875
Fold 3 0.894072 0.327179 0.398048 0.896106 0.27479 0.33756 0.900172 0.158858 0.224796
Fold 4 0.88454 0.277123 0.360177 0.893316 0.286573 0.358064 0.893911 0.272233 0.359504
Fold 5 0.89616 0.237447 0.35655 0.887568 0.251615 0.349024 0.893666 0.174137 0.232828

Average 0.890475 0.325402 0.392717 0.892637 0.263744 0.339419 0.8968558 0.214199 0.301942

L1

Fold 1 0.886594 0.268403 0.344794 0.891489 0.188005 0.253954 0.913914 0.179596 0.244818
Fold 2 0.898972 0.29734 0.399723 0.909594 0.273945 0.334632 0.89788 0.285959 0.426164
Fold 3 0.897251 0.3151 0.389115 0.89499 0.206798 0.265649 0.901024 0.150231 0.221037
Fold 4 0.89355 0.291143 0.369973 0.900606 0.28731 0.361998 0.882645 0.250829 0.360831
Fold 5 0.905704 0.299369 0.398775 0.885381 0.28123 0.396568 0.890992 0.18624 0.244834

Average 0.896414 0.294271 0.380476 0.896412 0.247458 0.32256 0.897291 0.210571 0.299537

Log-
cosh

Fold 1 0.883631 0.313012 0.388109 0.904711 0.236537 0.287591 0.917584 0.168858 0.231028
Fold 2 0.908497 0.239261 0.343423 0.9077 0.282616 0.352005 0.900933 0.263164 0.345673
Fold 3 0.89916 0.294613 0.358759 0.901113 0.162906 0.221393 0.90517 0.141968 0.216695
Fold 4 0.896872 0.256079 0.339267 0.900411 0.2745 0.362309 0.896621 0.246203 0.355604
Fold 5 0.89441 0.254158 0.369783 0.904146 0.226115 0.303307 0.893336 0.160434 0.236355

Average 0.896514 0.271425 0.359868 0.903616 0.236535 0.305321 0.902729 0.196125 0.277071

Proposed
loss

Fold 1 0.91087 0.277514 0.349938 0.906243 0.177149 0.242459 0.910428 0.16176 0.221287
Fold 2 0.909427 0.236772 0.339803 0.911665 0.269073 0.344907 0.918538 0.230674 0.315015
Fold 3 0.899448 0.293994 0.344505 0.903421 0.173957 0.226531 0.913071 0.126127 0.199258
Fold 4 0.897148 0.297535 0.390668 0.902068 0.258518 0.334192 0.900512 0.259396 0.345144
Fold 5 0.901899 0.211583 0.316417 0.905859 0.236074 0.312052 0.907742 0.15179 0.215078

Average 0.903758 0.26348 0.348266 0.905851 0.222954 0.292028 0.9100582 0.185949 0.259156
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4.3.2. Performance Evaluation on SCUT-FBP5500

Table 7 presents the performance evaluation of three CNNs on the SCUT-FBP5500
dataset. The evaluation was conducted using five-fold cross-validation, and the models
were trained with different regression-loss functions. The results indicate that the L2 loss
function outperforms the L1 loss, and both L2 loss and Log-cosh loss yield comparable
results. This can be attributed to the fact that the data distribution in the SCUT-FBP5500
dataset aligns closely with normal distributions.

When using the L2 loss function, the average performance of AlexNet was a PC of
0.9127168, an MAE of 0.2555128, and an RMSE of 0.3195926. VGG16-Net achieved an
average PC of 0.9275814, an MAE of 0.2269836, and an RMSE of 0.2855518. FIAC-Net
obtained an average PC of 0.9251664, an MAE of 0.2080304, and an RMSE of 0.2668852.

Meanwhile, the average results for the L1 loss function showed that AlexNet achieved
a PC of 0.8944518, an MAE of 0.2473232, and an RMSE of 0.321819. VGG16-Net obtained
an average PC of 0.9106684, an MAE of 0.2479496, and an RMSE of 0.3149184. FIAC-Net
achieved an average PC of 0.9123388, an MAE of 0.215242, and an RMSE of 0.284987.

When using the Log-cosh loss function, the average performance of AlexNet was a
PC of 0.9118102, an MAE of 0.2467066, and an RMSE of 0.3108374. VGG16-Net achieved
an average PC of 0.9218162, an MAE of 0.2252112, and an RMSE of 0.2884092. FIAC-Net
obtained an average PC of 0.9239984, an MAE of 0.2113572, and an RMSE of 0.2707102.

Furthermore, the proposed ensemble average model, which combined the different
loss functions, achieved an average PC of 0.9305098, an MAE of 0.2028174, and an RMSE
of 0.2614154. These results indicate that the ensemble model slightly outperformed the
L2 loss function in terms of PC, MAE, and RMSE. Consequently, this suggests that the
proposed approach can potentially enhance the performance of FBP. Figure 7 illustrates the
model predictions obtained by applying the fine-tuned FIAC-Net with the validation fold
on the SCUT-FBP5500 dataset. Meanwhile, Figure 8 displays a visual representation of the
utilized loss functions incorporated with the fine-tuned CNNs. The results indicate that
the proposed ensemble loss function with the fine-tuned FIAC-Net achieves a competitive
performance in predicting beauty scores, thus highlighting its efficiency.
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Table 7. Five-fold cross-validation of FBP, assuming different loss functions, utilizing three diverse
CNNs on SCUT-FBP5500.

AlexNet VGG16-Net FIAC-NET

Loss Fold # PC ↑ MAE ↓ RMSE ↓ PC ↑ MAE ↓ RMSE ↓ PC ↑ MAE ↓ RMSE ↓

L2

Fold1 0.907345 0.240533 0.307498 0.923767 0.213235 0.272778 0.921218 0.208841 0.267048
Fold2 0.907436 0.284240 0.353902 0.918951 0.240099 0.303619 0.923606 0.203690 0.263316
Fold3 0.914046 0.292779 0.359794 0.929376 0.243384 0.300318 0.922841 0.215686 0.274935
Fold4 0.910866 0.253034 0.313157 0.933455 0.234888 0.290986 0.930924 0.200899 0.258841
Fold5 0.923891 0.206978 0.263612 0.932358 0.203312 0.260058 0.927243 0.211036 0.270286

Average 0.9127168 0.2555128 0.3195926 0.9275814 0.2269836 0.2855518 0.9251664 0.2080304 0.2668852

L1

Fold1 0.897638 0.279448 0.351358 0.897066 0.248373 0.315218 0.907323 0.224207 0.295496
Fold2 0.897693 0.233345 0.308535 0.903645 0.227187 0.304121 0.913023 0.207325 0.27959
Fold3 0.898183 0.239692 0.313157 0.923759 0.223212 0.283766 0.901157 0.229243 0.301759
Fold4 0.890245 0.243618 0.320583 0.899807 0.293189 0.368715 0.918057 0.212381 0.280385
Fold5 0.888500 0.240513 0.315462 0.929065 0.247787 0.302772 0.922134 0.203054 0.267709

Average 0.8944518 0.2473232 0.321819 0.9106684 0.2479496 0.3149184 0.9123388 0.215242 0.284987

Log-cosh

Fold1 0.906932 0.231047 0.296844 0.916811 0.221005 0.282706 0.916166 0.215914 0.279431
Fold2 0.909971 0.258805 0.324433 0.912169 0.220701 0.283236 0.922908 0.207376 0.265653
Fold3 0.908483 0.242075 0.305146 0.932647 0.225791 0.282773 0.928752 0.208598 0.266964
Fold4 0.912021 0.291740 0.359610 0.916201 0.229308 0.297403 0.922272 0.208786 0.272133
Fold5 0.921644 0.209866 0.268154 0.931253 0.229251 0.295928 0.929894 0.216112 0.269370

Average 0.9118102 0.2467066 0.3108374 0.9218162 0.2252112 0.2884092 0.9239984 0.2113572 0.2707102

Proposed
loss

Fold1 0.909468 0.234892 0.295199 0.931563 0.206476 0.272374 0.932550 0.195362 0.248635
Fold2 0.910616 0.227180 0.297651 0.928253 0.239862 0.307400 0.922096 0.204956 0.272749
Fold3 0.910364 0.227177 0.292339 0.931084 0.220507 0.279881 0.935712 0.199025 0.255806
Fold4 0.912465 0.243282 0.312587 0.925647 0.225874 0.284645 0.925991 0.227766 0.287912
Fold5 0.927530 0.291501 0.350512 0.938053 0.198880 0.251496 0.936200 0.186978 0.241975

Average 0.9140886 0.2448064 0.3096576 0.93092 0.2183198 0.2791592 0.9305098 0.2028174 0.2614154

4.3.3. Performance Evaluation on MEBeauty

The anticipated presence of a substantial number of outliers in the MEBeauty dataset
is attributed to the non-normal distribution of its data. Therefore, adopting CNNs with
loss ensembles is necessary to obtain superior results over conventional regression-loss
methods. Table 8 displays the results of five-fold cross-validation conducted on three
pretrained CNNs, utilizing various loss functions for the MEBeauty dataset. It was revealed
that L1 and L2 loss functions exhibit competitive results within AlexNet. However, for both
VGG16 and FIAC-Net, L1 loss produces slightly lower PC values and higher error rates
compared to L2 loss. In contrast, the Log-cosh loss function consistently yields improved
results compared to both L1 and L2 loss functions.

Upon integration of the proposed ensemble loss function with AlexNet, the outcome
consisted of a PC value of 0.8976712, MAE of 0.476394, and RMSE of 0.6097078. In contrast,
VGG16-Net exhibited a slightly improved PC value of 0.907883. However, it also exhibited
a slightly higher error rate, recording values of 0.512113 and 0.636318 in terms of MAE and
RMSE, respectively, when compared to AlexNet.

Regarding FIAC-Net performance, it works well with a PC value of 0.925977, MAE
of 0.426317, and RMSE of 0.536646. The reason behind the superiority of the fine-tuned
FIAC-Net is that it was previously well-trained in [41] on more than 200,000 challenging
facial images to efficiently classify the attractiveness of facial images. Meanwhile, AlexNet
and VGG16-Net were pretrained on the vast ImageNet dataset for an object-classification
task. Figure 9 illustrates the effectiveness of the proposed fine-tuned FIAC-Net with en-
semble loss functions in predicting the beauty scores of MEBeauty-tested data. Meanwhile,
Figure 10 presents a visual representation that facilitates a direct comparison between
the estimated values and the true values of utilized CNNs that were implemented on the
MEBeauty dataset.

The MEBeauty dataset presents a challenging and diverse collection of facial images
captured under unconstrained conditions. It distinguishes itself through its larger scale in
comparison to the SCUT-FBP dataset, which focuses exclusively on frontal images of Asian
females, while remaining smaller than the SCUT-FBP5500 dataset, which encompasses
frontal images of both Asian and Caucasian individuals. It is crucial to acknowledge that the
size of a dataset alone does not guarantee improved model performance. Additional factors,
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such as gender, facial expressions, and poses of the subjects, significantly influence the
model’s efficacy. By accounting for these factors, researchers can obtain valuable insights
into the intricate trade-off between image quality, dataset size, and their profound impact
on the model’s findings and outcomes. In this study, the proposed model demonstrated its
effectiveness through efficient pretraining on the CelebA dataset for facial-attractiveness
classification.

Table 8. Five-fold cross-validation of FBP, assuming different loss functions, using three diverse
CNNs on MEBeauty.

AlexNet VGG16-Net FIAC-NET

Loss Fold # PC ↑ MAE ↓ RMSE ↓ PC ↑ MAE ↓ RMSE ↓ PC ↑ MAE ↓ RMSE ↓

L2

Fold1 0.874151 0.539646 0.679715 0.9149 0.657429 0.788001 0.908299 0.446347 0.569966
Fold2 0.890606 0.483732 0.617635 0.89946 0.53349 0.671474 0.913656 0.440536 0.567868
Fold3 0.885824 0.543017 0.688969 0.903028 0.494082 0.619434 0.919398 0.429767 0.5439
Fold4 0.878471 0.50383 0.640299 0.901086 0.525557 0.658758 0.909376 0.469771 0.590058
Fold5 0.878958 0.528132 0.687316 0.889669 0.477722 0.613175 0.907632 0.487113 0.614645

Average 0.881602 0.519671 0.662787 0.901629 0.537656 0.670168 0.911672 0.454707 0.577287

L1

Fold1 0.876628 0.484963 0.651704 0.893344 0.588461 0.735082 0.898483 0.507801 0.640425
Fold2 0.880223 0.499715 0.639342 0.908924 0.500534 0.714772 0.907686 0.505487 0.638085
Fold3 0.888857 0.471078 0.619127 0.881992 0.555658 0.689619 0.899946 0.410486 0.549805
Fold4 0.881179 0.578539 0.744373 0.884385 0.49881 0.634568 0.915355 0.458133 0.589622
Fold5 0.87822 0.471296 0.649191 0.877244 0.514752 0.662075 0.908439 0.480193 0.612392

Average 0.881021 0.501118 0.660747 0.889178 0.531643 0.687223 0.905982 0.47242 0.606066

Log-
cosh

Fold1 0.888677 0.483999 0.620113 0.904497 0.593918 0.72576 0.916462 0.425651 0.535359
Fold2 0.897537 0.469122 0.600731 0.907009 0.483545 0.606491 0.918844 0.454527 0.576362
Fold3 0.885437 0.456751 0.580649 0.887036 0.466082 0.605073 0.915077 0.41715 0.525493
Fold4 0.871824 0.514141 0.669348 0.920185 0.532153 0.662263 0.916048 0.438528 0.547494
Fold5 0.880027 0.573935 0.740608 0.893962 0.502262 0.630416 0.920189 0.443971 0.570682

Average 0.8847 0.49959 0.64229 0.9025378 0.515592 0.6460006 0.917324 0.435965 0.551078

Proposed
loss

Fold1 0.898394 0.462036 0.606094 0.910804 0.486603 0.602119 0.92504 0.422594 0.5347
Fold2 0.908921 0.451912 0.573237 0.919966 0.44634 0.560829 0.925186 0.422061 0.532776
Fold3 0.906027 0.466733 0.58976 0.900498 0.542547 0.673791 0.927617 0.428647 0.533562
Fold4 0.887227 0.504793 0.636339 0.910808 0.616375 0.74905 0.9295 0.413832 0.515335
Fold5 0.887787 0.496496 0.643109 0.897337 0.468702 0.595801 0.922544 0.444453 0.566857

Average 0.8976712 0.476394 0.6097078 0.907883 0.512113 0.636318 0.925977 0.426317 0.536646
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4.4. A Comparison to Other FBP-Related Work

We compared different FBP models based on three distinct datasets, namely the SCUT-
FBP, SCUT-FBP5500, and MEBeauty datasets. The proposed method was compared with
existing studies on these datasets, and the results are presented in Table 9. Our proposed
FBP methodology outperformed the state-of-the-art techniques, as evidenced by the PC,
RMSE, and MAE values. “N/A” is used to indicate that these studies do not provide the
values of MAE and RMSE. While values in bold signify superior performance.

Table 9. Performance comparison with FBP state-of-the-arts.

Method SCUT-FBP SCUT-FBP 5500 ME Beauty

↑ PC ↓MAE ↓ RMSE ↑ PC ↓MAE ↓ RMSE ↑ PC ↓MAE ↓ RMSE

VGG16 + Bayesian Ridge
Regression [29] 0.857 0.2595 0.3397 N/A N/A N/A N/A N/A N/A

ResNeXt-50-based R3CNN [22] 0.95 0.2314 0.2885 0.9055 0.2236 0.2954 N/A N/A N/A
HMTNet [32] 0.8977 N/A N/A 0.8783 0.2501 0.3263 N/A N/A N/A
ResNet-18 based P-AaNet [48] 0.9103 0.2224 0.2816 0.9055 0.2236 0.2954 N/A N/A N/A
Cascade fine-tuned CNN [24] 0.88 N/A N/A N/A N/A N/A N/A N/A N/A
REX-INCEP [35] N/A N/A N/A 92.18 0.2052 0.2698 N/A N/A N/A
CNN-ER [49] N/A N/A N/A 0.9250 0.2009 0.2650 N/A N/A N/A
VGGFace2+ Ensemble Stack [50] 0.8898 0.2409 0.3105 0.9112 0.2304 0.2951 N/A N/A N/A
Ensemble CNN [28] 0.8795 0.226 0.330 0.886 0.242 0.320 0.888 0.365 0.600
AlexNet + proposed
ensemble loss 0.9038 0.2635 0.3482 0.9141 0.2449 0.3097 0.8977 0.4764 0.6097

VGG16-Net + proposed
ensemble loss 0.9059 0.2229 0.2920 0.9309 0.2183 0.2792 0.9079 0.5121 0.6363

FIAC-Net + proposed
ensemble loss 0.9101 0.1859 0.2591 0.9305 0.2028 0.2614 0.9260 0.4263 0.5366

In evaluating the SCUT-FBP dataset, the proposed fine-tuned FIAC-Net integrated
with the proposed ensemble average lossl stands out as a top performer. It achieved a
slightly higher PC of 0.9101, lower MAE of 0.1859, and lower RMSE of 0.2591 compared
to most of the other investigated methods. Notably, the authors in [22] guided the re-
gression task via pairwise ranking, which works well for small data, and it achieved a
higher PC of 0.95, MAE of 0.2885, and RMSE of 0.2314, but our proposed model surpasses
it in terms of lower error rates. Similarly, the proposed model exhibited an exceptional
performance compared to other methods on the SCUT-FBP 5500 and MEBeaty datasets. It
outperformed other compared approaches, showcasing superior performance in predicting
facial-beauty scores. Our approach demonstrated competitive results on the SCUT-FBP5500
and MEBeauty datasets, achieving an MAE of 0.2028 and 0.4263, respectively. This per-
formance is competitive to the FBP models presented in [28,49], which achieved MAEs of
0.2009 and 0.365, respectively. These results highlight the effectiveness of our approach in
this particular context.

5. Conclusions

CNNs are a powerful method for making predictions, not only for classification
problems but also for regression concerns. In regression, the focus is on understanding
the relationship between continuous-number scores and data. The prediction network
seeks to bring the estimated output closer to the actual scores by minimizing the average
value of the loss function over the data related to the network weights. However, A
CNN-regression-based model developed for FBP may face challenges if it relies solely
on traditional loss functions. These challenges stem from biases naturally embedded in
facial-beauty data, leading to an uneven distribution of data. For instance, preferences
toward certain beauty scores, ethnicities, or age groups can introduce biases that impede
the model’s ability to generalize effectively across various situations. Accordingly, a new
ensemble average loss function composed of three distinct regression-loss functions (L2 loss,
L1 loss, and Log-cosh) was introduced by this work. and then integrated within various
pretrained CNN architectures, namely AlexNet, VGG16-Net, and FIAC-Net. Its efficacy in
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predicting facial-image beauty scores was evaluated across three FBP benchmarks: SCUT-
FBP, SCUT-FBP5500, and MEBeauty. It demonstrated its superiority when compared to the
state-of-the-art. Additionally, our approach can potentially improve model performance by
providing a significant correlation between machine- and human-predicted beauty scores
and a low error rate. These findings highlight the effectiveness of the proposed ensemble
cost function for regression tasks and suggest its potential use in improving CNN models.
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