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Abstract: This paper analyzes the typical technical problems arising from dumping and tamping
collision interferences in the working faces of conventional mechanized solid backfilling mining
(SBM). Additionally, the technical and consecutive characteristics of the solid intelligent backfilling
(SIB) method, the execution device, and the corresponding process categories of the SIB process
are analyzed. A design for an SIB process flow is presented. Critical algorithms, including auto-
matic recognition and optimization planning based on the cost function and laying the algorithm
foundation, are proposed to develop a backfilling process control system. A joint simulation test
system is built on a MATLAB/Simulink simulation toolkit (MSST) to simulate and test the optimized
algorithms. The results show that the optimized algorithm can realize the automatic optimization
planning and automatic interference-recognition adjustment of the backfilling process under actual
engineering conditions. In conclusion, this paper analyzes typical technical problems in the conven-
tional backfilling process, designs the SIB process flow, and develops key algorithms to achieve the
automatic control of the backfilling process.

Keywords: solid intelligent backfilling; joint simulation; interference recognition

1. Introduction

With the state’s active promotion of intelligent coal mine construction [1,2] and the
development of intelligent mines [3,4], the intelligent advancement of backfilling mining
technology was also in full swing [5,6], and intelligence was the prevalent direction of
future backfilling mining development.

The existing backfilling methods, such as tailings and cemented backfilling, based on
industrial pumps and the pipeline transportation of cementitious materials, achieved a
significant development in intelligent research and initially achieved intelligent control
of the backfilling material, key parameters, and core processes [7,8]. However, the SBM
method was based on the collaborative control of backfilling hydraulic support and a
perforated bottom discharge scraper conveyor, and the difficulty lay in the high number of
key parameters and intricate core procedure. Despite the application of electrohydraulic
control technology in mechanical devices, full autonomy in the mining and backfilling
processes was yet to be achieved. Consequently, intelligent research currently mainly
focuses on device and process improvements, and the degree of its intelligence is gradually
increasing with the development of technology.

In the research of intelligent mining’s internal logic and operation mode, the research
team of Wang et al. [9–11] designed a set of coal mine top-level system frameworks based
on integrating intelligent management and control. Huang [12] constructed a logical
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architecture centered on the “sensing, decision-making, execution and operation and
maintenance” quadrants that could preliminarily realize the demand for intelligent and
automatic mining. In the research on simulating intelligent mining devices, Liu et al. [13]
proposed a method for establishing a digital twin model of equipment at a fully mechanized
mining face. The study also conducted a simulation analysis of the fully mechanized mining
process. Wang et al. [14] designed a virtual simulation system for solid backfilling hydraulic
support (SBHS) based on Unity3D. The system utilized Unity3D to simulate the motion
of the support. Yuan et al. [15] used MATLAB software (https://ww2.mathworks.cn/en/
products/matlab.html (accessed on 10 October 2023)) to perform a kinematic simulation of
a shielded hydraulic support. In terms of hydraulic support control algorithm development
and testing, Tian et al. [16] combined BP neural network algorithms with PID control
algorithms to achieve an online adjustment of PID parameters, improving the response
speed and control accuracy of the hydraulic cylinders. Meng et al. [17] designed and
built an emulsion/pure-water hydraulic cylinder precision push experiment platform that
could complete eccentric loads, lateral loads, and other experiments on hydraulic cylinders,
providing an experimental platform for the precise control of hydraulic cylinders and the
coordinated control of hydraulic cylinder clusters.

The abovementioned literature mainly focuses on the automation and intelligence of
fully mechanized mining equipment, while the research on the automation and intelligence
of SBM technology is still limited and needs further investigation.

This paper analyzes the key links of the conventional mechanized backfilling process,
clarifies the process organization requirements of the SIB working face, and designs the
autonomous execution process of the coal mine SIB process flow. Based on the motion and
positional constraint relationships between hydraulic support mechanisms, it develops
algorithms for machine interference identification and tamping path planning to design an
SIB process flow. It builds an SIB model simulation testing system to test and preliminarily
validate the reliability of the algorithms.

2. Design for Solid Intelligent Backfilling Mining Process
2.1. Issues in the Execution of Dumping and Tamping Process

Backfilling technology can be divided into two stages: dumping and tamping. Firstly,
the working face is filled to complete the front part of the coal cutting. The coal scraper
conveyor is then pushed, followed by moving the frame and pushing the back part of
the perforated bottom discharge scraper conveyor. The working face is filled straight at
this point, and the backfilling technology can be executed. There are two typical kinds of
pose interferences in the process [18]; one is dumping interference, which occurs when the
tamping device is buried during the unloading of backfilling material from the middle slot
of an open skylight in the dumping process, as shown in Figure 1.
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The other one is collision interference, where the tamping device collides with the
perforated bottom discharge scraper conveyor during the tamping process, as shown in
Figure 2.
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Figure 2. Tamping process interference.

2.2. The Solution for the Interference of Dumping and Tamping Processes

From the abovementioned analysis, it is evident that achieving the automatic control
of fully mechanized coal mining solid backfilling technology is challenging due to the
problems of dumping and collision interferences. Therefore, there is an urgent need to
develop SIB technology with interference prediction and the automatic adjustment of the
mechanism’s movement. Before performing the tamping process, it must be ensured that
there is a suitable dumping clearance distance between the tamping device of the SBHS and
the perforated bottom discharge scraper conveyor to ensure that the backfilling materials
fall into the backfilling space. During the tamping process, it must be ensured that the
SBHS tamping device is properly positioned concerning the perforated bottom discharge
scraper conveyor during the movement of the tamping device. Therefore, it is essential to
develop an “interference-recognition algorithm” [19,20] to achieve the abovementioned
function. By analyzing the relationship between the dumping and tamping processes, an
SIB process flow without human intervention was designed, as shown in Figure 3.
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3. Interference Automatic Recognition and Tamping Path Planning
3.1. Interference Criticality Solving and Interference Automatic-Recognition Method

The SBHS tamping device is a two-degree-of-freedom structure [21], a rotating pair
between the base and tamping device, and a moving pair between the primary and sec-
ondary tamping devices. A coordinate system was established to obtain the transformation
relationship between the tamping device’s head coordinates, tamping angle, and tamping
path, as shown in Figure 4.
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In Figure 4, BC and DC represent the bottom and rear boundaries of the perforated
bottom discharge scraper conveyor, respectively; EM is the centerline of the dumping port
of the perforated bottom discharge scraper conveyor [22,23]; L0 is the unextruded length of
the tamping device, mm; L is the tapping path, mm; q1 is the tamping angle, ◦; A(x,y) is the
tamping head path function; x is the abscissa of the tamping head; y is the ordinate of the
tamping head.

The kinematic equation establishment of the tamping device is as follows:
x = L · cos(q1)
y = L · sin(q1)
L = L + L0

(1)

It is evident that to prevent any dumping interference in the dumping process, the
tamping head coordinate must be positioned to the left of the EM straight-line portion
before commencing the dumping. Therefore, the left side of the EM straight-line portion
can be defined as the dumping non-interference area.

Similarly, during the execution of the tamping process, to prevent the collision inter-
ference between the tamping device and the bottom of the perforated bottom discharge
scraper conveyor when the tamping device extends, it is only necessary to ensure that
the tamping head coordinate is beneath the BC straight-line portion. When retracting the
tamping device, it is necessary to ensure that the tamping head ordinate is smaller than the
BC straight-line ordinate to avoid collision interference between the tamping device and
the rear side of the multi-space perforated bottom discharge scraper conveyor, especially
when the tamping head abscissa is higher than or close to the CD straight-line abscissa.
For this reason, the area where the BC straight line rotates around point C to CD can be
defined as the tamping non-interference area. Based on the abovementioned principles, an
SIB process interference automatic recognition and regulation algorithm was designed, as
shown in Figure 5.
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In Figure 5, L is the tamping path, mm; q is the tapping angle, ◦; YA is the ordinate
value of the tamping head; XA is the abscissa value of the tamping head; YlBC is the
ordinate value of the BC straight-line portion; XlDC is the abscissa value of the straight-line
DC; XlEM is the abscissa value of the EM straight-line portion; ∆q is the increment of the
cyclic tamping angle adjustment, ◦; Lmax is the maximum tamping path, mm; nmax is the
maximum number of cycles required for user-defined and designed tamping processes;
and qi is the tamping angle of the i-th tamping, ◦.

The left part of Figure 5 displays the automatic recognition and regulation algorithm of
the dumping process, while the right part shows the automatic recognition and regulation
algorithm of the tamping process. In the SIB process, the dumping and tamping processes
form a loop.

In addition, it is necessary to calculate the conversion relationship between the tamping
head coordinate A(x,y), tamping angle q1, and tamping path L for the tamping device,
which mainly involves a swing angle cylinder and tamping cylinder, and where the driving
parameters are the tamping angle and tamping path, as shown below: q1 = −2 · arctan

(
x−
√

x2+y2

y

)
L0 =

√
x2 + y2 − L

(2)

3.2. Automatic Control of the Tamping Device Hydraulic Cylinder

(1) Construction of the hydraulic drive physical model for the tamping device.
For example, a hydraulic drive physical model was established for the tamping device

cylinder. As the main driving component, the hydraulic cylinder mainly involved hydraulic
pressure Fy and its corresponding hydraulic pump station, relating to hydraulic pressure P.
The hydraulic drive model ensured a stable hydraulic pressure provided by the hydraulic
pump station and controlled the tamping angle and path, as well as the stability of its
angular and linear velocities, through the internal oil pressure Fy of the cylinder. The
analysis process is as follows:

Fy = myay + Bvy (3)

where B is the damping coefficient; vy is the velocity of the cylinder motion; ay is the
cylinder motion acceleration; my is the payload quality of the cylinder; and Fy is the internal
liquid pressure of the cylinder.

.
x1 = ay
x1 = vy.
x2 = x1
Fy = U

(4)
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Therefore:
U = m

.
x + Bx (5)

The equivalent equation has the following form:

.
x1 = − B

m x1 +
U
m.

x2 = x1
(6)

where x1, x2, and U are the conversion variables.
(2) Algorithm for automatic control of hydraulic cylinder position and motion.
To guarantee the stable and efficient navigation of the tamping device past obstacles

towards its desired position, we used the common one (PID) control algorithm to build
a PID closed-loop negative feedback controller for the position/motion control of the hy-
draulic cylinder, and the PID algorithm contained proportional, integral, and derivative
parts. In the real control process, achieving the anticipated control effect involved continu-
ous adjustments to the ratio coefficient Kp, integral time constant Ki, and differential time
constant Kd parameters. The control principle diagram is shown in Figure 6 [24].
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In Figure 6, e(t) is the deviation between the input and output values, where r(t) in
e(t) = y(t) − r(t) is the input value, y(t) is the output value, t is the time interval between the
start of the adjustment and the output of the current control quantity, and y(t) is the input
control signal at the moment when the PID starts adjusting. The adjustment process is a
fixed value.

The hydraulic-cylinder-drive physical and PID control models were run using the
MATLAB platform. Following a period of closed-loop control, the tamping angular velocity,
angular acceleration, linear velocity, and linear acceleration of the tamping path of the
tamping device all entered a stable state. The debugging results are shown in Figure 7.
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3.3. Automatic Optimization Path Planning of the Tamping Device

During the movement of the tamping device, the tamping angle q1 and tamping
path L were functions of time t. By discretizing them, the point where the unit angle line
intersected with the unit elongation line was determined as the movable position of the
tamping device, and the path points within the movable range of the tamping device were
obtained. The connection point between points was the movable path of the tamping
device [25,26], forming the theoretical workspace lattice of the tamping device, as shown in
Figure 8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 18 
 

 
Figure 7. Hydraulic drive simulation model diagram. 

3.3. Automatic Optimization Path Planning of the Tamping Device 
During the movement of the tamping device, the tamping angle q1 and tamping path 

L were functions of time t. By discretizing them, the point where the unit angle line inter-
sected with the unit elongation line was determined as the movable position of the tamp-
ing device, and the path points within the movable range of the tamping device were ob-
tained. The connection point between points was the movable path of the tamping device 
[25,26], forming the theoretical workspace lattice of the tamping device, as shown in Fig-
ure 8. 

 
Figure 8. Movable path analysis diagram of the tamping device. 

For a certain target location, the motion path of the tamping device included multiple 
paths. To achieve the automatic optimization planning of the tamping device path, the 
cost function was used to calculate the corresponding costs of multiple movable paths, 
and the optimal path selection was achieved by minimizing the cost. The cost function 
considers interference avoidance, angle adjustment, and elongation (path) adjustment. 

( ) * { ( ) ( )}q LF i Z w F q w F L= +  (7)

where i  is the alternative path label; ( )F i  is the cost function; the Z  value (0 or 1) in-
dicates whether there are obstacles or not, respectively; ( )F q  is the angle adjustment 

cost; ( )F L  is the elongation (path) adjustment cost; qw  is the angle adjustment weight; 
and Lw  is the path adjustment weight. 

Figure 8. Movable path analysis diagram of the tamping device.

For a certain target location, the motion path of the tamping device included multiple
paths. To achieve the automatic optimization planning of the tamping device path, the cost
function was used to calculate the corresponding costs of multiple movable paths, and the
optimal path selection was achieved by minimizing the cost. The cost function considers
interference avoidance, angle adjustment, and elongation (path) adjustment.

F(i) = Z ∗
{

wqF(q) + wLF(L)
}

(7)

where i is the alternative path label; F(i) is the cost function; the Z value (0 or 1) indicates
whether there are obstacles or not, respectively; F(q) is the angle adjustment cost; F(L) is
the elongation (path) adjustment cost; wq is the angle adjustment weight; and wL is the
path adjustment weight.

The value of Z was only 0 or 1, indicating whether there were obstacles or not. If there
were obstacles, it was 0, indicating that the path cost was 0 and not selected. The weight
was designed based on the actual impact of the working environment on the hydraulic
adjustment. Due to the on-site data showing a higher cost of the angle adjustment, the
angle adjustment weight exceeded the path adjustment weight.

For example, as shown in Figure 8, the tamping device has multiple paths to choose
from, such as Paths I and II, from the current position A to the target position B in the
movable paths set. From Equation (7), it is evident that both paths have the same costs as
angle adjustments. Path I had a pose interference, Z = 0, and this path was discarded; Path
II had no interference, Z = 1, and Path II was selected.

Based on the cost function principle, an automatic optimization planning of the tamp-
ing device motion path was achieved. Combined with the backfilling process interference
automatic recognition and regulation algorithm previously constructed, as well as the
control algorithm of the hydraulic cylinder, an intelligent control system of the backfilling
operation movement was formed.

4. Establishment of the Simulation Test System and Design of Testing Methods
4.1. Design of the Simulation Test System Architecture

To guarantee the efficacy of simulation testing, the simulation test system was designed
with three major functions: mechanical assembly and motion simulation, electrohydraulic
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control system simulation, and process action automatic-execution algorithm simulation.
The system architecture is shown in Figure 9.
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In Figure 9, the mechanical assembly and motion simulation function is achieved using
SolidWorks to model, assemble, and provide a 3D motion simulation of the SBHS. It can
perform a mechanical assembly and motion simulation of key mechanisms, which is the
foundation of the entire simulation testing system. The simulation system of the hydraulic
cylinder electrohydraulic control system was implemented through the MATLAB platform,
which could analyze and simulate the driving process of the hydraulic cylinder, ensure
the stability of the hydraulic cylinder speed, and ensure the effectiveness of the process
action automatic-execution algorithm testing. The process action automatic-execution
algorithm simulation function was implemented through the joint simulation of MSST and
SolidWorks [27,28]. Based on the SIBPF, the process action automatic-execution algorithm
was designed, mainly including the interference automatic-recognition and path automatic-
planning algorithms.

4.2. Establishment of the Simulation Test System

(1) Three-dimensional model construction.
The SBHS model was assembled from key structures, such as a perforated bottom

discharge scraper conveyor and tamping device, as shown in Figure 10.
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The Simscape Multibody Link plugin can automatically convert the 3D geometric solid
model established by SolidWorks into a SimMechanics model [29], as shown in Figure 11.
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(2) Key parameter collection.
To achieve a simulation of the backfilling process, it was first necessary to implement

the control of the backfilling hydraulic support model. Therefore, it was necessary to
collect the paths of each hydraulic cylinder in the backfilling hydraulic support in real time.
For example, the support process required obtaining the front and rear column paths to
grasp the front top beam’s support height and inclination angle. Key parameters, such
as the expansion and contraction quantities of the perforated bottom discharge scraper
conveyor, tamping path, tamping angle, and tamping pressure must be obtained in both
the unloading and tamping processes. Correspondingly, the distance, angle, and pressure
sensors were used, and those sensors were set in the model to monitor the positions [30], as
shown in Table 1.

Table 1. Monitoring parameter settings and sensor arrangement for the backfilling hydraulic support
model.

No. Parameter Type Sensor Type Installation Position

1 Front column path ∆Lf Range sensor Front-column hinge joint A
2 Rear column path ∆Lh Range sensor Rear-column hinge joint B
3 Front top-beam height HB Range sensor Front top-beam hinge joint C

4 Expansion and contraction quantities of perforated
bottom discharge scraper conveyor ∆Ls

Range sensor Scraper and jack hinge joint D

5 Tamping pressure FN Pressure sensor Tamping head junction E
6 Tamping path L0 Range sensor Tamping head junction F
7 Tamping angle q1 Angle sensor Tamping-device hinge joint G

The installation location and model’s data collected by the sensor on the model are
illustrated in Figure 12.
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(3) Cylinder electrohydraulic drive function.
The expansion and contraction of each hydraulic cylinder in the backfilling hydraulic

support were controlled by an electromagnetic directional valve. The electromagnetic di-
rectional valve belonged to a switch valve and its extension/retraction state corresponded
to the extension and retraction states of the hydraulic cylinder. The opening time corre-
sponded to a certain number of extension and retraction paths of the hydraulic cylinder. The
reversing valve and corresponding cylinder settings in the model are shown in Figure 13.
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Among them, the support process controlled the path of the front and rear columns
by controlling the extension/contraction states of reversing valves I and II. The unload-
ing process controlled the dumping cylinder of the perforated bottom discharge scraper
conveyor by controlling the extension/contraction states of reversing valve III, thereby
simulating the control of the unloading volume. The tamping process controlled the com-
paction and swing-angle cylinder paths by controlling the extension/contraction states
of reversing valves IV and V, thereby achieving the control of the tamping head path,
which was the main control object for the interference automatic-recognition and the path
automatic-planning algorithms.

(4) Establishment of SolidWorks and (MSST) joint-simulation testing system.
The joint simulation testing system is shown in Figure 14. The key steps for the system

setup are as follows:
(i) Build a PID hydraulic drive model for each hydraulic cylinder in the backfilling

hydraulic support on the MSST and connect it to the motion joints in the SimMechanics
model to serve as a controller for hydraulic cylinder actions.

(ii) Using the MSST, write the SIB process interference automatic recognition and regu-
lation algorithm and the tamping path automatic-planning algorithm into the MATLAB-
Function module and construct the process action automatic-execution algorithm module
based on the SIBPF previously designed.
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(iii) Use the constant module to set each hydraulic cylinder’s target positions, i.e.,
operating parameters, in the backfilling hydraulic support. When executing the internal
interference automatic-recognition and tamping path automatic-planning algorithms in
the module, the tamping angle q1 and tamping path L obtained from the algorithm will be
transmitted to the PID control module of the hydraulic drive simulation model, thereby
controlling the movement of the tamping device.

(iv) Finally, the coordinate transformation sensor was used to output the motion path
data of the tamping device, and the process motion path of the tamping head in the absolute
coordinate system was displayed in the SBHS model built by SolidWorks.

4.3. Design of the Simulation Testing Plan and Process Simulation

Based on the simulation testing system previously established, different simulation
testing schemes could be achieved by setting and adjusting the operating parameters, such
as the support inclination angle and height; the initial states of driving parameters, such as
the tamping angle, tamping path, and column path; as well as the target position of the
tamping device motion.

This study simulated the support, dumping, and tamping processes using the column,
swing-angle cylinder, and tamping cylinder path as the driving parameters. Before the
start of the support process, the initial value of the support height was 2980 mm, the
target position was 3550 mm, and the simulation path was A1-A2. Before starting the
tamping process, the initial value of the tamping angle was 9◦ and the initial value of the
tamping path was 600 mm. By setting the target position points of the tamping process to
C2 and C5, the tamping device was controlled by the interface automatic-recognition and
tamping path automatic-planning algorithm modules, also known as the process action
automatic-execution algorithm module, and the simulation path was C1-C2-C3-C4-C5. After
the tamping process was completed, resetting the tamping device to the initial position
before the dumping process started to prepare for the next dumping and tamping cycles
was necessary. Before the dumping process started, the initial position of the tamping
device was C5, the target position point of the tamping device in the dumping process was
C8, and the simulation path was C5-C6-C7-C8. The abovementioned simulation results are
shown in Figure 15.
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From Figure 15, it can be seen that the motion path of the tamping device does not
reach the optimal path. During the movement process, there was a collision interference
with the perforated bottom discharge scraper conveyor. For the C5-C6 and C6-C8 segments,
the optimal action sequence should first reduce the tamping path and then increase the
tamping angle to avoid collision interference. As shown in Figure 5, when the tamping
angle reaches the maximum value, it needs to be further increased to trigger the tamping
end process, which initiates the dumping interference-recognition part. This process might
cause instability in the tamping device motion, leading to interference. Therefore, it was
necessary to improve the process action automatic-execution algorithm module. The
optimization of the algorithm is shown in the dashed box in Figure 5. The tamping device
tamping angle and tamping path reaching the maximum value were used as discriminant
markers for the end of the tamping, thus avoiding the abovementioned problems.

5. Engineering Cases
5.1. Overview of the Working Face and Process of the Solid Intelligent Backfilling

The SIB mining face of a particular coal mine in Xingtai taken as the case study was
located in the first level-2# coal seams mining area, with an average thickness of 4.4 m
and an average inclination angle of 8◦ for the coal seams. The old top was gray–white fine
sandstone with a thickness of 5–8.5 m, and the direct top was dark-gray sandy mudstone
with a 1.49–6 m thickness. The direct floor was black siltstone with a thickness of 0.40–1 m
and the old bottom was gray, medium-grained sandstone with a 3–4.83 m thickness. The
working face coal seams had a stable thickness and simple structure. The coal seams had a
strike of 92–131◦, a dip of 2–41◦, an inclination angle of 3–12◦, and a hardness coefficient
of 0.62.

By analyzing the key geological parameters, such as the average thickness of the
SIB mining-face coal seams, the average inclination angle of the coal seams, the mining
length, and the recoverable reserves of the abovementioned mine in Xingtai, the respective
parameters of the SIB mining working face were used, as listed in Table 2.

Table 2. SIB mining working face parameters.

Working Face
Name

Working Face
Length/m

Mining
Distance/m Mining Height/m Average Inclination

Angle/◦
Recoverable

Reserves/10,000 t

1# 58 633 4.4 8 21.6
2# 58 880 4.6 12 31.5
3# 58 730 4.5 11 25.5

The SIB mining face of the case study coal mine had abandoned the comprehensive
mechanized backfilling technology of operating SBM devices with the staff as the core for
full mining-height tamping.

The SIB technology of this working face comprised a sensing process, recognition
process, pose adjustment and support processes, unloading process, and tamping pro-
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cess. The key SIB technology included operation movement, execution mechanism, and
corresponding process categories, as shown in Table 3.

Table 3. Mining and backfilling process table for the SIB mining method.

No. Device Name Operation Movement Execution Device Process Category

1 Backfilling hydraulic
support

Roof guard
Moving frame, lifting frame

Sensing of parameters, such as
support height

Pose interference recognition

Cylinder guard
Cylinder bottom, column

Sensing element
Recognition module

Support process
Support process
Sensing process

Recognition process

2 Tamping device

Tapping angle change
Sensing of parameters, such as

sampling angle
Pose interference demodulation

Tamping cylinder
Slant-angle cylinder

Sensing element
Tamping cylinder, slant-angle

cylinder, etc.

Tamping process
Tamping process
Sensing process

Pose adjustment process

3 Perforated bottom
discharge conveyor

Material transportation
Dumping port switch

Body position slip
Sensing parameters, such as

dumping height
Pose interference demodulation

Scraper chain
Dumping cylinder

Slip cylinder
Sensing element

Dumping cylinder, Slip cylinder

Unloading process
Unloading process
Unloading process

Sensing process
Pose adjustment process

After designing the SIB technology, various sensors were used to obtain the backfilling
hydraulic support status and pose information. The optimized process action automatic-
execution algorithm module controlled the execution of the support cyclone action. It
controlled the electrohydraulic control system to execute the cylinder action without the
need for coal-mining machine shutdown or human intervention, saving the continuation
time of the cylinder action, reducing personnel, increasing efficiency, and ensuring a
safe production.

5.2. Model Operating-Condition Parameter Setting and Simulation Testing Scheme Design

An SIB technology testing model was built based on the SIB model simulation testing
system, combined with the mining geological conditions and filling equipment parameters
of the SIB working face for the case-study coal mine. The pre- and post-improvement
process action automatic-execution algorithm modules were used for the simulation testing
to compare the improvement effect of the process action automatic-execution algorithm.

According to the test model design in Table 4, the SBHS’s inclination angle was set at
8◦, the mining height was set at 4400 mm, and the equipment model was a four-column
backfilling hydraulic support. In the initial state, the device assembly simulation model
had a sampling angle of 6◦, a sampling path of 400 mm, and front and rear column paths of
620 mm were used as the carrier, while the front and rear columns, slant -angle cylinder,
and tamping cylinder were used as the drivers. The A1–A2 path of the support process and
C1-C2-C3-C4-C5-C6-C7-C8-C9 of the tamping process were run for the simulation testing, as
shown in Figure 16.
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Table 4. SIB working-face test model design information.

Design Object Key Design Information

Assembly design

Working environment
Inclination angle/◦ Mining height/mm Device model

8 4400 Four-column type

Initial state
Tamping angle/◦ Tamping path/mm Column path/mm

7 60 3000

Drive design
Drive cylinder Front and rear columns Slant-angle cylinder, tamping cylinder

Key parameters Front and rear column paths Tamping angle, tamping path

Process plan
Process category Support process Tamping process

Motion path A1-A2 C1-C2-C3-C4-C5-C6-C7-C8-C9
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5.3. Quantitative Analysis of the Test Results

The motion path of the tamping device of the SBHS in the simulation testing model is
shown in Figure 16. The model sensor module was used to output and analyze the path
curve during the simulation process.

The variations of the tamping device of the SBHS tamping angle and path under the
control of two algorithms during the process simulation are shown in Figure 17.

From Figure 17a,b, it can be seen that the response time of the old process action
automatic-execution algorithm for controlling the tamping angle and tamping path is 32 s.
The optimized process action automatic-execution algorithm for controlling the timing
tamping angle and tamping path has a response time of 30 s, which improves the efficiency
by 7%. In both cases, the tamping angle and path reach the target position C1–C9 with a
small amplitude difference and do not result in pose interference.

The column path variations in the process simulation under the control of two algo-
rithms are shown in Figure 18.

Figure 18 shows that, during the 2.0 s operation of the column, a pose interference
g1 occurs in the optimized process action automatic-execution algorithm. The optimized
process action automatic-execution algorithm successfully conducts interference recogni-
tion s1 and autonomously regulates b1. The regulation is successful at around 3.2 s, and the
columns overlap with the ideal state to achieve automatic avoidance. It reaches the target
position A2 of the process in 3.5 s.
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The motion path of the tamping device under the control of two algorithms during
the process simulation is shown in Figure 19.
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Figure 19 shows no abnormalities in the C1–C7 process. In C7–C8 and C8–C9, the
tamping device and the perforated bottom discharge scraper conveyor collide. The
interference-recognition algorithm identifies s2 and s3 values, automatically avoiding b2
and b3. However, automatic avoidance b3 still has a slight collision interference due to the
low-accuracy control.

6. Conclusions

(1) This study investigated the dumping interference and tamping collision interfer-
ence problems in a conventional mechanical solid backfilling working face. It designed the
SIB process flow to mitigate these problems, providing a theoretical basis for realizing the
intelligent control of the solid backfilling process.

(2) Crucial algorithms were proposed for the automatic interference recognition and
planning the motion path of the tamping mechanism in an SIB process, including the
interference automatic-recognition algorithm and automatic optimization planning algo-
rithm based on the cost function, laying the algorithm foundation for the development of a
backfilling process control system.

(3) A joint-simulation test system was built on the MSST to run and validate the
optimized algorithms. The results show that the optimized algorithm can efficiently realize
the automatic optimization planning and automatic interference-recognition adjustment of
the backfilling process under actual engineering conditions.
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