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Abstract: Modern induction cookers have started to demand challenging features such as slim design,
high power ratings, high performance, and silence. All those requirements are directly related
to the power semiconductors used in power converters. Si (silicon)-based power semiconductors
are not capable of answering those demands because of strict operating conditions, such as high
ambient temperatures. Therefore, WBG (Wide Band Gap) power semiconductors have been getting
attention. In this study, WBG power semiconductors will be compared with Si-based IGBT (Insulated
Gate Bipolar Transistor) under different operating conditions. The best option to use WBG power
semiconductors in modern induction cookers will be analyzed. The performance of a series-resonant
half-bridge converter was evaluated under various operating conditions. Measurements were
obtained from the real operating conditions of induction hobs. The switching frequency is changed
from 20 kHz to 100 kHz, while the power rating is increased to 3.7 kW. In addition to traditional
4-zone induction cooktops, this discussion also provides a comprehensive analysis of high-segment,
fully flexible induction cooktops. While the IGBT-based design exhibits 25.79 W power loss per
device, the WBG device exhibits 6.87 W in the maximum power condition of conventional induction
cooker operation. When it comes to high-frequency operation, the WBG power device exhibits
10.05 W at 95 kHz. Total power loss is still well below that of the IGBT-based conventional design.
Appropriate usage of WBG power semiconductors in modern induction cookers can exploit many
more benefits than Si-based designs.

Keywords: induction cooking; wide band gap devices; resonant converters

1. Introduction

Induction cooking applications have been drawing attention due to their superior
performance, such as fast heating, efficiency, controllability, cleanness, safety, and lower
carbon emissions, for a long time. The working principle of an induction cooktop is based
on Faraday’s Law. It produces a high-frequency magnetic field with the help of a power
electronics converter and an induction coil, and then this magnetic field induces eddy
currents directly beneath the ferromagnetic pan. As a result of this process, joule and
hysteresis losses heat up the pan [1]. The basic building block is shown in Figure 1.

Meanwhile, there are some criteria that define the performance of an induction cooktop.
High zone power ratings, high performance, total height of the product, and silence are
the most prominent ones. These criteria are directly related to power semiconductor
switch losses. All the commercialized induction cookers have been using IGBTs for a
long time. There are different types of IGBT technologies, some of which are directly
produced for resonant applications. IGBTs can be preferred thanks to their low saturation
voltage (Vcg,,,), which results in low conduction loss; however, they have limited switching
capacity because of the tail current they have during turn-off. Most modern induction
cooktops operate between 18 kHz and 50 kHz, and their resonance frequency is between
18 kHz and 20 kHz [2-4].
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Figure 1. Basic building block of domestic induction heating systems.

There are different research papers about WBG power semiconductors that show that
WBG power semiconductors are applied to domestic and industrial induction heating
applications. WBG power semiconductors are evaluated in different power electronic
systems and compared with Si-based designs in [5], while Si-based switches are compared
with WBG power switches in [6]. There is also a variety of research that is directly related
to induction cookers. Si IGBT, GaN HEMT (Gallium Nitride High Electron Mobility
Transistor), and SiC MOSFET (Silicon Carbide Metal Oxide Semiconductor Field Effect
Transistor) are compared in [7] for a 2.0 kW power rating. Refs. [8,9] compared SiC
MOSFET and SiC JFET (Junction Field Effect Transistor) in terms of power losses. In
these works, power ratings range from 200 W to 1800 W, while switching frequencies
change between 45 kHz and 125 kHz. Ref. [10] compares normally-on SiC JFET and Si
IGBT in a series resonant half-bridge converter at 2.4 kW power rating up to 500 kHz
switching frequency. All SiC power semiconductor technologies are tested and evaluated
for induction cookers in [11]. Normally-on and normally-off SiC JFETs, SiC BJT (Bipolar
Junction Transistor), and SiC MOSFETs are tested and compared from different perspectives.
SiC BJT power switches are evaluated for a new ZCS (Zero Current Switching) converter
in [12,13]. Although most of the research focuses on series-resonant half-bridge converters,
there are also papers related to single-ended quasi-resonant converters. Refs. [14-16]
apply SiC power switches to single-switch resonant converters. WBG devices enable us
to configure induction cooktops in different ways, which are hard to design with Si-based
power semiconductors. Refs. [17-19] use GaN HEMT power switches and design full-flexi
high-segment induction cooktops. Ref. [17] uses GaN HEMT in 2 MHz switching frequency
and loads power up to 15 A. It also considers thermal perspective and layout design.
Ref. [18] elaborates on full-flexi induction cookers. It simulates 800 W load power for
different switching frequencies ranging from 100 kHz to 500 kHz. Ref. [19] implements GIT
(Gate Injected Transistor) GaN HEMT technology in induction cookers at 2.2 kW power
and 50 kHz-100 kHz switching frequencies.

A series resonant half-bridge converter is evaluated at different operating conditions.
Measurements are inspired by real induction cooker operating conditions. The power
rating is increased up to 3.7 kW, while the switching frequency ranges from 20 kHz to
100 kHz. Apart from traditional 4-zone induction cookers, high-segment full-flexi induction
cookers are also elaborated in detail. To show the benefits of WBG device performance,
WBG power devices under power ratings range from 0.3 kW to 1 kW while switching
frequencies range from 265 kHz to 1 MHz.

The objectives of this research can be summarized as follows:

e  The proper power semiconductor selection criteria for domestic induction cooktops
are examined.



Appl. Sci. 2023,13, 12517

3 0f27

e  The benefits of using WBG in domestic induction under different operations in com-
parison with Si-based IGBT are examined.

e  The power losses are analyzed for each specific working condition. Thermal and
electrical measurements are taken.

e  The proper conditions to switch from Si-based conventional design to WBG-based
state-of-the-art design are researched.

2. Power Semiconductor Selection for Series Resonant Half-Bridge Converter
2.1. Operating Conditions for Series Resonant Half-Bridge Converter

To determine the performance of a power semiconductor, there are two significant
operating conditions in an induction cooktop: In operation 1, the power converter is
working at its maximum load power and minimum switching frequency, whereas in
operation 2, it is working at a lower load power and a higher switching frequency. In this
section, these operating conditions are analyzed in detail to determine the proper power
semiconductor selection.

2.1.1. Operating Condition 1: Maximum Load Power—Minimum Switching Frequency

Condition 1 is the maximum load power condition where the switching frequency is so
close to the resonant frequency, thus switching losses are mostly dominated by conduction
losses. As can be seen from the waveforms in Figure 2a,b, the turn-off current is nearly zero,
thus switching losses are negligible. Because of the snubber capacitors, the diode region
does not occur. As a result, total loss is mostly dominated by conduction loss.

2.1.2. Operating Condition 2: Lower Load Power—Higher Switching Frequency

In this condition, the switching frequency is increased to reduce load power. When
the load power is decreased, the load current decreases; therefore, conduction loss will
be lower than in Operating Condition 1. Switching losses are higher than in Operating
Condition 1 because of increased frequency and a higher turn-off current. The diode region
occurs obviously due to the operation in the inductive region. Waveforms are shown in
Figure 3a,b. The power losses are dominated by conduction losses; however, switching and
diode losses are also effective on converter performance.

The major electrical parameters for the two operating conditions are listed in Table 1.

Table 1. Operating conditions fundamental parameters.

Parameters Condition-1 Condition-2
Switching frequency 19.5 kHz 22 kHz
Duty cycle 0.5 0.5
Dead time 1.5 us 1.5 us
Liurnoft 8A 40 A
Max. coil current 7933 A 58.33 A
RMS coil current 37.00 A 2771 A
Max. switch current 79.33 A 58.33 A
RMS switch current 19.17 A 1414 A
Avg. switch current 1.96 A 8.29 A
Max. diode current 28 A 64 A
RMS diode current 0.86 A 339 A

Avg. diode current 011 A 0.85 A
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Figure 2. Operating condition-1 waveforms: (a) 4 ms/div; (b) 20 us/div. Yellow waveform: gate drive
signal, blue waveform: IGBT Vg voltage, red waveform: IGBT I current measured by Rogowski coil,
green waveform: induction coil current, purple waveform (math2): IGBT current without Rogowski
offset, orange waveform: IGBT power loss.
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Figure 3. Operating condition-2 waveforms: (a) 4 ms/div; (b) 20 us/div. Yellow waveform: gate drive
signal, blue waveform: IGBT V¢ voltage, red waveform: IGBT I¢ current measured by Rogowski coil,
green waveform: induction coil current, purple waveform (math2): IGBT current without Rogowski

offset, orange waveform: IGBT power loss.
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2.2. Si-Based Power Semiconductor Selection

Modern induction cookers prefer Si-based IGBTs thanks to their low saturation volt-
ages (Vcg,,,) and moderate switching capacities, which are limited due to tail current
phenomena occurring during turn-off. As can be seen from the operating conditions
explained in the previous sections, conduction loss is one of the most important factors
affecting total losses. That is the reason IGBTs are preferred in this application. There are
plenty of manufacturers that produce Si-based IGBTs for half-bridge converters. 600-650 V
and 40-50 A IGBTs are mostly used in series resonant half-bridge converters. This section
tries to find out the most suitable IGBT by comparing their performances with selected
WBG devices.

The datasheet parameters are used preliminarily to compare IGBTs. The first parameter
is the saturation voltage. Figure 4a,b show saturation voltages of IGBTs for different
junction temperatures. The second parameter is the diode forward voltage. Figure 5a,b
show forward voltage drops for different junction temperatures. As mentioned above,
conduction loss is the major contributor to total switch loss. Therefore, Vcg_, is the most
crucial parameter to determine IGBT.

SATURATION VOLTAGE (Tjypeqion 25 °C)
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Figure 4. IGBT saturation voltages at different junction temperatures: (a) IGBT Vcr_, voltages at

sat

25 °C junction temperature; (b) IGBT Vg, voltages at 175 °C junction temperature.
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Figure 5. Diode VF voltages at different junction temperatures: (a) Diode VE voltages at 25 °C junction
temperature; (b) Diode Vr voltages at 175 °C junction temperature.

When Vg, — Ic characteristics are compared at different junction temperatures,
Infineon’s IHW50N65R6 and Onsemi’s FGHL75T65MQDT IGBTs are suitable for high-
power applications. However, IHW50N65R6 is selected for comparison with the WBG
devices since this IGBT is specifically produced for induction heating applications and
is preferable both in terms of cost and technical specifications. When comparing Vr — Ir
characteristics that are at different junction temperatures, IHW50N65R6 is not the best
option to choose; however, diode conduction loss is a small portion of the total conduction
losses, hence making IHW5065R6 the best selection for this application. IHW50N65R6 has
Reverse Conduction IGBT (RC IGBT) technology, which integrates the body diode into the
IGBT die so it only uses one die. This is advantageous in terms of manufacturing, cost,
packaging, and EML
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2.3. WBG-Based Power Semiconductors Selection

Wide-band gap power semiconductors have been popular for modern power elec-
tronics applications such as EV (Electrical Vehicle) charges, renewable energy systems,
traction inverters, PFC (Power Factor Correction) circuits, and motor drivers. While the
requirements of modern systems have been getting more challenging, Si-based power
semiconductors, which are already within their theoretical limits, are not able to live up to
those demands. The advantageous characteristics of wide band gap power semiconductors,
such as high PCB (Printed Circuit Board) density, lack of bulky heatsinks, and cooling fans,
are just a few of them. As Si-based power semiconductors get closer to their theoretical
limits, new searches focus on wide band gap semiconductors. Table 2 compares the basic
chemical characteristics of Si and WBG semiconductors.

Table 2. Semiconductor Material Comparison.

Feature Unit Si 6H-SiC 4H-SiC GaN Diamond
c;lﬁ?ﬁility [W/cmK] 15 49 49 13 2
Band Gap [eV] 1.12 3.03 3.26 3.45 5.5
Breakdown Field [MV/cm] 0.3 25 2.2 3.3 20
Dielectric Constant 11.9 9.66 9.7 8.5-10.4 5.5
Electron Mobility [em?/Vs] 1500 400 800 2000 1060
Drift Velocity [107 em/s] 1.02 2.0 2.0 2.2 2.5

In series resonant half-bridge converters, the maximum voltage stress of power
switches is 325 V. Therefore, a power semiconductor whose voltage rating is 650 V can be
selected. To compare with Si-based power semiconductors, GS66516B from GaN Systems
is selected in order to examine the usage of WBG power semiconductors in domestic
induction heating applications. It can switch on and off at tremendous speeds that Si-based
devices cannot reach. Its voltage strength is 650 V, which is very well suited for grid-
connected series resonant half-bridge converters. The electrical characteristics of selected
power semiconductors are shown in Figure 6a—c.
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Figure 6. Cont.
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Figure 6. Characteristics of selected power semiconductors for domestic induction heating applica-
tion: (a) IHW50N65R6 IGBT Vg, characteristics for different junction temperatures; (b) G566516B

Rps,, characteristics for different junction temperatures; (c) Reverse conduction characteristics
for both.

A\

3. Experimental Results

The WBG power device is tested at different operating conditions to find out the
optimum operating conditions to use WBG power semiconductors properly. First, the
WBG power semiconductors are operated in conventional domestic induction cooking
conditions and analyzed at high power and low switching frequencies. Secondly, WBG
power semiconductors are analyzed by operating at high switching frequencies with the
same zone powers as conventional induction cooktops. Finally, WBG power semiconduc-
tors operate in high-segment full-flexi induction cooktops and are analyzed for different
switching frequencies and powers. At the end of the measurement results, advantages and
disadvantages are listed. When and how to use this new generation of power semiconduc-
tors in domestic induction cooktops is elaborated in detail. Figure 7 shows the roadmap for
how to integrate WBG devices into domestic induction cooktops.
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High Zone Power (3700W—4000W)

Snubber Capacitors with Lower Farads (<2.2nF)
Compact and Low Volume Heatsink

Compact, Low Volume and Silent Cooling Fan

WBG for Standart Domestic Induction
Heating Conditions

High Zone Power (3700W—4000W)

Higher Operating Frequencies (50kHz—100kHz)
Induction Coil with Lower Inductance (<20uH)
Resonance Capacitors with Lower Farads (<270nF)
Snubber Capacitors with Lower Farads (<2.2nF)
Compact and Low Volume Heatsink

Compact, Low Volume and Silent Cooling Fan
Design without Cooking Zone

Multiple Inverters with Multiple Coils

High Operating Frequencies (>>100kHz)
Induction Coils with Lower Inductance (<10uH)
Resonance Capacitors with Lower Farads (<10nF)
Design without Snubber Capacitors

Design without Heatsink

Design without Cooling Fan

WBG for High Frequency Domestic
Induction Heating Conditions

WBG for Full-Flexi Domestic Induction
Heating Conditions

Figure 7. Roadmap to use WBG power semiconductors in domestic induction heating applications.

GaN Systems GSP65RxxHB-EVB is chosen to compare the WBG power semiconductor
with the Si-based IGBT. This board is specifically designed for high-power applications;
hence, it contains two GS566516B GaN HEMTs in parallel. Its PCB structure is designed as
an IMS (Insulated Material Board). The power stages are shown in Figure 8a—c.
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Figure 8. Cont.
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Figure 8. Power sections are used in measurements. (a) Line filter; (b) Resonance Converter; (c) Gate

driver circuitry block diagram.

While all thermal measurements are taken with Fluke Ti480, all oscilloscope mea-
surements are taken by TELEDYNE Lecroy HDO6054. To prevent power devices from a
thermal runaway, a cooling fan is used. While its rated voltage is 12 V DC, it is used in a
5V DC condition.

3.1. Si-Based IGBT in Conventional Induction Cooking Operation

In this section, the selected IHW50N65R6 (Infineon) is tested in conventional induction
cooking operations. While oscilloscope measurements are shown in Figure 9a,b thermal
measurements are shown in Figure 10a,b. Power circuit parameters and power losses are
shown in Tables 3 and 4, respectively.

Table 3. Power circuit parameters for conventional induction cooking (IHW50N65R6).

Pinput (kW] fsw [kHz] Req [ Leq [uH] Cres [nF] Cenub [nF] tqe [us] Fan Level [V]
Cond. 1 3.70 20.00 2.60 54.00 2 X 680 2x22 1.50 5V/(12V)
Cond. 2 2.40 22.00 3.29 52.00 2 x 680 2x22 1.50 5V/(12V)

Table 4. Power losses for conventional induction cooking operation (IHW50N65R6).

Peona [W] Psw [W] Pgy [W]

Cond. 1 24.00 1.27 0.52
Cond. 2 15.67 1.50 0.82
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Figure 9. IHW50N65R6 oscilloscope measurements at conventional induction cooking operations:
(a) Operating condition—1 waveforms; (b) Operating condition—2 waveforms. Yellow (CH1) and red
(CH2) waveforms are low and high side IGBT Vg voltages, respectively; blue waveform (CH3) is

coil current; green waveform (CH4) is high side IGBT current; orange waveform (MATH?2) is high
side IGBT power loss.
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63.6

Figure 10. THW50N65R6 thermal measurements at conventional induction cooking operation:
(a) Thermal measurements of operating condition 1; (b) Thermal measurements of operating condi-
tion 2.

This IGBT is one of the best IGBTs that could be used in domestic induction cooking
applications. Therefore, these thermal measurements and power losses refer to WBG power
semiconductor measurements.

3.2. WBG Device in Conventional Induction Cooking Operation

In this section, the selected GS66516B is tested in conventional induction cooking
operations. While the oscilloscope measurements are shown in Figure 11a,b, thermal
measurements are shown in Figure 12a,b. The power circuit parameters and power losses
are shown in Tables 5 and 6, respectively.

Table 5. Power circuit parameters for conventional induction cooking operation (GS66516B).

Pinput KWl fow [kHz] Req [Q] Leq [uH] Cres [NF1  Cgpyp [nF] tdeﬁj‘:}me Fan Level [V]
Cond. 1 3.70 19.00 2.60 58.00 2 % 680 2%22 0.50 5V/(12V)
Cond. 2 2.40 21.50 3.00 54.00 2 % 680 2%22 0.50 5V/(12V)

Table 6. Power losses for conventional induction cooking operation (GS66516B).

Peona [W] Psw [W] Pg [W]

Cond. 1 6.36 0.13 0.38
Cond. 2 3.10 0.15 0.65
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Figure 11. GS66516B oscilloscope measurements at conventional induction cooking operation: (a) Op-
erating condition 1 waveforms. (b) Operating condition 2 waveforms. Red (CH2) and green (CH4)
waveforms are low and high side HEMTs Vpg voltages, respectively; blue (CH3) waveform is
coil current.
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Figure 12. Cont.
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4786

i 4.9
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Figure 12. GS66516B thermal measurements at conventional induction cooking operation: (a) Thermal

measurements of operating condition 1; (b) Thermal measurements of operating condition 2.

3.3. WBG for High-Frequency Induction Cooking Conditions

As mentioned in the previous sections, the WBG power semiconductor enables us to
increase switching frequency due to its superior switching performance. In this section,
the WBG device is tested at a high switching frequency without sacrificing power ratings.
While the oscilloscope measurements are shown in Figure 13a,b, thermal measurements
are shown in Figure 14a,b. The power circuit parameters and power losses are shown in
Tables 7 and 8, respectively.

Table 7. Power circuit parameters for high-frequency induction cooking operation (GS66516B).

Pinput kW] fo [kHz] ~ Req[Q]  Leq[uH]  Cres[nFI  Cypyp [nF] tde[ﬁ;i]me Fan Level [V]
Cond. 1 3.60 95.00 2.36 17.00 2 x 94 2x22 0.50 5V/(12V)
Cond. 2 2.80 100.00 2.42 16.50 2 X 94 2x22 0.50 5V/(12V)

Table 8. Power losses for high-frequency induction cooking operations (GS66516B).

Pcond W1 Psw W] wa [W]

Cond. 1 722 0.67 2.16
Cond. 2 5.26 0.71 2.85
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Figure 13. GS66516B oscilloscope measurements at high-frequency induction cooking operation:
(a) Operating condition 1 waveforms; (b) Operating condition 2 waveforms. Yellow (CH1) and red
(CH2) waveforms are low and high side HEMTs Vpg voltages respectively, blue (CH3) waveform is

coil current.
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Figure 14. GS66516B thermal measurements at high-frequency induction cooking operation: (a) Ther-
mal measurements of operating condition 1; (b) Thermal measurements of operating condition 2.

3.4. WBG for All Metal Induction Cooking Operation

Most domestic induction cooktops need ferromagnetic pans to heat up. They cannot
heat non-ferromagnetic materials such as copper and aluminum because of their low
equivalent resistance (R,;) and inductance (Leg). To transfer high power ratings (above
2.3 kW) to non-ferromagnetic pans with modern induction cooktops, coil and switch current
ratings increase to levels that Si-based power semiconductors are not able to withstand.
These types of pans can be heated up to high power levels by increasing the switching
frequency to increase the equivalent series resistance. WBG power semiconductors can be
used in this type of application to increase switching frequency to heat non-ferromagnetic
materials [20]. While oscilloscope measurements are shown in Figure 15a,b, thermal
measurements are shown in Figure 16a,b. The power circuit parameters and power losses
are shown in Tables 9 and 10, respectively.

Table 9. Power circuit parameters for all-metal induction cooking operation (GS66516B).

Pinput kW] fo [kHz] ~ Req[Q]  Leq[uH]  Cres[nFI  Cypyp [nF] tdeﬁf:]me Fan Level [V]
Opt. 1 2.30 100.00 1.87 17.00 2 x 94 2 %22 0.50 5V/(12V)
Opt. 2 1,50 105.00 1.99 17.00 2 x 94 2 %22 0.50 5V/(12V)

Table 10. Power losses for all-metal induction cooking operations (GS66516B).

Pcond W1 Psw W] wa [W]

Opt. 1 6.43 0.70 4.24
Opt. 2 3.78 0.75 4.15
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Figure 15. GS66516B oscilloscope measurements at all-metal induction cooking operation: (a) Oper-
ating condition 1 waveforms; (b) Operating condition 2 waveforms. Yellow (CH1) and red (CH2)
waveforms are low and high side HEMTs Vpg voltages, respectively; blue (CH3) waveform is

coil current.
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Figure 16. GS66516B thermal measurements at all-metal induction cooking operation: (a) Thermal
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measurements of operating condition 1; (b) Thermal measurements of operating condition 2.

3.5. WBG for Full-Flexi Operation

The flexi induction cooktops are high-segment induction cookers that can heat every
section of the hob without specific zones. These types of cooktops consist of multiple
inverters and induction coils with low power ratings. In this section, operating conditions
that could be used in flexi applications are covered. Figure 14 shows waveforms at different
operating conditions. The thermal measurements are shown in Figure 15. All power losses
and operating conditions are shown in Figure 16. While the oscilloscope measurements
are shown in Figure 17a—e, thermal measurements are shown in Figure 18a—e. The power
circuit parameters and power losses are shown in Tables 11 and 12, respectively.

Table 11. Power circuit parameters for full-flexi induction cooking operations (GS66516B).

Pinput KWI  foy [kHz] Req [Q] Leq [uH] Cres [NF1  Cgpyp [nF] tde[ﬁ:]me Fan Level [V]
Opt. 1 0.87 265.00 8.53 20.00 2 x11 2 x 0.470 0.20 0v/(12V)
Opt. 2 0.53 295.00 14.00 18.50 2 x11 2 x 0.470 0.20 0v/(12v)
Opt. 3 0.30 500.00 20.00 15.00 2 x11 2 x 0.470 0.20 5V/(12V)
Opt. 4 1.00 625.00 591 4.60 2 x11 2 x 0.470 0.20 5V/(12V)
Opt. 5 0.40 1000.00 8.90 4.80 2x 4.7 2 x 0.470 0.20 5V/(12V)
Table 12. Power losses for full-flexi induction cooking operations (GS66516B).
Peona [W] Psw [W] Pg, [W]

Opt. 1 0.38 1.86 2.20

Opt. 2 0.14 2.06 2.18

Opt. 3 0.04 3.45 3.46

Opt. 4 0.58 443 5.45

Opt. 5 0.17 6.98 7.36
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Figure 17. GS66516B oscilloscope measurements at full-flexi induction cooking operation (a) Op-
erating condition 1 waveforms; (b) Operating condition 2 waveforms; (c¢) Operating condition
3 waveforms; (d) Operating condition 4 waveforms; (e) Operating condition 5 waveforms. Yellow
(CH1) and red (CH2) waveforms are low and high side HEMTs Vpg voltages, respectively; blue (CH3)
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Figure 18. GS66516B thermal measurements at full-flexi induction cooking operation: (a) Operat-
ing condition 1; (b) Operating condition 2; (c¢) Operating condition 3; (d) Operating condition 4;
(e) Operating condition 5.

4. Discussion

In this study, the application of WBG power semiconductors in domestic induction
cookers is investigated. WBG power switches have been tested under different working
conditions. All measurements are summarized in Table 13. The results of the studies show
that WBG switches have very reasonable conduction characteristics compared to their Si
counterparts. Measurement results are shown in Figure 19. Conduction losses are quite
dominant in domestic induction heating topologies, so a much better conduction character-
istic can be achieved by connecting two or more switches in parallel. Thus, much better
product performance can be achieved. Increasing the operating frequency to very high
levels compared to conventional operating conditions makes the switching characteristics
more important. As can be seen from Figure 20, the WBG semiconductor shows many
times better switching characteristics. Therefore, it is much easier to reach high switching
frequencies than Si-based IGBTs. With a suitable coil design, performance improvement
can be achieved by minimizing switching losses, especially at high frequencies. Coil design
is beyond the scope of this study. In the case of full-flexi operation, very high switching
frequencies make reverse conduction losses much more important. Measurement results
are shown in Figure 21. The reverse-conduction characteristics of WBG switches are poor.
Therefore, the reverse conduction region should be kept very short so that the current
flows through the channel. In this way, losses can be additionally minimized. With an
appropriate coil design, the duration of the free-wheeling region can be further minimized.

Table 13. All measurements result.

Pinput Re Leq Cres tat Fan Level Peond Psw Pew
powl B 0HZor g R G P V] Wl W W]
Conventional Induction Cooking Operation (IHW50N65R6)

Cond. 1 3.70 2.60 54.00 2 x 680 2x22 1.50 5V/(12V)  24.00 1.27 0.52
Cond. 2 2.40 3.29 52.00 2 x 680 2x22 1.50 5V/(12V) 15.67 1.50 0.82
Conventional Induction Cooking Operation (GS66516B)

Cond. 1 3.70 2.60 58.00 2 x 680 2x22 0.50 5V/(12V) 6.36 0.13 0.38
Cond. 2 2.40 3.00 54.00 2 x 680 2x22 0.50 5V/(12V) 3.10 0.15 0.65
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Table 13. Cont.

Pinput Re Le Cres t Fan Level Peon Psw Pew
powl B OHA G g R CswFL V] W W W]
WBG for High-Frequency Induction Cooking Conditions (GS66516B)

Cond. 1 3.60 95.00 2.36 17.00 2 x 94 2x22 0.50 5V/(12V) 7.22 0.67 2.16
Cond. 2 2.80 100.00 2.42 16.50 2 x 94 2x22 0.50 5V/(12V) 5.26 0.71 2.85
WBG for High-Frequency Induction Cooking Conditions (GS66516B)

Cond. 1 2.30 100.00 1.87 17.00 2 x 94 2x22 0.50 5V/(12V) 6.43 0.70 4.24
Cond. 2 1.50 105.00 1.99 17.00 2 x 94 2x22 0.50 5V/(12V) 3.78 0.75 4.15
WBG for High-Frequency Induction Cooking Conditions (GS66516B)

Cond. 1 0.87 265.00 8.53 20.00 2x11 2 x 0.470 0.20 0v/(12V) 0.38 1.86 2.20
Cond. 2 0.53 295.00 14.00 18.50 2x11 2 x 0.470 0.20 0v/(12V) 0.14 2.06 2.18
Cond. 3 0.30 500.00 20.00 15.00 2 x 11 2 x 0.470 020 5V/(12V)  0.04 3.45 3.46
Cond. 4 1.00 625.00 591 4.60 2x11 2 x 0.470 0.20 5V/(12V) 0.58 4.43 5.45
Cond. 5 0.40 1000.00 8.90 4.80 2x47  2x0470 020 5Vv/(12Vv) 017 6.98 7.36
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Figure 19. All condition 1 measurements.
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Figure 21. All full-flexi measurements.

5. Conclusions

In this study, the optimal use of WBG power devices in domestic induction heating
applications is examined. GaN HEMT is tested for different operating conditions to find
optimum operating conditions and tried to answer “When it makes sense to switch Si-based
IGBTs to WBG power semiconductors”. The first step is to use WBG power semiconductors
in conventional domestic induction heating conditions. In this condition, the power rating
is high and the switching frequency is low; therefore, the main contributor to total power
loss is conduction loss. A WBG power semiconductor whose on-state resistance is so low
that its conduction loss is well below Si-based IGBTs can outperform. However, a discrete
power semiconductor with lower on-state resistance than IGBT can cost too much. Using
two or more switches in parallel is another solution, but this is not cost-effective either.
Potential EMI problems are another issue to deal with because of the high dv/dt and
di/dt ratings. As a result, the fact that a WBG power semi-conductor operates in standard
domestic induction heating conditions does not make sense in terms of the total product.

The second step is to use WBG power semiconductors in high-frequency applications
with the same zone power as conventional cooktops, thanks to their superior switching
performance. In this condition, we can reduce the size of passive components considerably.
As a result of this, more efficient power conversion, and a slim, low-noise design can be
achievable. The decreasing number of turns in induction coils and capacitors with low ESR
(Equivalent Series Resistance) values contributes to total efficiency. The cost of WBG power
devices can be met by other design parameters, such as passive components with lower
values, heatsinks with low volumes, cooling fans with low power, and induction coils with
a lower number of turns. High-frequency operation can also be effective in heating non-
ferromagnetic materials such as aluminum and copper. These types of pans can be heated
without complex induction coil and power converter designs due to their high operating
frequencies. As a result, the usage of WBG power semiconductors in high-frequency and
power conditions makes sense.

The other operating condition is the flexi induction cooktop design with WBG power
devices. Flexi cooktops can heat a pan anywhere on the glass. They use multi-inverters
structure with multiple induction coils to achieve this type of design. WBG power devices,
specifically GaN HEMT, can be suitable for these designs because they can switch at very
high speeds. Ultra-high switching speeds can also enable planar magnetics, which is also



Appl. Sci. 2023,13, 12517 26 of 27

an important advantage for increasing power density. Low power loss due to the superior
characteristics of GaN HEMT could enable to design without a heatsink and a cooling fan.
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Nomenclature
Vce,, IGBT saturation voltage fsw  Switching frequency
Ic IGBT collector current Reg  Equivalent resistance
Ve Diode forward voltage Leg  Equivalent inductance
Ir Diode current Cres Resonance capacitors
Rps,, GaN HEMT On-state resistance Csnup  Snubber Capacitors
Ip GaN HEMT Drain current tat Dead time
Vsp ~ GaN HEMT Reverse voltage drop  P.,; Conduction loss
di/at  The rate of change of current Py  Switching loss
dv/gt  The rate of change of voltage P, Reverse conduction loss

Pinput  Input power
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