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Abstract: The effectiveness of deep learning models depends on their architecture and topology.
Thus, it is essential to determine the optimal depth of the network. In this paper, we propose a
novel approach to learn the optimal depth of a stacked AutoEncoder, called Dynamic Depth for
Stacked AutoEncoders (DDSAE). DDSAE learns in an unsupervised manner the depth of a stacked
AutoEncoder while training the network model. Specifically, we propose a novel objective function,
aside from the AutoEncoder’s loss function to optimize the network depth: The optimization of the
objective function determines the layers’ relevance weights. Additionally, we propose an algorithm
that iteratively prunes the irrelevant layers based on the learned relevance weights. The performance
of DDSAE was assessed using benchmark and real datasets.
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1. Introduction

Findings in the natural sciences along with recent technological advances have pro-
moted the mimicking of the human nervous system/network. In particular, this has led
to the flourishing of machine learning (ML) as a subfield of the artificial intelligence do-
main [1]. Specifically, ML has gained the attention of researchers who aim to design and
introduce intelligent solutions for computing applications that span a very large spec-
trum of domains. Mainly, such exceptional interest is motivated by the availability of
a huge amount of data. Moreover, drastic improvements in computing capabilities and
resources have further boosted researchers’ efforts to present promising ML techniques.
Consequently, ML has been deployed in various domains and it has found application in
various research fields such as speech and handwriting recognition [2,3], natural language
processing [4], computer vision [5], image processing [6], banking and credit card fraud
detection [7], etc.

The advancements in artificial neural network (ANN)-related research laid the corner-
stone of deep learning (DL) [8]. In fact, the term “deep” refers to the concept of having the
data transformation deployed through numerous layers [1]. Another important characteris-
tic of deep learning is automatic feature extraction which alleviates the problem of feature
handcrafting and engineering [8]. Given the success that it has achieved recently in various
domains, DL has become a universal learning approach for many research communities [8].
Actually, it has proved to be effective in many fields. In particular, it yields outstanding
results in image processing, computer vision, natural language processing, object detection,
face recognition, and handwriting and speech recognition [1]. Furthermore, there are
successful commercial applications using DL that have been established by information
technology giants such as Google [9], Apple [10], Facebook [11], and Amazon [12], who
use deep learning techniques in their applications.

Deep learning has been adapted for both supervised and unsupervised learning
applications. AutoEncoders (AE) have been introduced as a main DL architecture designed
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to address unsupervised learning problems [1]. AE is a neural network composed of an
input layer, a hidden layer, and an output layer. Through its hidden layer, the network
learns the code which allows reproduction of the input. Such AEs can be stacked by
associating successive hidden layers. This results in a deep learning topology referred to as
the stacked AutoEncoder [13].

AutoEncoders are typically used for embedding learning and low-dimensional repre-
sentation [13]. In addition to the dimensionality reduction and compression applications,
AEs have been used for anomaly detection, image denoising, image generation, and feature
extraction [13]. They have been also employed in several fields such as bioinformatics [14],
cyber-security [15], recommender systems [16], etc. Furthermore, they have been inte-
grated into other complex supervised deep learning paradigms as encoding and decoding
modules [8].

Despite researchers’ achievements in designing deep-learning-based solutions for
various applications, some challenges still face existing DL architectures. In particular, they
suffer from the interpretability limitation. Actually, DL approaches are considered black
boxes that are unable to provide a logical justification of the obtained results. Another issue
consists in the large number of hyperparameters to be selected and fine-tuned during the
training phase. In particular, the number of hidden layers, and the number of nodes at each
layer which represent the network depth and the network width, respectively, affect the
model performance. In fact, overly deep and/or wide networks yield problems such as
vanishing gradient [8], long training time [13], and overfitting [13]. Therefore, setting the
appropriate depth and width of the network is perceived as a cornerstone in the design of an
effective deep learning topology. However, determining the optimal depth and width of the
network is not straightforward. These two hyperparameters are usually set empirically [17],
or using some search strategies [18]. Moreover, they rely on the supervised information to
compare the performance of the different settings/topologies. Thus, when the supervision
information is not available, the problem is even more challenging. As such, AutoEncoders
which learn, in an unsupervised way, abstract and complex feature representation of the
input through the combination of the successive layers [13] face the challenging problem of
determining the optimal topology in an unsupervised way. In fact, learning the topology of
a stacked AE plays an essential role in its performance as it controls the level of abstraction
and complexity of the learned feature map. Moreover, overly deep stacked AE are prone
to the vanishing gradient problem and overfitting. Furthermore, setting the appropriate
depth empirically by repeating the experiment requires the availability of labeled data, and
thus can be applied for unsupervised data mapping using AutoEncoders.

The main contribution of this paper is to automatically learn the optimal number
of hidden layers of a stacked AutoEncoder. Therefore, a novel cost function will be de-
signed and optimized apart from the AutoEncoder loss function. The optimization of
the proposed cost function is intended to learn relevance weights for each hidden layer.
Based on the learned weights, the irrelevant hidden layers will be pruned. This yields the
optimal stacked AutoEncoder depth. Moreover, pruning irrelevant layers is an acclaimed
technique in reducing overfitting [19]. Hence, it can increase the overall model learning
stability [19]. More specifically, the hidden layers’ relevance weights will be learned si-
multaneously, allowing the interpretation of the role of each hidden layer. In other words,
the proposed approach is intended to learn the optimum AE depth and thus alleviate the
typical issues faced by overly deep stacked AutoEncoders. As such, this research has the
following objectives:

(i) Learn the stacked AE depth while training the model in an unsupervised way;
(ii) Design a novel objective function to learn the layers’ relevance weights;
(iii) Design an algorithm to prune irrelevant layers.

2. AutoEncoder

An AutoEncoder [1] is an unsupervised learning neural network mainly used for
dimensionality reduction and compression [8]. The purpose of an AutoEncoder is to learn
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a representation of the input data. Furthermore, AEs are well known for data denoising
and fusion [8]. The architecture of an AutoEncoder is described in Figure 1. It consists
of an input layer, a hidden layer, and an output layer. More specifically, an AutoEncoder
comprises two modules. The first one encodes the input while the second one decodes the
obtained code to reconstruct the input. The encoder and decoder functions are characterized
as lossy, where the output of the AE will be a degraded representation of the input [13].
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As shown in Figure 1, using the input x, the encoder generates z1 = σ1(Wx + b) where
σ1 is an activation function such as sigmoid [20] or ReLU [20], W is a weight matrix, and
b is a bias [8]. Alternatively, the decoder generates the construction of x, x̂ = σ2(W ′z + b′)
where W ′ is a weight matrix and b’ is a bias [8]. If the activation function is linear, then a
similar dimensionality reduction as in principal component analysis (PCA) is achieved [21].
However, the AutoEncoder can acquire a more powerful nonlinear generalization of the
PCA with nonlinear activation functions [21].

Training AutoEncoders is similar to training feedforward neural networks via back-
propagation and gradient descent [21]. Basically, the network is trained in order to minimize
the reconstruction error L(x, x̂) which measures the differences between the original input
x and its corresponding reconstruction x̂ as defined in Equation (1) [8].

L(x, x̂) = ‖x− x̂‖2 =
∥∥x− σ2

(
W ′(σ1(Wx + b)) + b′

)∥∥2 (1)

The cost function in Equation (1) may also integrate a regularization term in order to
regulate the sensitivity of the AutoEncoder to the input [13]. In fact, while the function
defined in Equation (1), representing the reconstruction error, is the main term for all AE
loss functions, other regularization terms may be added to it according to the type of AE.
Actually, an AutoEncoder has to be sensitive enough to the input to accurately build its
reconstruction, but not so sensitive that the model does not simply memorize or overfit the
training data.

There are various types of AutoEncoders that differ in terms of data representation,
regularization technique, and architecture [13]. Namely, there are under-complete [21], over-
complete [21], sparse [22], stacked [13], contractive [21], and variational [21] AutoEncoders.

Stacked AutoEncoder Topology

A stacked AutoEncoder, also referred to as a deep AutoEncoder, consists of stacking n
hidden layers [1]. This allows learning more efficient code without increasing the number of
nodes per layer which yields a reduction in the number of required training data, and thus
reducing the training computation [21]. In fact, the performance of a stacked AutoEncoders
in data compression surpasses its linear or shallower counterparts [13]. It is trained by
an unsupervised greedy layer-wise learning algorithm. More specifically, the first layer
is trained using the input data to produce the first feature map. This learned feature is
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then used as input to learn the second feature map. Thereby, the feature vector learned at
the previous layer is used as an input to learn the next hidden layer consecutively. The
process is repeated until all hidden layers are trained [23]. Once a feature map is learned,
the respective decoder layer is discarded at [23]. Subsequently, the hidden layers are
stacked to form the deep architecture of the stacked AutoEncoder [13]. Thenceforward,
a backpropagation algorithm is used to adjust the weights by minimizing the error. The
unsupervised training of the stacked AutoEncoder may be followed by a supervised
fine-tuning algorithm [23].

The network topology is defined using the depth and width shown in the AutoEncoder
architecture. Specifically, the depth represents the number of intermediate layers stacked
in the encoder. One should note that this depth also equals the number of intermediate
layers in the decoder. On the other hand, the width of a given layer acts for the number of
nodes in this particular layer. Figure 2 illustrates the topology of a stacked AutoEncoder.
As can be seen, WD1 represents the width of the first hidden/intermediate layer of the
encoder. Similarly, WD2 and WD3 are the width of the second and third hidden layers of
the encoder, respectively. The decoder module hidden layers have the same width but in
the reverse order.
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The encoder and decoder layers of a stacked AutoEncoder can be fully connected
or convolutional layers. The latter are referred to as convolutional AutoEncoders [13].
Moreover, the structure of the encoder and decoder module can consist of a sparse AE
or a recurrent neural network (RNN) which is known as a sequence-to-sequence AutoEn-
coder [13]. Deep AutoEncoders are applied to image classification [24], regression [13], and
geochemical anomaly detection [25].

3. Related Works

A key challenge in the design of a deep neural network (DNN) is the selection of the
model’s depth and width. Hence, there are no commonly accepted methods for configuring
the network’s structure. However, over the past years little research has been undertaken to
find the optimal depth and width in an unsupervised manner. To the best of our knowledge,
no prior research has been carried out to address the automatic learning of AutoEncoders’
depth in an unsupervised fashion except the evolutionary and genetic algorithms presented
in [26,27].

Recently, the problem of learning the width and the depth of deep AEs has been
addressed. As such, the topology of the AE is learned while training the model through
dynamic expansion and\or pruning of neurons and/or the layers [18,26–31]. These ap-
proaches are referred to as dynamic or evolving AE architecture in the literature. They
bifurcate into two main categories, namely, the genetic and evolutionary approaches, and
the discriminative and generative ones. While AEs are unsupervised deep learning ap-
proaches, discriminative approaches append a SoftMax layer to exploit the classification
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performance of the AE-generated feature map in the learning process. Thus, discriminative
approaches are supervised contrary to generative genetic, and evolutionary approaches
which are unsupervised. Furthermore, only genetic and evolutionary approaches learn
both the width and the depth, whereas generative and discriminative approaches learn the
width on a single-layer AE. In the following, we describe these approaches.

3.1. Genetic and Evolutionary Approaches

Genetic and evolutionary algorithms are metaheuristic techniques derived from the
natural selection evolution mechanism. They are employed to solve optimization and
search problems through the use of genetic operators such as mutation, crossover, and
selection. They are defined using a genetic representation and an objective function called
fitness. Specifically, starting from random solutions, a set of possible solutions referred to
as individuals or candidates evolve to a better one following an iterative process. For this
purpose, each solution is represented by chromosomes or genotypes, usually encoded as
binary string, on which genetic operators are performed to achieve a better fitness.

3.1.1. Supervised Width Learning Based on Adding and Pruning Nodes

The proposed approach in [28] addresses the problem of learning the AE width
through the use of genetic techniques. As such, it considers both adding and pruning nodes
during the learning process. First, a set of AEs having different numbers of hidden units
is randomly generated. Then, each one of them is separately trained by minimizing the
reconstruction error which is considered the fitness value. Based on the best reached fitness,
pairs of AEs are selected. Subsequently, a crossover operation is performed to produce
two child AEs via an exchange of randomly chosen hidden units and their corresponding
connections. Then, the mutation operation is exploited to randomly add or prune nodes
from an AE. Specifically, a third AE is used to randomly select a node and add it to the child
AE. Alternatively, node pruning is achieved by removing the node and its connections. Each
generated child is then trained. Finally, EvoAE terminates when the last three generations
fail to improve their validation error against the best obtained validation error in previous
generations. The final AE architecture is defined by the best generated population according
to the validation error.

3.1.2. Unsupervised Restricted Depth and Width Learning for a Multi-Layer AE

The work in [26] uses evolutionary search strategies to learn the width and the depth
of a variational AutoEncoder (VAE). Nevertheless, it limits the depth to five layers and the
width to a set of values that range from 50 to 1000 in steps of 50. In order to increment the
depth or the width, a mutation operation is performed on selected parent genotypes based
on a fitness value defined as the inverse of the reconstruction error. More specifically, the
mutation operation produces an offspring by either adding a new layer or modifying the
width of a randomly selected existing layer. The latter modification takes place when the
limit of appending new layers is reached.

3.1.3. Unsupervised Width and Depth Learning Using a Chromosome of Fixed Length

In [27], a genetic model is adopted to learn AE width and depth. Through crossover
and mutation operations on a fixed size chromosome, it produces new individuals. More
specifically, the chromosome is composed of fourteen genes organized in five groups. The
first group includes one gene characterizing the type of the AE. Similarly, the second group
is defined by one gene estimating the number of layers (depth). Alternatively, three genes,
constituting the third group, are dedicated to the number of units per layer, whereas the
six genes of the fourth group define the activation functions. Finally, the last group contains
one gene related to the loss function.



Appl. Sci. 2023, 13, 10994 6 of 22

3.1.4. Supervised Width and Depth Learning Using a Chromosome of Variable Length

Another approach based on genetic optimization is proposed in [18]. It aims to learn
the optimal depth and width of a VAE. It exploits a chromosome of variable length. The
latter is constituted of four parts defining the architecture of VAEs; namely, the h-block, the
µ-block, and the α-block are related to the encoder, and the t-block is associated with the
decoder. The algorithm starts with a randomly generated population which is evaluated
by VAE’s loss function. Then, crossover and mutation operations are applied on this
population. More specifically, the offspring obtained by crossover will undergo mutation
operations including addition, deletion, and modification, in such a way that the addition
and deletion operations act on the depth of the model, whereas, the modification operates
on the width of the model.

3.2. Discriminative and Generative Approaches

Discriminative models are produced by supervised machine learning techniques
which learn the class of the instances, or the border between the different categories. They
predict new instances by calculating probabilities and employing maximum likelihood.
Alternatively, generative models are statistical models that generate new data instances
using unsupervised machine learning techniques. They are essentially based on the Bayes
theory to calculate probabilities, estimate the model of the data, and cluster the instances.

3.2.1. Supervised Width Learning of Single-Layer AE based on Adding and Merging Nodes

The work in [29] learns the width of a single-layer AE by adding and merging nodes.
This is achieved through a generative and discriminative hybrid training process. More
specifically, it selects training instances whose construction error is greater than a pre-
defined construction threshold. When the number of these instances reaches a pre-defined
limit, a new node is added. Only the newly added nodes and their parameters are then
trained by optimizing a hybrid objective function. Precisely, the generative term is the con-
struction error of the selected set, while the discriminative term is the average classification
error over the same set. The discriminative part is using the ground truth of the data. This
makes it a supervised approach. Alternatively, the merging process allocates pairs of nodes
with minimal distance in terms of their corresponding weights. Once merged, they are
trained using the hybrid objective function.

3.2.2. Supervised Width Learning of a Single-Layer AE Based on Adding and Pruning Nodes

The work in [30] learns the width for a single-layer denoising AutoEncoder (DAE). It
adopts a prequential test-then-train approach rather than the traditional train–test process.
Starting from an initial one-layer DAE topology, the algorithm iteratively carries out
two training phases. These consist of a generative (unsupervised pre-training) and a
discriminative (supervised) phase. More specifically, before training the model, the initial
model is tested. For this purpose, a SoftMax layer is appended on top of the DAE to
measure the classification performance of the model. This requires the use of labeled
data which makes the proposed approach supervised. After the discriminative phase,
the generative phase takes place. It starts by calculating the network significance (NS)
parameter which is an estimation of the network bias and variance with respect to the
tested model. Actually, a high variance of the NS value indicates that the model suffers
from overfitting, whereas a high bias of the NS value indicates that the model suffers from
underfitting. Consequently, if the NS bias is greater than the minimum NS bias, a new
hidden node is appended. Alternatively, a node is pruned if the NS variance is greater
than the minimum variance. Furthermore, in order to decide on the node to be pruned, an
evaluation of the contribution of each hidden node is estimated through the computation
of the hidden node significance (HS) index. The learning process continues by altering the
training and testing phases.
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3.2.3. Unsupervised Width Learning on a Stacked AE based on Pruning Node

The work in [31] proposes to learn the layer’s width of a stacked fully connected AE.
The width is learned by pruning insignificant neurons. For this purpose, the reconstruction
error for each node is calculated. If the reconstruction error of any neuron is 20 times
larger than the minimum reconstruction error, the input data of that unit are banned from
engaging in the training process. Therefore, all units subsequent to the large reconstruction
error units are pruned. Table 1 depicts a brief summary of the report works in the literature
that address the width or/and depth learning of an AE.

Table 1. Summary of related works.

Reference Type of AE Technique Supervision Width
Learning

Depth
Learning

Hidden Layer’s
Number

[28] AE Genetic Supervised Pruning and
adding NA Single

[26] Variational AE Evolutionary Unsupervised Adding Adding Multiple
(Restricted)

[27] Stacked AE Genetic Unsupervised Chromosome of
fixed length

Chromosome of
fixed length Multiple

[18] Convolutional
Variational AE Genetic Supervised Chromosome of

variable length
Chromosome of
variable length Multiple

[29] Denoising AE Discriminative
and generative Supervised Adding and

merging NA Single

[30] Denoising AE Discriminative
and generative Supervised Pruning and

adding NA Single

[31] Stacked Sparse
Denoising AE Generative Unsupervised Pruning NA Multiple

3.3. Discussion

A closer look at the literature relevant to dynamic model selection for stacked Auto-
Encoders reveals several research gaps and shortcomings. In particular, the works in [18,27,28]
which exploited evolutionary and genetic algorithms to determine the optimal architec-
ture inherited the high computational cost of those optimization algorithms [32]. Those
approaches exhibit a scalability issue especially when dealing with large networks [33].
For instance, in [32], in order to use a genetic algorithm to learn the stacked AutoEncoder
depth and width in an unsupervised manner, the authors constrained the number of lay-
ers and nodes to not exceed a specific threshold [26]. The generative and discriminative
approaches introduced in [29,30] to learn the topology of AEs are supervised. In other
words, they relied on labeled training instances to build the stacked AutoEncoder model.
The work in [31] is the only study that investigated learning stacked AE topology in an
unsupervised manner. However, their approach learns the width of the network only by
pruning irrelevant nodes.

This confirms that no existing work has tackled the challenge of learning the stacked
AutoEncoder depth in an unsupervised fashion. Moreover, none of the state-of-the-art
studies formulated this problem as an objective function-based optimization.

4. Dynamic Depth for Stacked AutoEncoders

In this paper, we propose a new approach, Dynamic Depth for Stacked AutoEncoders
(DDSAE), to dynamically learn the depth of a stacked AutoEncoder. In particular, we intend
to learn dynamically the relevance of each layer, l. This is done through an iterative update
of the layer relevance weights at the end of each batch b. The cornerstone of the approach
is the formulation of a cost function that is apart from the loss function of the network.
Similar to spectral dimensional reduction approaches (PCA, MDS, Isomap, etc.) [34], the



Appl. Sci. 2023, 13, 10994 8 of 22

devised cost function is based on faithful preservation of the inner product between the
input instance and the mapped features at each layer. More specifically, computing the
difference between the inner products of the input instances and the mapped features
allows preserving the moment and the argument of pairwise input instances, and thus
conserves the structure of the data. Figure 3 illustrates the proposed approach during the
training process. The latter is composed of three main steps that are performed iteratively.
In fact, a batch b is first trained to learn the mapping of each layer l. Second, the relevance
weights with respect to each layer are learned. Finally, layer pruning is performed. In the
following, these training steps are described in detail.
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4.1. Layer Relevance Weight Learning Component

Learning the relevance of each layer, l, at the end of each trained batch, b, RL(l, b) is
done through the optimization of a new cost function J independent from the loss function
of the AE. As such, J measures the conservation of the inner product between the input,
x(i), and its mapping of layer l at the end of b, x′(i, l, b). It is defined as in (2).

J = ∑NL(b)
l=1 RL(l, b)q∑NB(b)

b ∑i∈b ∑j∈b

(
x(i).x(j)− x′(l, i, b).x′(l, j, b)

)2 (2)

subject to:

∑NL(b)
l=1 RL(l, b) = 1 (3)

In Equations (2) and (3), NL(b) and NB(b) are the number of layers and the number
of batches trained so far at the end of batch, b, respectively. In addition, x(i).x(j) is
the inner product between the two inputs xi and xj, and x′(l, i, b).x′(l, j, b) is the inner
product between the mapped vectors of layer l at the end of b. Moreover, q is an exponent
that controls the fuzziness of the relevance weights RL(l, b), which is usually set to 2.
The distance (x(i).x(j)− x′(l, i, b).x′(l, j, b))2 measures the difference in terms of pairwise
distance and angle between the input and mapped vectors. Minimizing the cost function
J with respect to RL(l, b) aims at learning the optimum relevance layer weights that
allow preserving the moment and the argument of the input instances. Nevertheless,
these weights are different from the AE model weights. In fact, they are learned from
a cost function different from the loss function of the network and intend to segregate
irrelevant layers.

In order to find the optimum relevance layer weights RL(l, b) that minimize the
cost function in Equation (2), we derive Equation (2) with respect to RL(l, b) subject to
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Equation (3). Then, we set the obtained derivative to zero. This gives the update equation
of RL(l, b) as expressed in Equation (4).

RL(l, b) =
1

Q(l,b)

1
q−1

∑
NL(b)
v=1

1
Q(l,v)

1
q−1

(4)

where

Q(l, b) =
NB(b)

∑
b

∑
i∈b

∑
j∈b

(
x(i).x(j)− x′(l, i, b).x′(l, j, b)

)2 (5)

These relevance layer weights give an interpretation of the contribution of each layer.
In other words, they give insight on the importance of each layer. They are not necessarily
increasing from left to right. In this regard, they will be used to prune irrelevant layers.
Algorithm 1 portrays the steps of learning the relevance weights for each layer using the
DDSAE approach.

4.2. Layer Pruning

After updating the AE model weights at the end of each batch, the layers’ relevance
weights are computed. Accordingly, non-relevant layers are pruned. Due to the hierarchical
structure of the deep AE, the pruning is performed at the end of the network. More precisely,
the algorithm retains the layers exhibiting encoder layers’ relevance weights larger than
a percentage of maximum weight threshold (Wmax). Then, it starts from the last layer in
the encoder if the layer’s relevance weight is smaller than a specified threshold. As such,
the layer is pruned along with its corresponding decoder layer. The process continues
iteratively until the considered layer relevance weight is larger than the WTH. One should
note that, theoretically, in case of a data with easily separable classes, the proposed approach
may result in a network with one single hidden layer. This would prove that the pruned
layers are irrelevant. Algorithm 2 describes the steps of the layer pruning component.

Algorithm 1 The Layer Relevance Weight Learning Algorithm

Input: Instances {xi} to be mapped
Mapping of the instances at layer l

Output: AutoEncoder Layers’ relevance weight
{

wb
i

}
1. Compute Q(l, b) for each layer using (5)
2. Compute the relevance weight for each layer using (4)

The key steps of the DDSAE algorithm are presented in Algorithm 3 and Figure 4
shows the proposed approach flowchart.

Algorithm 2 The Layer Pruning Algorithm

Input: AutoEncoder Layers’ relevance weight
{

wb
i

}
of current batch b

Weight threshold ratio α

Output: Trained AE(W)
The learned depth

1. Separate encoder layers and decoder layers
2. Select from encoder layers the layer with the maximum relevance weight (Wmax)
3. Compute WTH = α ∗Wmax
REPEAT

4. Start from last layer in the encoder If wb
i < WTH

5. Prune encoder layer and corresponding decoder layer
UNTIL the wb

i > WTH
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Algorithm 3 The DDSAE Algorithm

Input: Instances {xi} to be mapped
Initialized stacked AE(W) with initial depth and initial layers’ width

Output: Trained AE(W)
Layers’ relevance weights {RL(l, b)}
The learned depth

REPEAT
1. Train a batch b
2. Compute the layers’ relevance weights RL(l, b) using algorithm 2
3. Prune irrelevant layers using algorithm 3

UNTIL the weights of the AE(W) model converge
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5. Experiments

The conducted experiments investigate the ability of the proposed approach, DDSAE,
to dynamically set the depth of a stacked AutoEncoder. Specifically, experiments were
conducted on two benchmark datasets and two real datasets. Moreover, the perfor-
mance of DDSAE was assessed by feeding the AE learned features to a classifier, and
then comparing the classification results using accuracy, precision, recall, and F1 score
performance measures.

5.1. Dataset Description

MNIST—MNIST benchmark dataset [35] includes a training set of 60K examples
and testing set of 10K examples. Each data instance is a black and white 28 × 28 image
presenting a single handwritten digit from 0 to 9. This dataset is a balanced dataset.

CIFAR-10—CIFAR-10 benchmark dataset [36] includes 50K training images and 10K
testing images. The images represent one of ten natural objects (i.e., airplane, automo-
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bile, bird, cat, deer, dog, frog, horse, ship, truck). Each instance is an RGB image of
32 × 32 pixels. This dataset is a balanced dataset.

Parkinson—Parkinson’s disease classification dataset [37,38] consists of 756 instances,
each including 754 attributes. The data collected in this dataset are from 188 patients
diagnosed with Parkinson’s disease and 64 healthy individuals. The attributes include
various speech features extracted from the record of the phonation of vowel /a/. These
features include the gender, the Pitch Period Entropy (PPE), the Detrended Fluctuation
Analysis (DFA), the Recurrence Period Density Entropy (RPDE), the number of pulses
(numPulses), the number of period pulses (numPeriodPulses), the mean of period pulses
(meanPeriodPulses), the standard deviation of period pulses (stdDevPeriodPulses), etc.
This dataset is an imbalanced dataset.

Breast Cancer—Breast Cancer Coimbra dataset [39,40] includes 116 instances with
10 attributes. The data are collected from 64 patients diagnosed with breast cancer and
52 healthy individuals. All attributes are quantitative predictors gathered in a routine blood
draw analysis. The features include age, Body Mass Index (BMI), Glucose, Insulin, Homeo-
static Model Assessment (HOMA), Leptin, Adiponectin, Resistin, Monocyte Chemoattrac-
tant Protein-1 (MCP.1), and classification. This dataset is an imbalanced dataset.

Table 2 reports the details of the considered datasets.

Table 2. Details of the datasets.

Dataset Number of Samples Features Classes

MNIST 60,000 28 × 28 images (i.e., 784 pixels) 10 classes representing handwritten
digits from 0 to 9

CIFAR-10 50,000 32 × 32 images (i.e., 1024 pixels)

10 classes representing one of ten
natural objects (i.e., airplane,

automobile, bird, cat, deer, dog, frog,
horse, ship, truck)

Parkinson’s 756

754 including (id, gender, PPE, DFA,
RPDE, numPulses numPeriodPulses,

meanPeriodPulses,
stdDevPeriodPulses, etc.)

2 classes (healthy, diagnosed with
Parkinson’s)

including 188 patients diagnosed
with Parkinson’s and 64 healthy

patients

Breast Cancer 116
10 including (age, BMI, Glucose,

Insulin, HOMA, Leptin, Adiponectin,
Resistin, MCP.1, classification)

2 classes (healthy, diagnosed with
breast cancer) including 64 patients
diagnosed with breast cancer and

52 healthy patients

5.2. Experiment Setting

Experiments are conducted on Google Colab Pro+. In addition, TensorFlow and
Keras libraries are used to implement the neural network. During training, the depth
for the AutoEncoder is initially set to 20 layers for the encoder and 20 layers for the
decoder. Furthermore, the width is set to 1000 nodes per layer; the weight threshold ratio is
set to 0.75.

Each experiment was repeated 10 times and the best results are reported. Furthermore,
the model hyperparameters were tuned and the ones giving the best results are considered.
In particular, deep learning hyperparameters such as the learning rate, the batch size, and
the loss function have to be set. In fact, setting suitable hyperparameters is one of the
limitations of deep-learning-based experiments. They require tuning in order to ensure an
optimal solution. Table 3 reports the experimental setting with respect to each dataset that
was obtained.



Appl. Sci. 2023, 13, 10994 12 of 22

Table 3. Parameters setting.

Parameter MNIST CIFAR Parkinson Breast Cancer

Optimizer Adam Adam Adam Adam
Loss Function Binary Cross-Entropy Binary Cross-Entropy Mean Squared Error Mean Squared Error
Learning rate 0.0001 0.0001 0.000001 0.000001

Batch size 256 256 190 30

5.3. Experiment 1: Manual Depth Investigation

The first experiment manually investigates the performance of the SAE with different
depth values in order to show the effect of the SAE depth on the performance and thus
prove the significance of learning the depth of SAEs. In other words, the performance of the
SAE is evaluated with different depths. In fact, the depth of the model is tuned from one AE
architecture to twenty AE architectures. To demonstrate the impact of the network depth on
the classification performance, the experiment is conducted on the two-benchmark datasets
MNIST [35] and CIFAR-10 [36]. After training the SAE, a SoftMax layer is appended on the
encoder part as a classifier to perform the classification task. As the two benchmark datasets
are balanced, the accuracy is considered. The latter with respect to different network depths
is illustrated in Figure 5.
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As can be observed in Figure 5a, the best accuracy achieved is 87.20% with the one-AE
model. Specifically, the classification accuracy on MNIST [35] showed that the one-AE
architecture achieved a better classification accuracy compared with the 20-AE architecture.
In fact, the obtained results showed that as the depth grows, the classification accuracy
decreases. It is also observed that the performance of the model with depths from 1 to
4 attained better accuracy than models with deeper depths. In addition, the accuracy
drastically decreases and plateaus for models with depth 13 to 20. This is a counterintuitive
result showing that increasing the number of layers can decrease the accuracy.

The performance on the CIFAR-10 [36] dataset is illustrated in Figure 5b. As can be
seen, the model with two-AE architecture attained an accuracy of 25.84%. The achieved
results confirm the findings on the MNIST dataset, which shows that as the depth increases,
the classification accuracy does not necessarily increase. Moreover, the network with
two-AE architecture performs better than other SAE depths.

This steep fall in accuracy, shown in Figure 5, is related to the considered data. As can
be seen, the curve displayed in Figure 5a is different from the one displayed in Figure 5b
which depicts the accuracy achieved when manually tuning the depth on MNIST [35]
dataset and CIFAR-10 [36] dataset, respectively. It is probably due to an overfitting problem
when the depth is excessive. In fact, as a deep learning model, SAE is prone to overfitting.
Specifically, as the number of layers increase, the number of network parameters that
should be learned during the training phase increases. As such, it is essential to learn the
optimal depth of an SAE that allows learning an abstract representation of the data while
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not being prone to overfitting. This is a motivation of the proposed approach which learns
dynamically the depth while training the stacked AutoEncoder.

5.4. Experiment 2: Performance Assessment of the proposed approach DDSAE on Benchmark Datasets

The performance of the proposed approach DDSAE in dynamically learning the
depth of an SAE in an unsupervised manner is assessed on the two benchmark datasets
MNIST [35], and CIFAR-10 [36]. Initially, the number of AE layers is set to 20. After
applying the proposed approach DDSAE, the initial model converged to a one-AE model
on both datasets. Figure 6 displays the number of retained layers (the new learned depth)
with respect to each iteration on both datasets MNIST [35] and CIFAR-10 [36]. The learned
depth has progressively changed from 20 layers (in the first iteration) to one layer (after
training 20 batches). Thus, the topology of the SAE changes dynamically while training the
model from 20 AEs to one AE. This is consistent with the previous experimental finding.

Appl. Sci. 2023, 13, x FOR PEER REVIEW  14  of  23 
 

 

 
(a)  (b) 

Figure 6. Number of retained layers with respect to each iteration on (a) MNIST dataset; and (b) 

CIFAR-10 dataset. 

The steep fall in the depth depicted in Figure 6 reflects the fast convergence of the 

algorithm. In fact, after only 20 iterations, the proposed training approach is able to learn 

the optimal depth of the network. 

Figure 7 displays the SAE loss function when training the model using MNIST [35] 

and CIFAR-10 [36] datasets. As can be seen, the loss function continues decreasing even 

after  the convergence of  the depth at  iteration 20  (refer  to Figure 6). Thus,  the stacked 

AutoEncoder weights are progressively updated during  the  training. This  excludes  the 
possibility of saturation, especially  that  the employed cross-entropy  loss  function miti-

gates the effect of saturated output neurons [41]. 

 

(a)  (b) 

Figure 7. Loss function with respect to each iteration on (a) MNIST dataset; and (b) CIFAR-10 da-

taset. 

The relevance  layer weights are learned after training each batch using the update 

equation defined in Equation (3) subject to Equations (4) and (5). They represent the im-

portance of each layer. In other words, they give insight on how much the feature map 

learned at a specific layer contributed to conserving the inner product between the input 

and the output. As such, they are used to prune irrelevant layers by discarding the layer 

exhibiting  low  relevance weights.  Figures  8  and  9  display  the  layer  relevance weight 

learned by DDSAE on MNIST [35] and CIFAR-10 [36] in the first and last batch, respec-

tively. 

Figure 6. Number of retained layers with respect to each iteration on (a) MNIST dataset; and
(b) CIFAR-10 dataset.

The steep fall in the depth depicted in Figure 6 reflects the fast convergence of the
algorithm. In fact, after only 20 iterations, the proposed training approach is able to learn
the optimal depth of the network.

Figure 7 displays the SAE loss function when training the model using MNIST [35]
and CIFAR-10 [36] datasets. As can be seen, the loss function continues decreasing even
after the convergence of the depth at iteration 20 (refer to Figure 6). Thus, the stacked
AutoEncoder weights are progressively updated during the training. This excludes the
possibility of saturation, especially that the employed cross-entropy loss function mitigates
the effect of saturated output neurons [41].
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The relevance layer weights are learned after training each batch using the update
equation defined in Equation (3) subject to Equations (4) and (5). They represent the
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importance of each layer. In other words, they give insight on how much the feature
map learned at a specific layer contributed to conserving the inner product between
the input and the output. As such, they are used to prune irrelevant layers by discard-
ing the layer exhibiting low relevance weights. Figures 8 and 9 display the layer rele-
vance weight learned by DDSAE on MNIST [35] and CIFAR-10 [36] in the first and last
batch, respectively.
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As can be observed, the maximum layer relevance weight in the first batch is assigned
to the first layer of the encoder. Accordingly, starting from the last layer of the encoder,
layers with relevance weight smaller than 75% of the maximum weight are pruned with
their corresponding decoder layer. As a result, on MNIST [35] the number of trainable
parameters has dropped from 41,609,784 to 3,571,784. Similarly, the trainable parameters
on CIFAR-10 [36] have decreased from 46,188,072 to 8,150,072 after the algorithm has
converged. This yields a lightweight model that reduces the risk of overfitting and enhances
the model’s generalization. Moreover, by learning the suitable relevance weight for each
layer, the algorithm is able to determine the optimal depth for the models.

To measure the performance of the algorithm, various classifiers were adopted and
appended on top of the encoder part. These classifiers are SoftMax layer, Support Vector
Machine (SVM), and K-Nearest Neighbor (KNN) with number of neighbors equal to
five. Table 4 reports the classification accuracy on the MNIST [35] and CIFAR-10 [36]
datasets with respect to the considered classifiers. As can be observed in the obtained
accuracies on MNIST [35], similar performance was achieved with respect to the three
considered classifiers. However, the classification accuracy on CIFAR-10 [36] attained a



Appl. Sci. 2023, 13, 10994 15 of 22

better performance using the SoftMax classifier compared to SVM and KNN. Moreover,
the classification accuracy achieved by DDSAE outperformed the classification accuracy of
the manual depth investigation experiment. Specifically, the accuracy achieved by DDSAE
on MNIST [35] is 97%, outperforming the one attained by manual investigation, which is
87.20%. Similarly, manual investigation performance reached 25.84% on CIFAR-10, while
the performance of DDSAE reached an accuracy of 38%. Hence, while learning the optimal
number of layers, DDSAE improved the performance of SAE.

Table 4. Accuracies achieved on MNIST and CIFAR-10 datasets.

Dataset MNIST CIFAR-10

Classifier SoftMax SVM KNN (k = 5) SoftMax SVM KNN (k = 5)
Accuracy 97% 95.78% 95.93% 38% 33.39% 28.45%

5.5. Experiment 3: Performance Assessment of the Proposed Approach DDSAE on Real Datasets

To assess the performance of the proposed approach DDSAE in dynamically learning
the depth of SAE, two real datasets, Parkinson’s [37,38] and Breast Cancer [39,40], are
considered. As in experiment 2, the initial number of AEs was set to 20. DDSAE converges
to one AE layer for both datasets. These results are in accordance with the findings of
experiment 2. Figure 10 shows the depth learned dynamically (the retained number of
layers) while training each batch on the Parkinson’s [37,38] and Breast Cancer [39,40]
datasets. As can be seen, the depth decreased from 20 AEs (after training the first batch) to
one AE (after training the second batch) for both datasets.
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During the training phase, the layer relevance weights are estimated in an unsuper-
vised way at the end of each batch using the derived equation defined in Equation (3)
subject to Equations (4) and (5). Giving insight into the importance of each layer, they are
employed to dynamically prune irrelevant layers exhibiting low layer relevance weight.
Figures 11 and 12 depict the layer relevance weights learned by DDSAE on the Parkin-
son’s [37,38] and Breast Cancer [39,40] datasets in the first and last batch, respectively. As
can be seen, after training the model using one batch, the maximum layer relevance weight
is assigned to the first layer of the encoder. Hence, all layers exhibiting a relevance weight
smaller than 75% of the maximum weight are pruned. In terms of learnable parameters,
the number of learned parameters on Parkinson’s [37,38] has dropped from 41,547,753
to 3,509,753 after the convergence of the model to one AE network. In addition, the
learned parameters on Breast Cancer [39,40] decreased after convergence from 40,059,009
to 2,021,009 parameters.
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Moreover, the performance of DDSAE is assessed by appending different classifiers on
top of the encoder part after training. Since the datasets are unbalanced, precision, recall,
and F1-measure are reported in addition to the classification accuracy.

Table 5 reports the performance attained on the Parkinson’s [37,38] and Breast Can-
cer [39,40] datasets using different classifiers. As can be observed, the performance on
Parkinson’s with the KNN and SVM classifiers achieved similar results; however, the Soft-
Max classifier achieved lower results. Similar results were obtained on the Breast Cancer
dataset. Spherically, DDSAE reached an F1-score of 77% on the Parkinson’s [37,38] dataset
and an F1-score of 89% on the Breast Cancer [39,40] dataset when using the KNN classifier.
Therefore, in addition to learning the optimal depth of the SAE, DDSAE is able to yield
good classification results.

Table 5. Performance measures achieved on Parkinson’s and Breast Cancer datasets.

Dataset Parkinson’s Breast Cancer

Classifier SoftMax SVM KNN (k = 5) SoftMax SVM KNN (k = 5)

Accuracy 75.77% 84.14% 85.02% 68.57% 82.86% 88.57%
Precision 87.7% 85.2% 84.3% 68.3% 82.7% 88.7%

Recall 52.5% 71.2% 74.0% 68.1% 82.7% 89.00%
F1-score 48.00% 74.6% 77.2% 68.1% 82.7% 89.00%
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5.6. Experiment 4: Performance Comparison of DDSAE with State-of-the-Arts

In this experiment, we aim to compare the performance of the DDSAE algorithm to
the state-of-the-art approaches which learn the depth of an SAE in an unsupervised manner.
The considered approaches are the related works published in [26,27].

The work in [26], referred to as “Unsupervised restricted depth and width learning for
a multi-layer AE”, learns the width and depth of VAE using evolutionary search techniques.
It is designed in such a way that the depth cannot exceed five layers and the width varies
from 50 to 1000 nodes by a step of 50. The optimization of the depth or the width is
achieved using the mutation operator and the fitness is defined as the inverse of the VAE
reconstruction error. Similarly, the work in [27], called “Unsupervised width and depth
learning using a chromosome of fixed length”, is a genetic model which optimizes AE
width and depth. Specifically, it employs crossover and mutation genetic operators on
a 14-gene chromosome to create new candidate solutions. Particularly, the genes of the
chromosome encode the number of layers (depth), the number of nodes per layer (width),
the activation function, and the loss function. In the following, we refer to the works
in [26,27] as “Approach1” and “Approach2”, respectively.

The four datasets previously considered (MNIST [35], CIFAR-10 [36], Parkinson’s [37,38],
and Breast Cancer [39,40]) are used to assess the performance of the DDSAE approach
and compare it to the state-of-the-art approaches. Moreover, the SoftMax classifier was
appended on top of the encoder part after training the AE. Tables 6–9 depict the performance
of DDSAE and compare it with the two state-of-the-art approaches on the four datasets
along with the learned depth.

Table 6. Performance Comparison of DDSAE with state-of-the-art on MNIST.

Approach Accuracy F1-Score Recall Precision Depth

DDSAE 97% 97% 97% 97% 1
Approach 1 [26] 75.98% 74.38% 75.16% 78.4% 1
Approach 2 [27] 91.26% 91.14% 91.13% 91.2% 1

Bold numbers indicate best performance.

Table 7. Performance Comparison of DDSAE with state-of-the-art on CIFAR-10.

Approach Accuracy F1-Score Recall Precision Depth

DDSAE 38% 36.5% 38% 38.6% 1
Approach 1 [26] 20.99% 17.22% 20.99% 17.15% 1
Approach 2 [27] 32.02% 29.7% 32.02% 35.63% 1

Bold numbers indicate best performance.

Table 8. Performance Comparison of DDSAE with state-of-the-art on Parkinson.

Approach Accuracy F1-Score Recall Precision Depth

DDSAE 75.77% 48% 52.5% 87.7% 1
Approach 1 [26] 50.22% 47% 50.14% 50.11% 5
Approach 2 [27] 74.45% 42.67% 50% 37.22% 2

Bold numbers indicate best performance.

Table 9. Performance Comparison of DDSAE with state-of-the-art on Breast Cancer.

Approach Accuracy F1-Score Recall Precision Depth

DDSAE 68.57% 68.1% 68.1% 68.3% 1
Approach 1 [26] 48.57% 40.34% 45.72% 42.52% 4
Approach 2 [27] 54.29% 35.18% 50% 27.14% 1

Bold numbers indicate best performance.

As can be seen in Table 6, on the MNIST dataset [35] DDSAE achieved 97% with respect
to the considered performance measures. Hence, it outperformed the first approach [26] by
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21% and attained a better classification accuracy compared to the second approach [27].
All three approaches have converged to an architecture of one AE. Moreover, the results on
the CIFAR-10 dataset [36], depicted in Table 7, show that DDSAE accuracy reached 38%.
It was better than the first approach [26] by 17% and performed better than the second
approach [27] by 6%. The depth obtained by the three considered approaches is one. The
analysis of these results based on the accuracy metrics also applies to the other performance
indicators depicted in Table 6, and 7, namely, F1-score, recall, and precision. The accuracy,
F1-score, precision, and recall achieved by MNIST [35] and CIFAR-10 [36] are displayed in
Figures 13 and 14, respectively.
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Furthermore, the performance of DDSAE on the Parkinson’s [37,38] and Breast Can-
cer [39,40] datasets is depicted in Tables 8 and 9, respectively. The F1-score attained by
DDSAE on the Parkinson’s dataset is 48%. This result is slightly higher than the F1-score
attained by the first approach [26], and is higher than the second approach [27] by 5%. Nev-
ertheless, DDSAE converged to a single-layer model, whereas with the first approach [26]
optimal depth was five layers of AE, and the second approach [27] reached two layers of
AE models.

Finally, the performance on the Breast Cancer dataset [39,40] in terms of F1-score
reached 68.1% when applying the DDSAE approach. This result is better than the two
approaches in [26] and [27] by 27% and 33%, respectively. Overall, these results indicate that
the DDSAE algorithm outperformed the state-of-the-art approaches that tend to learn the
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depth of an SAE in an unsupervised manner in terms of classification accuracy in balanced
datasets, and in terms of F1-score in imbalanced datasets. Moreover, DDSAE outperformed
the state-of-the-art approaches in the resulting architecture on the imbalanced datasets.
The accuracy, F1-score, precision, and recall achieved on Parkinson’s and Breast Cancer are
displayed in Figures 15 and 16, respectively.
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Real-world data exhibit generally overlapping and nonlinearly separable inter-class
boundaries. This constitutes a challenge to machine learning models and thus affects
drastically their performance. Accordingly, a nonlinear mapping can alleviate the problem.
In particular, stacked AutoEncoders address the problem by automatically learning a
nonlinear representation of the data. Specifically, they are trained in an unsupervised way
to lean a meaningful representation of the data by optimizing the reconstruction error.
However, their performance is drastically affected by their depth which impedes their
broad usage. As such, learning the depth of the network while training it boosts the usage
of AutoEncoder for real datasets.

Another significant comparison measure to report on is the testing time of the two
approaches compared to the DDSAE algorithm. Table 10 depicts the testing time of all
approaches on the four datasets. As can be observed, DDSAE is faster than the first and
second approach. This is due to the fact that the DDSAE algorithm learned an optimal
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architecture with a reduced number of layers compared to the other approaches. As such,
the depth plays an important role in the inference time.

Table 10. Testing time comparison with state-of-the-art.

Dataset
Testing Time (s)

DDSAE Approach 1 [26] Approach 2 [27]

MNIST 1.99 2.71 2.41
CIFAR-10 2.11 2.55 2.64

Parkinson’s 0.85 1.49 1.47
Breast Cancer 0.83 1.34 1.37

Bold numbers indicate best performance.

However, in terms of training time, as depicted in Table 11, the DDSAE approach takes
significantly longer than the state-of-the-art approaches. This is due to the fact that the
proposed approach starts with an over-estimation of the number of layers and subsequently
prunes non-relevant layers while training the model, whereas the learned optimal number
of layers on the considered datasets converges to one layer. Nonetheless, since the training
is done offline, it is insignificant for real-time applications that employ the previously
trained model.

Table 11. Computational training time comparison with state-of-the-art.

Dataset
Computational Training Time (s)

DDSAE Approach 1 [26] Approach 2 [27]

MNIST 210 1.42 1.61
CIFAR-10 185 1.66 2

Parkinson’s 22 6 3
Breast Cancer 22 3.51 1.53

6. Conclusions and Future Works

For the broad adoption of machine learning, it is crucial to learn data representation
automatically and sidestep feature engineering. Thus, unsupervised representation leaning
has emerged as an alternative solution to learn a representation of the data. Specifically, SAE
has been employed for unsupervised mapping learning. It aims to learn a new mapping
space by minimizing the reconstruction error. However, its performance proved to be
susceptible to the model depth. As such, learning the topology of stacked AE plays an
essential role in its performance. In fact, it controls the level of abstraction and complexity
of the learned feature map. In this context, we proposed to learn the optimal depth of a
stacked AE. This is done through learning the layers’ relevance weights and while training
the stacked AE. Specifically, we proposed to optimize a novel objective function apart from
the loss function of the AE to learn the layers’ relevance weights. These relevance weights
will be used to prune irrelevant layers after training each batch, and thus dynamically
update the architecture of the stacked AE. The experiments showed that DDSAE can
dynamically learn the depth of a stacked AE in an unsupervised manner. Furthermore,
DDSAE outperformed the state-of-the-art approaches on both benchmark and real datasets.

As future work, we intend to investigate the effect of the weight threshold ratio on
the convergence of the training process in terms of computational time and resulting
performance. Moreover, we plan to learn the optimal width in addition to the depth of a
stacked AutoEncoder. This would be done by learning the relevance of each node at each
layer, then pruning irrelevant nodes.
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