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Abstract: The high-speed motorized spindle has been wildly used in the field of aerospace processing,
due to its advantages such as high speed, high precision, and high efficiency. CNC machine tools
used for processing aerospace products require high machining accuracy, and once the spindle fails,
it will seriously affect the quality of product processing. Thus, it is important to study the faults of
the spindle, especially the faults caused by subtle errors. In this work, a dynamic model of a spindle
with unbalanced mass fault and spindle inclination fault is established, and the natural frequencies
and mode shapes of the motorized spindle are calculated by using the whole transfer matrix method
(WTMM). The deflections of the spindle initial end in the different situations are discussed when the
two faults happen independently. The results show that the spindle end deflection of the same fault
has different sensitivity at different speeds. At the third order of natural frequencies, the deflection of
a motorized spindle is greatest regardless of the fault that occurs. Although the motorized spindle
rotates at the same speed, different faults could cause different mode shapes. At the lower speed,
when the unbalanced mass fault happens, the mode shape is in an arched shape, and while the
spindle inclination fault happens, the mode shape is in a concave shape.

Keywords: motorized spindle; whole transfer matrix method; unbalanced mass; spindle inclination;
dynamic modeling

1. Introduction

Aerospace products are mostly thin-walled parts with complex shapes, needed to suit
the specific working environment and performance demands, and are typically processed
using high-speed milling. In the field of aerospace processing, there are strict requirements
for the precision of machine tool processing, in which the precision of the motorized
spindle plays a vital role in the whole processing. The common faults of motorized spindles
include spindle fault [1–3], bearing fault [4,5], lubrication system fault [6], stator and rotor
fault [7,8], spindle housing fault [9], and cooling system fault [10]; the bearing fault is
the most common and analyzed fault. However, compared with other faults, the spindle
fault is more difficult to find and more likely to affect the progress of this machining. For
aerospace equipment, a small error may lead to the failure of the whole mechanism, so the
faults of motorized spindles cannot be ignored in the processing of aerospace equipment.

In recent years, the fault dynamics of motorized spindles have become an important
issue. Wang et al. (2018) [11] established a dynamic model of a dual-rotor system to solve
its unbalanced misalignment coupling faults. Xu et al. (2016) [12] obtained the unbalanced
magnetic pull by numerical method and discussed the effects of initial static eccentricity on
displacement spectra. Liu et al. (2019) [13] established a dynamic model of the permanent
magnet synchronous motors’ rotor-bearing system which considers unbalanced magnetic
pull and the nonlinear restoring force. They concluded that unbalanced magnetic pull
causes a negative stiffness effect on the natural frequencies. Werner (2017) [14] established
an analytical rotor dynamic model which considers mass eccentricity, bent rotor deflection,
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and magnetic eccentricity. Zuo et al. (2018) [15] analyzed and modeled the longitudi-
nal dynamics of the motorized spindle under the excitation of torque ripple. Based on
the Jeffcott rotor model, Xiang et al. (2016) [16] analyzed the stiffness characteristics of
the rotor system of the permanent magnet synchronous motors. Kumar (2017) [17] gave
the reason of unbalanced magnetic pull. Based on the law of energy conservation, Boss-
manns and Tu (2001) [18] presented a power flow model of high-speed motorized spindles.
Li et al. (2004) [19,20] established a comprehensive integrated thermo-dynamic model for
high-speed spindles. Xu et al. (2017) [21] built the dynamic model of the motorized spindle
system. They used this dynamic model to show that the vibrations are proportional to the
mass of the unbalance. Liu et al. (2016) [22] presented an improved dynamic model for
unbalanced high-speed motorized spindles, and obtained the sensitivities of the motorized
spindles.

Although a huge number of scholars have contributed to this research, the fault
dynamics of motorized spindles still have some unsolved problems, such as the vibration
of motorized spindles caused by the unbalanced mass and inclined axis. In practical
engineering, the two kinds of faults will occur due to the uneven distribution of rotor
material density during the manufacturing process or errors caused by the installation
of a motorized spindle. Although the faults in these two cases can be quickly solved
after discovery, they will still affect the normal operation of the motorized spindle before
discovery. Moreover, it is also very important to judge whether these two faults occur. If
they are found as early as possible, their influence on the normal operation of the whole
machinery can be avoided. Therefore, it is necessary to analyze the influence of these two
kinds of faults on the vibration of the spindle, so as to help the operator find out whether
the faults happen as soon as possible.

In this work, a model of motorized spindles based on the whole transfer matrix method
(WTMM) is established and a model of a spindle with fault caused by unbalanced mass
or spindle inclination is given in Section 2. Then, a case study we conducted on a certain
type of high-speed motorized spindle is described by using these models in Section 3. The
deflection of the spindle end in different conditions is discussed and the mode shapes of
the motorized spindle are presented considering the unbalanced mass fault and the spindle
inclination fault, respectively. The research in this paper provides theoretical guidance
for the design, operation, and maintenance of motorized spindles, which can effectively
improve the accuracy and production efficiency of high-speed machining, and promote the
development of a series of related technologies such as high-speed feed, high-performance
tools, detection, and control.

2. Dynamic Modeling

The structure diagram of a high-speed motorized spindle is shown in Figure 1. Its
main parts include a rotor spindle, shell, stator, and bearings. Figure 1b shows the structure
diagram of a motorized spindle-bearing system.

Compared with other methods, the whole transfer matrix method (WTMM) has more
efficient computing power and more extensive application capabilities [23,24]. So, in this
paper, it is used to analyze the unbalanced mass fault and spindle inclination fault of a
motorized spindle.

According to the WTMM, a motorized spindle is divided into subsegments. By lumped
mass and lumped moment of inertia method, as shown in Figure 1c, every subsegment is
simplified into two rigid discs which are connected by massless elastic shaft. The unit is
formed by a disc and a shaft, and two units are connected by the node. Each node has four
effective parameters: section deflection (radial displacement) y, section rotation angle θ,
section bending moment M, and section shear force Q. The vector composed of these four
effective parameters is the cross-sectional state vector, which is recorded as

Z =
[
y θ M Q

]T (1)
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Figure 1. Schematic diagram of high-speed motorized spindle: (a) description of what is contained 
in the first panel; (b) structure of motorized spindle; (c) lumped mass model of high-speed motor-
ized spindle. 
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Figure 1. Schematic diagram of high-speed motorized spindle: (a) description of what is contained in
the first panel; (b) structure of motorized spindle; (c) lumped mass model of high-speed motorized
spindle.

2.1. Dynamic Modeling of Motorized Spindle without Fault

As shown in Figure 2a, the forces of the left and right sections of the rigid thin disc
have a bending moment of ML and MR and a shear force of QR and QL.

The equations of inertia force and moment of inertia are as follows [25]:

F = mω2y (2)

M =

(
Jd − Jp

Ω
ω

)
ω2θ (3)

where y is the deflection of the disc, θ is the rotation angle of the disc, Ω is the rotation
angular velocity of the rotor, and ω is the whirling angular velocity, Jd and Jp are the polar
and equatorial moment of inertia, respectively. When the node is unsupported, the inertia
force is zero. The D’Alembert equation can be established as follows:

yR = yL

θR = θL

MR = ML −
(

Jd − Jp
Ω
ω

)
ω2θ + kθθ

QR = mω2y + QL − kry

(4)

where kr is the radial stiffness of the bearing and kθ is the angular stiffness of the bearing.
Equation (4) is expressed in the form of a matrix to obtain

y
θ
M
Q


R

i

=


1 0 0 0
0 1 0 0
0 kθ −

(
Jd − Jp

Ω
ω

)
ω2 1 0

mω2 − kr 0 0 1


i


y
θ
M
Q


L

i

(5)

where y, θ, M, and Q are the deflection, rotation angle, bending moment, and shear force
of the disc, respectively. The superscript R or L indicates the right side or left side of the
disc. The subscript i indicates the disc of the ith unit. Therefore, when the disc left side
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cross-sectional state of the ith unit is known, Equation (5) can be used to solve its right side
cross-sectional state.

Similarly, as shown in Figure 2b, the left end of the elastic shaft connects the disc’s
right side of the same unit, and the right end of the shaft connects the left side of the disc
which belongs to the next disc –shaft unit. Therefore, the shear force and bending moment
at the left end of the shaft are superscripted as R and subscripted as i. The shear force and
bending moment at the right end are superscripted as L and subscripted as i + 1.
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Figure 2. Stress diagram of unit: (a) stress diagram of unit; (b) stress diagram of massless elastic
shaft.

It is also known from the bending deformation conditions of shafts in the mechanics
of materials that 

yi+1 = yi + θili +
ML

i+1l2
i

2Ei Ii
−QL

i+1

(
l3
i

3Ei Ii
+ ks li

Gi Ai

)
θi+1 = θi +

ML
i+1li

Ei Ii
−QL

i+1
l2
i

2Ei Ii
ML

i+1 = MR
i + QR

i li
QL

i+1 = QR
i

(6)

where ks is the shape factor of the section, for the round solid shaft ks = 10/9. Gi is the
shear modulus of the ith subsegment unit, Ai is the sectional area of the ith subsegment
unit, Ei is the modulus of elongation of the subsegment, and Ii is the inertia moment of the
ith subsegment.

Similarly, by changing the above equation into matrix form, the following formula can
be obtained: 

y
θ
M
Q


L

i+1

=


1 l l2

2EI
l3

6EI (1− v)
0 1 l

EI
l2

2EI
0 0 1 l
0 0 0 1


i


y
θ
M
Q


R

i

(7)

where v = ks(6Ei Ii)/
(
Gi Ail2

i
)

is called the shear effect coefficient. The vector on the left
side of the equation is the cross-sectional state vector at the right end of the massless elastic
shaft in the ith unit, that is, the cross-sectional state vector at the left side of the disc in the
(i + 1)th unit.
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The transfer matrix of the whole unit can be obtained by combining the two equations
of the same unit.

y
θ
M
Q


L

i+1

=


1 l l2

2EI
l3

6EI (1− v)
0 1 l

EI
l2

2EI
0 0 1 l
0 0 0 1


i

×


1 0 0 0
0 1 0 0
0 kθ −

(
Jd − Jp

Ω
ω

)
ω2 1 0

mω2 − kr 0 0 1


i


y
θ
M
Q


L

i

(8)


y
θ
M
Q


L

i+1

=

1

1 + l3
6EI (1− v)

(
mω2 − kr

)
l + l2

2EI

(
kθ − (Jd − Jp

Ω
ω )ω2

)
l2

2EI
l3

6EI (1− v)
l2

2EI
(
mω2 − kr

)
1 + l

EI

(
kθ − (Jd − Jp

Ω
ω )ω2

)
l

EI
l2

2EI

l
(
mω2 − kr

)
kθ − (Jd − Jp

Ω
ω )ω2 1 l

mω2 − kr 0 0 1


i


y
θ
M
Q


L

i

(9)

Equation (9) indicates that the cross-sectional state vector at the left end of the ith
unit is transferred to the right end of the unit, that is, the left end of the next unit. For
convenience of description, Equation (9), can be written as ZL

i+1 = TiZL
i , where Ti is the

transfer matrix between units.

2.2. Dynamic Modeling of Motorized Spindle with Unbalanced Mass Fault

Unbalanced mass fault is the simplest and most common fault form of the motorized
spindle. When an unbalanced mass fault occurs, the center line of the mass and the center
line of the rotation are in the same plane, and the distance between them is r, which is
called eccentricity. Therefore, the unbalanced force will be generated at this time:

F = Uω2 (10)

where U = mr, m is the unbalanced mass.
Under the influence of the unbalanced force, the force state of the disc will change as

shown in Figure 3. The D’Alembert equation is then re-established:{
MR = ML −

(
Jd − Jp

Ω
ω

)
ω2θ + kθθ + Uω2

QR = mω2y + QL − kry
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It is expressed in the form of a matrix to obtain


y
θ
M
Q


L

i+1

=


1 l l2

2EI
l3

6EI (1− v)
0 1 l

EI
l2

2EI
0 0 1 l
0 0 0 1


i

×


1 0 0 0
0 1 0 0
0 kθ − (Jd − Jp

Ω
ω )ω2 1 0

mω2 − kr 0 0 1


i


y
θ
M
Q


L

i

+


0
0
0

Ui


i

ω2 (12)


y
θ
M
Q


L

i+1

=

1

1 + l3

6EI (1− v)
(
mω2 − kr

)
l + l2

2EI

(
kθ − (Jd − Jp

Ω
ω )ω2

)
l2

2EI
l3

6EI (1− v)
l2

2EI
(
mω2 − kr

)
1 + l

EI

(
kθ − (Jd − Jp

Ω
ω )ω2

)
l

EI
l2

2EI

l
(
mω2 − kr

)
kθ − (Jd − Jp

Ω
ω )ω2 1 l

mω2 − kr 0 0 1


i


y
θ
M
Q


L

i

+


αl
α
0
0


i

(13)

As the motorized spindle without fault, for convenience of description, Equation (13)
can be written as ZL

i+1 = TiZL
i + Hi, where Ti is the transfer matrix between units and the

Hi is unbalance vector.

2.3. Dynamic Modeling of Motorized Spindle with Spindle Inclination Fault

As the inclination angle is relatively small in practical work, once it is ignored, it may
lead to further serious failure problems such as the spindle hitting the film or misalignment.
Therefore, it is necessary to study the influence of the inclination angle on the dynamic
characteristics of a motorized spindle.

As shown in Figure 4, when the motorized spindle inclines, an inclination angle of
magnitude is generated between the axis and the horizontal line. Because it is small,{

sin α = α
cos α = 1

(14)
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where α is the small angle at which the axis of the motorized spindle is inclined. The equa-
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Therefore, the transfer matrix of the whole unit is 
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Due to the existence of the inclination angle, the actual value of the rotation angle
at the right end of the spindle is the calculated rotation angle plus the inclination angle
caused by the inclination, and the deflection will also be increased in the same way. The
bending deformation analysis of the elastic shaft shows that
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where α is the small angle at which the axis of the motorized spindle is inclined. The
equation can be obtained by changing the above formula into matrix form:

y
θ
M
Q


L

i+1

=


1 l l2

2EI
l3

6EI (1− v)
0 1 l

EI
l2

2EI
0 0 1 l
0 0 0 1


i


y
θ
M
Q


R

i

+


αl
α
0
0


i

(16)

Therefore, the transfer matrix of the whole unit is
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As with other conditions, Equation (17) is written as ZL
i+1 = TiZL

i + Bi, where Ti is the
transfer matrix between units and Bi is the unbalance vector.

3. Results and Discussion

The parameters of a certain high-speed motorized spindle used in a practical machin-
ing machine tool for aviation components are shown in Table 1.

Table 1. Parameters of high-speed motorized spindle.

Parameter Value

Spindle length/mm 290
Mass/kg 9.87

Current/A 10
Inner diameter of motor rotor/mm 42

Outer diameter of rotating spindle/mm 40
Outer diameter of motor rotor/mm 100

Type of bearing 71,908 CE/HCP4A
Maximum speed/rpm 58,000

3.1. Dynamic Characteristics of Motorized Spindle without Fault

From Section 2.1, the general equation from the first node to the last node can be
written as

Zn+1 = TnZn = TnTn−1Zn−1 = · · · = TnTn−1 · · ·T1Z1 = TallZ1 (18)

where Zn+1 is the last subsegment state vector of the motorized spindle, Z1 is the initial
subsegment state vector of the motorized spindle, and Tall is the total transfer matrix
obtained by sequentially multiplying the transfer matrices of all units from the first to
the last. Because both ends of the motorized spindle are free ends, we know that some
parameters of the end, that is, the bending moment and shear force of these two sections,
are zero. Therefore,

∆ω =

∣∣∣∣a31 a32
a41 a42

∣∣∣∣ = (mω2 − kr

)(
kθ −

(
Jd − Jp

Ω
ω

)
ω2
)
= 0 (19)

where the critical angular velocity can be obtained by Ref. [26], a31, a32, a41, and a42 are the
elements in the first or second columns of the third row and the first or second columns
of the fourth row of the total transfer matrix, respectively, which contain the parameter
angular velocity of ω.
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Figure 5 shows the curve of angular velocity with change and the iterative method is
used to solve the problem in a small range of approximately 0. When ∆ω = 0, the value
corresponding to the horizontal coordinate is the critical rotational speed. Within the
specified operating speed range of the motorized spindle, there are four points satisfied as
∆ω ≈ 0. This means that the system has four critical speeds, which are 16,255.16, 24,526.62,
36,430.34, and 53,907.12 rpm.
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After the critical rotational speed is obtained, the relationship between the deflection
of the initial end y1 and the rotation angle of the initial end θ1 can be obtained by bringing
the corresponding value of ω into Equation (18). For convenience of calculation, a dimen-
sionless calculation is usually carried out, and the deflection of the initial end y1 is set to 1.
The angle θ1 can be obtained as follows:(

y
θ

)L

=

(
a31 a32
a41 a42

)(
y
θ

)R

⇒ θL = a41yR + a42θR = 0⇒ θR = − a41
a42

yR = αyR

θ1 = − a41
a42

y1 = αy1

(20)

From this, the normalized state vector of the initial end at a certain critical speed can
be obtained as follows:

Z1 =
[
1 α 0 0

]T (21)

Equation (21) is multiplied by the element transfer matrix of each element in turn to
obtain the cross-sectional section state vector of the corresponding node. At the different
critical speeds, the deflection of each node can be calculated, and the mode shapes are
shown in Figure 6.
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From (a–d) in Figure 6, it can be seen that under different critical speeds, the radial
displacement of the spindle changes with the axial direction of the motorized spindle, and
the vibration of the motorized spindle is different at different critical speeds.

3.2. Dynamic Characteristics of Motorized Spindle with Unbalanced Mass Fault

From Section 2.2, when the unbalanced mass fault happens, the general equation from
the first node to the last node can be written as

Zn+1 = TnZn + Hn = Tn(Tn−1Zn−1 + Hn−1) + Hn = · · · = TallZ1 +
n

∑
k=1

(
n

∏
j=k+1

TjHk) =TallZ1 + Hall (22)

where Hall is the sum of the unbalanced vector of all units from left to right. It is the same
as the condition of the motorized spindle without fault; both ends of the spindle are free
ends. The equation of angular velocity can be obtained:[

y
θ

]
1
= −

[
a31 a32
a41 a42

]−1[h3
h4

]
(23)

where a31, a32, a41 and a42 are the elements in the first or second columns of the third row
and the first or second columns of the fourth row of the total transfer matrix, respectively.
h3 and h4 are the third and fourth elements of hall . All of them contain the parameter
angular velocity of ω. y and θ indicate the section deflection and rotation angle of the initial
end of the spindle, respectively.

Assuming that the amount of unbalance is 1–5 g·mm, the section deflection and
rotation angle of different initial ends can be obtained under different angular velocities.
Within the whole specified rotating speed, when the whole spindle is unbalanced, the
deflection of the spindle initial end is shown in Figure 7a. Around the second-order
critical rotating speed, the schematic diagram of the unbalanced mass fault influence on
the deflection of the spindle intimal end when the amount of unbalance exists in different
units is shown in Figure 7b.

As can be seen from Figure 7a, the deflection of the spindle initial end increases
gradually at first when the unbalanced mass fault occurs, and reaches a local maximum
when it reaches the first-order critical speed. At this time, the deflection direction of the
shaft end suddenly changes. With the further increase in rotational speed, the deflection
of the spindle initial end continues to increase along this direction and the direction
suddenly changes again when the second-order critical rotational speed is reached. The
same characteristics are shown at the third-order and fourth-order critical speeds. Moreover,
the maximum value is reached at the third-order critical speed.
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It can be seen from Figure 7b that the direction and magnitude of the spindle initial
end deflection are different in different units when the unbalanced mass faults occur. The
spindle initial end deflection is upward when a fault occurs in the 6th, 9th, 12th, or 15th unit.
When the speed reaches the second-order critical speed, the direction suddenly changes,
and the deflection value of the 12th unit is the largest, which may be more sensitive to the
unbalanced fault. On the other hand, the spindle initial end deflection of the 18th, 21st,
and 24th units are downward, and the direction suddenly changes when it reaches the
second-order critical speed too.
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Figure 7. Deflection of the spindle initial end in the case of unbalanced mass fault: (a) deflection of
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The vibration mode of the whole motorized spindle can be further solved when the
unbalanced mass fault occurs, as shown in Figure 8a. Around the first-order critical speed,
the influence of the unbalanced mass fault on the middle part of the spindle is slightly
greater than that on the spindle ends. While with the increase in speed, the influence of the
unbalanced mass fault on the spindle ends begins to be greater than that on the middle
part of the spindle around the second-order and third-order critical speeds. Around the
third-order critical speed, the influence on the spindle end reaches the maximum value.
After the rotating speed continues to increase, the degree of influence between the spindle
end and the middle part of the spindle caused by the unbalanced mass fault gradually
decreases.
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The vibration mode of the whole motorized spindle under the unbalanced mass fault
is further analyzed around the first-order critical speed, as shown in Figure 8b. Before
reaching the first-order critical speed, the middle part of the spindle deflection is upward
and greater than the spindle end deflection. Therefore, at this time, the motorized spindle
is arched upward. However, when the first-order critical speed is reached, the middle part
of the spindle deflection begins to change to the opposite direction, so the whole spindle is
in a concave shape.

It can be seen that the dynamic characteristics of the whole spindle cannot be ignored
when the unbalanced mass fault occurs, especially when the speed is close to the critical
speed, and different parts of the spindle have a different sensitivity to unbalanced mass
faults.

3.3. Dynamic Characteristics of Motorized Spindle with Spindle Inclination Fault

From Section 2.3, when the spindle inclination fault occurs, the general equation from
the first node to the last node can be written as

Zn+1 = TnZn + Bn = Tn(Tn−1Zn−1 + Bn−1) + Bn = · · · = TallZ1 +
n

∑
k=1

(
n

∏
j=k+1

TjBk) =TallZ1 + Ball (24)

where Ball is the sum of the unbalance vector of all units from left to right. Both ends of the
spindle are free ends. The equation of angular velocity is[

y
θ

]
1
= −

[
a31 a32
a41 a42

]−1[b3
b4

]
(25)

where b3 and b4 are the third and fourth elements of ball . All of them contain a parameter
angular velocity of ω. y, θ indicate the section deflection and rotation angle of the initial
end of the spindle.

Assuming that the inclination angles are 0.1–0.5◦, the section de-flection and rotation
angle of different initial ends can be obtained under different angular velocities. Within
the whole specified rotating speed, when the spindle inclines, the deflection of the spindle
initial end is shown in Figure 9a. Around the second-order critical rotating speed, the
spindle inclination fault influence on the deflection of the spindle initial end when the
spindle incline at different inclination angles is shown in the schematic diagram, Figure 9b.

As can be seen from Figure 9a, the deflection of the initial spindle end increases
gradually at first when the spindle inclination fault occurs, then the deflection suddenly
changes direction and increases gradually along this direction, when approaching the
first-order critical speed. At the first-order critical speed, the deflection decreases suddenly.
Until the deflection equals zero, the deflection increases gradually along the opposite
direction. The same characteristics are shown at the second-order and fourth-order critical
speeds. However, at the fourth-order critical speed, the local maximum is smaller than
it is at the second-order critical speed. Differently, when the rotational speed reaches the
third-order critical speed, the deflection suddenly jumps to the maximum value in the
upward direction. Then the direction suddenly changes, and decreases gradually.

As shown in Figure 9b, the bigger the angle, the higher the deflection of the spindle
initial end. However, the changing trend of the motorized spindle initial end deflection
is the same at different angles. That is to say, in the case of spindle inclination fault at
the small angle, the inclination angle only changes the size of the deflection, but does not
influence the trend of the deflection changing with the rotating speed.
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As shown in Figure 10a, different from the unbalanced mass fault, the spindle inclina-
tion fault affects the whole motorized spindle around the first-order critical speed, while
with the increase in the speed, the influence of the spindle inclination fault on the spindle
initial end begins to be greater than that on the middle part of the spindle, around the
second-order and third-order critical speed. In the third order, the influence on the spindle
initial end reaches the maximum value. After the speed continues to increase, the influence
of fault on the motorized spindle begins to increase. At the fourth-order critical speed, the
deflection of the spindle end directly shows an up direction and the other end shows a
down direction. Although the deflection at this time is small, if we do not pay attention to
this situation, the spindle inclination fault may further develop into a membrane collision
fault, which will cause serious damage to the motorized spindle.

The vibration mode of the motorized spindle under spindle inclination fault is further
analyzed around the first-order critical speed, as shown in Figure 10b. Before reaching the
first-order critical speed, the spindle deflection is downward, and the middle part of the
spindle deflection is greater than the spindle end. Therefore, the motorized spindle is a
concave type. However, after reaching the first-order critical speed, it is still in a concave
shape, but the deflection is smaller than that before the first-order speed.

As can be seen from Figure 10a, the deflection of the spindle initial end increases
gradually at first when unbalanced mass fault occurs, and reaches a local maximum when
it reaches the first-order critical speed. At this time, the deflection direction of the shaft end
suddenly changes. With the further increase in rotational speed, the deflection of spindle
initial end continues to increase along this direction, and the direction suddenly changes
again when the second-order critical rotational speed is reached. The same characteristics
are shown at the third-order and fourth-order critical speeds. Moreover, the maximum
value is reached at the third-order critical speed.

It can be observed that when the spindle inclination fault occurs, the dynamic char-
acteristics of the spindle change with the increase in rotating speed. At a low-rotating
speed, the influence of elastic deformation on the spindle deflection is greater than the
inclination on it, while with the increase in rotating speed, the influence of inclination
gradually becomes dominant.
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4. Conclusions

In this work, focusing on the unbalanced mass fault and inclined axis fault, we
improved the traditional WTMM. Then we used it to analyze the mode shape of motorized
spindle under the fault at different rotation speeds. We also studied which part of the
motorized spindle is more sensitive to the unbalanced mass fault, and the influence of
different tilt angles on vibration of motorized spindle. The findings in this work will have
different applications in many different types of machinery in which there are rotating
cylinders, shafts, or spindles. The main conclusions are as follows:

(1) If the unbalanced mass fault occurs, when the spindle speed is close to the first-order
or second-order critical speed, the deflection at the initial end of the spindle is small;
when the spindle speed is close to the fourth-order critical speed, the deflection is
large. The opposite is true when the spindle inclination fault occurs. It can be seen that
the motorized spindle is more sensitive at high rotating speeds when the unbalanced
mass fault occurs, and it is more sensitive at low rotating speed when the spindle
inclination fault occurs.

(2) CNC machine tools are vibration systems with high stiffness, and the support system
is flexible or nearly flexible. The rotor may exhibit rigid behavior, manifested as a
smaller rotor vibration and larger bearing seat vibration. So, regardless of whether the
spindle has an unbalanced mass fault or spindle inclination fault, when the spindle
speed reaches the third-order critical speed, the deflection at the initial end of the
spindle is the largest.

(3) When the spindle speed approaches the first-order critical speed, an unbalanced
mass fault will make the middle part of the spindle bend upward, while the spindle
inclination fault will make the middle part of the spindle bend downward.

(4) When the unbalanced mass fault occurs, the deflection will be increased first, then
suddenly decrease until the direction change, and the deflection will continue to
increase along this direction. When the spindle inclination fault occurs, the deflection
will be increased first in the opposite direction, then gradually decreases after reaching
the maximum value, and then gradually continues to increase along the original
direction when it returns to the original direction.
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