
Citation: Gogos, C. Solving the

Distributed Permutation Flow-Shop

Scheduling Problem Using

Constrained Programming. Appl. Sci.

2023, 13, 12562. https://doi.org/

10.3390/app132312562

Academic Editors: Xianpeng Wang

and Kuo-Ching Ying

Received: 20 September 2023

Revised: 14 November 2023

Accepted: 19 November 2023

Published: 21 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Solving the Distributed Permutation Flow-Shop Scheduling
Problem Using Constrained Programming
Christos Gogos

Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece; cgogos@uoi.gr

Abstract: The permutation flow-shop scheduling problem is a classical problem in scheduling that
aims at identifying the optimal sequence of jobs that should be processed in a number of machines in
an effort to minimize makespan or some other performance criterion. The distributed permutation
flow-shop scheduling problem adds multiple factories where copies of the machines exist and asks for
minimizing the makespan on the longest-running location. In this paper, the problem is approached
using Constraint Programming and its specialized scheduling features, such as interval variables
and non-overlap constraints, while a novel heuristic is proposed for computing lower bounds. Two
constraint programming models are proposed: one that solves the Distributed Permutation Flow-
shop Scheduling problem, and another one that drops the constraint of processing jobs under the
same order for all machines of each factory. The experiments use an extended public dataset of
problem instances to validate the approach’s effectiveness. In the process, optimality is proved for
many problem instances known in the literature but has yet to be proven optimal. Moreover, a high
speed of reaching optimal solutions is achieved for many problems, even with moderate big sizes
(e.g., seven factories, 20 machines, and 20 jobs). The critical role that the number of jobs plays in the
complexity of the problem is identified and discussed. In conclusion, this paper demonstrates the
great benefits of scheduling problems that stem from using state-of-the-art constraint programming
solvers and models that capture the problem tightly.

Keywords: scheduling; constraint programming; heuristics; lower bounds; distributed permutation
flow-shop scheduling problem; distributed flow-shop scheduling problem; benchmark dataset

1. Introduction

The problem that is investigated in this paper is the Distributed Permutation Flow-
shop Scheduling Problem (DPFSP), which is an extension of the Permutation Flow-shop
Scheduling Problem (PFSP), a variant of the Flow-shop Scheduling Problem (FSP), which,
in its turn, is closely related to the Job-shop Scheduling Problem (JSP).

JSP constitutes a classical combinatorial optimization challenge in production planning
and scheduling. It serves as a fundamental abstraction of scheduling tasks in manufacturing
and service environments, wherein a finite number of jobs, each comprising a sequence
of tasks (also referred to as operations), must be executed on a set of machines. Each task
requires a predefined processing time and can only be performed on a specific machine.
The objective of JSP is to construct a schedule that optimizes a chosen performance criterion,
which is often the minimization of the makespan (i.e., the time it takes to finish all jobs in a
given schedule). At the same time, numerous operational constraints must be respected,
often precedence constraints that stipulate the order of execution for the tasks within
each job.

FSP closely parallels the JSP in terms of its conceptualization. Within the FSP, a set of
jobs is subject to processing on a sequence of machines, each with the same predetermined
order of tasks. This sequential constraint differentiates the FSP, which maintains a consistent
order of tasks across all jobs and from the JSP, where task sequences can vary among

Appl. Sci. 2023, 13, 12562. https://doi.org/10.3390/app132312562 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312562
https://doi.org/10.3390/app132312562
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1113-8462
https://doi.org/10.3390/app132312562
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132312562?type=check_update&version=1

Appl. Sci. 2023, 13, 12562 2 of 26

machines. On the other hand, in FSP, the order of jobs executed at each machine can
be different.

PFSP emerges as a variant of the FSP, introducing an additional constraint that states
that a fixed order of jobs (i.e., a specific permutation of jobs) should be maintained for all
machines. At the same time, as in FSP, all jobs have the same processing order through
the machines. PFSP represents an actual requirement of several installations when, for
example, a conveyor feeds tasks to the machines. Then, the sequence of jobs each machine
should process should be the same for all jobs.

Finally, DPFSP is a problem introduced in [1] that extends PFSP by allowing more
than one identical factories to exist in the problem. So, each factory contains an identical
set of machines with other factories. Denoting with Pji f as the processing time of job j on
machine i of factory f , it holds that Pji0 = Pji1 = Pji2 = · · · . The typical objective of DPFSP
is to minimize the makespan.

The rest of the paper is organized as follows: Section 2 provides a detailed description
of DPFSP, alongside a description of publicly available problem instances (i.e., two datasets:
one with small problem sizes and one with large ones) that will be used in the experiments.
The next section (Section 3) presents the related work. The following section (Section 4)
presents the approach employed for solving the DPFSP. It starts with a subsection for the
heuristic used to produce good initial solutions. Then, a detailed description of a Constraint
Programming model of DPFSP follows. A second model is then presented that drops
the same permutation for all machines of the same factory constraint, which essentially
changes the problem and now becomes DFSP. Then, a novel heuristic is presented, capable
of generating good lower bounds. Section 5 presents results firstly about the efficacy of the
lower-bound heuristic. Then, results are shown for the small dataset, where all problem
instances are solved to optimality. In the next subsection, results are presented for the
first group of large problem instances (i.e., the first 30 problem instances for each category
defined by the number of factories, which are 2, 3, 4, 5, 6, and 7). These 180 problem
instances are also solved optimally for most of the cases. Then, Section 6 discusses the
paper’s findings. Finally, the last section (Section 7) presents the conclusions. Tables with
detailed results are included in the paper’s Appendix A.

2. Problem Description

In the Distributed Permutation Flow-shop Scheduling Problem (DPFSP), a set of n
unrelated jobs are processed in F factories. A factory should be selected for processing
each job. Each factory is equipped with a set of m machines. These machines are uniformly
aligned across all factories, meaning the first machine in any factory has the same char-
acteristics as the first machine in every other factory, and this uniformity applies to all
subsequent machines in the series. Each job, when processed in a factory, must sequentially
pass through all m machines under the flow-shop constraint. Every job is composed of m
tasks, corresponding to each machine, and the processing time for each task is fixed, based
on the specific job and machine. Also, the following assumptions hold:

• All factories can process all jobs.
• All machines are available throughout the scheduling horizon.
• Each machine can process at most one job at a time.
• Machine setup times for executing tasks are considered to be 0 or are consolidated to

the process time of each task.
• Jobs are independent from each other.
• All jobs are available to start at time 0.
• Each job is processed at one machine at a time.
• The route that each job should follow through the machines of a factory is the same

for all jobs and known.
• Once a job is assigned to a factory, it must conclude its processing at this factory.
• Each task should finish processing, once it has started (i.e., preemption is not allowed).

Appl. Sci. 2023, 13, 12562 3 of 26

The solution to the problem is F sequences of jobs, with one for each factory indicating
the production order of jobs for this factory. The desired solution is any solution that
minimizes the maximum makespan across all factories. Using the three-field notation
(machines/constraints/objective) introduced by Carter et al. in [2], DPFSP is categorized
as DF/prmu/Cmax, where DF stands for Distributed Flow-shop, prmu for permutation,
and Cmax for the maximum completion time among all jobs.

In PFSP, the size of the solutions space is n! since a permutation of the n jobs has to
be found. DPFSP is even harder, and in [1], it is proven to have (n−1

F−1)n! possible solutions
when the optimality criterion is makespan. So, the search space of DPFSP is considerably
larger than the search space of PFSP, and since DPFSP is reduced to PFSP when F = 1, it
can be concluded that DPFSP is NP-complete as PFSP is proved to be NP-complete [3],
provided that n > F.

2.1. Benchmark Instances

The benchmark instances for DPFSP that will be used for validating the efficiency
of the approaches described in this work are publicly available; see the Data Availability
Statement at the end of this manuscript. These benchmark instances were first introduced
in [1] and contained two datasets: one small and one large. The small dataset consists of
420 small-sized instances, with five instances for each combination of n = {4, 6, 8, 10, 12, 16},
m = {2, 3, 4, 5}, and F = {2, 3, 4}, where n is the number of jobs, m is the number of
machines, and F is the number of factories. Likewise, the large dataset is composed
of 720 problem instances, derived via the classic benchmark instances of Tailard [4], by
augmenting them with six values for the number of factories F = {2, 3, 4, 5, 6, 7}. In
particular, there are 540 problem instances, with 10 instances for each combination of
F = {2, 3, 4, 5, 6, 7} × n = {20, 50, 100} × m = {5, 10, 20}, 120 problem instances for
F = {2, 3, 4, 5, 6, 7} × n = {200} ×m = {10, 20} × 10 instances, and 60 problem instances
for F = {2, 3, 4, 5, 6, 7} × n = {500} ×m = {20} × 10 instances. The processing times of
each job at each machine are randomly selected from a uniform distribution in [1, 99].

An example of the file format used in input files is shown in Figure 1 and it refers to
the first problem instance involving 10 jobs, two machines, and two factories of the small
instance (i.e., file I_2_10_2_1.txt). On the first row of the file, there are the number of jobs
and the number of machines (i.e., 10 and 2, respectively), while on the second row, there is
the number of factories (i.e., two). Then, at subsequent rows in the red rectangle, there are
the processing times at factory 0 for each one of the 10 jobs, while in the green rectangle,
there are the processing times of the jobs at factory 1.

Figure 1. Example of a problem instance of the small dataset: I_2_10_2_1.txt.

Appl. Sci. 2023, 13, 12562 4 of 26

An optimal solution for this problem instance achieving a makespan of 345 is shown
in Figure 2. The permutation of jobs for the machines of factory 0 is j0, j3, j8, j7, and j5, and
the permutation of jobs for the machines of factory 1 is j4, j6, j2, j9, and j1. Note that the
order of visiting machines for each job in both factories is first machine 0 and then machine
1 (i.e., flow-shop constraint).

Figure 2. The optimal solution for the first problem instance for two factories, 10 jobs, and two
machines (I_2_10_2_1.txt), having an optimal makespan of 345 time units.

3. Related Work

Scheduling is such a studied area that it is considered a discipline of its own. The
textbook of Pinedo [5] that is regularly updated (currently in its sixth edition) is a valuable
source of information for the subject. One of the earliest contributions to machine schedul-
ing theory and applications was Johnson’s influential work in [6]. The FSP is one of the
most studied scheduling problems, as indicated by the many FSP reviews such as [7,8].
This can be attributed to the fact that having jobs that should visit machines in a predefined
order is a common real-world scenario in manufacturing. The PFSP, as a more constrained
version of FSP that captures well the existence of conveyor belts, has also attracted much
interest [9,10]. The gap between theory and practice that was earlier identified [11] led to
several extensions of the FSP and one of them is DPFSP, which is the problem investigated
in this paper. Following the paper introducing the problem [1], several other papers pre-
sented new ideas and improved upon existing results [12,13]. The recent DPFSP review
paper [14] highlights that DPFSP is one of the fastest-growing topics in scheduling and
that several variants of the problem have emerged, besides DF/prmu/Cmax (i.e., classic
DPFSP), such as DPFSP with extra constraints (e.g., blocking/buffer, no wait, no idle, and
setup times), multi-objective DPFSP, non-deterministic DPFSP, and heterogeneous DPFSP
(i.e., non-identical factories). Another recent review paper that studies distributed shop
scheduling both in general and concerning DPFSP in particular can be found at [15].

Many alternatives have been proposed regarding the solution approaches to the classic
DPFSP. In [1], six Mixed Integer Linear Programming (MILP) formulations were proposed,
alongside two factory assignment rules and 14 heuristics based on dispatching rules. The
MILP formulations were unable to operate effectively due to the resulting big sizes of

Appl. Sci. 2023, 13, 12562 5 of 26

the models. Still, a combination of constructive heuristics with Variable Neighborhood
Descent methods resulted in good solutions. In [12], Naderi et al. improved the solutions by
employing a scatter search algorithm. At the same time, comparisons were made with other
competitive optimization methods including a Discrete Electromagnetic metaheuristic [16],
a Hybrid Genetic algorithm [17], a Variable Neighborhood Descend with Branch and
Bound algorithm [18], a Tabu Search algorithm [19], an Iterated Greedy algorithm [20],
and others. In [13], Ruiz et al. presented improved results, which are indeed the best
known, by using Iterated Greedy algorithms employing initialization, construction, and
destruction procedures, alongside local search. Comparisons were made against other
approaches that also managed to produce very good results, such as a Hybrid Immune
algorithm [21], a Bounded Search Iterated Greedy algorithm [22], and the Scatter Search
algorithm of [12]. The recent work by Hamzadayı [23] has similarities with the approach in
this paper since it employs an exact algorithm in order to address the DPFSP. In particular,
it uses Benders decomposition and manages to optimally solve several problems but, as
the results suggest, without satisfying the same permutation of the jobs’ constraint for all
machines of the same factory. In [24], the total tardiness objective is examined, instead
of the makespan using a mixed-integer linear programming model, heuristics, and two
customized metaheuristics algorithms (i.e., a discrete Harris hawks optimization algorithm
and a hybrid iterated greedy algorithm). Another relevant work is [25] that also employs
DPFSP and attempts an optimization of the sum of three distinct objectives using exact
methods and metaheuristics.

In addition to DPFSP and its lineage, many more scheduling problems exist. Some of
them are inspired by specific real-world problems, while others are abstractions of original
problems that are easier to study and reason about. Examples of problems belonging to
the first case are the problem of scheduling independent tasks to heterogeneous multipro-
cessors [26] and the machine reassignment problem [27]. On the other hand, an example
of the second case is the one-machine scheduling problem [28] that is an abstraction of a
real-world scheduling problem that is aimed at achieving efficient charging of electrical
vehicles. Another paper that proposes an approximation approach for the one-machine
problem, this time including release and delivery times for the jobs, is [29].

4. Materials and Methods

The approach taken to address the DPFSP is based on modeling the problem using
Constraint Programming and its specialized features for scheduling, like the interval
variables and the non-overlap constraints. Then, a state-of-the-art open-source CP solver
(i.e., Google’s ORTools CP-SAT [30]) is employed to solve problem instances of various sizes
to assess the approach’s ability to produce competitive results. The process is accelerated
when good initial solutions are fed to the solver since the solver does not spend time
constructing a good solution from scratch. The good initial solutions are constructed using
a known heuristic (i.e., NEH2), so the following section briefly references the vast landscape
of heuristics for DPFSP and its parent problem PFSP.

4.1. Heuristics

There are several heuristics for finding solutions to the DPFSP problem, which are
adaptations of heuristics for the PFSP that consider the existence of multiple factories in
DPFSP. Some PFSP heuristics are shortest processing time (SPT); largest processing time
(LPT); Johnson’s rule; CDS heuristic of Campbell, Dudek, and Smith; minimum idle time
(MINIT); minimum completion time (MICOT); and NEH heuristic of Nawaz, Enscore, and
Ham. Details about these and many more heuristics can be consulted in [31]. An interesting
remark is that NEH [32] is regarded as the best-performing heuristic for PFSP when the
optimization criterion is the makespan. NEH iteratively constructs a schedule by inserting
jobs into an initially empty sequence. It starts by sorting the jobs in descending order
based on the sum of their processing times on all machines. Then, it iteratively inserts each
job into the current sequence at all possible positions and evaluates the makespan after

Appl. Sci. 2023, 13, 12562 6 of 26

each insertion. The job permutation that results in the shortest makespan for the partial
schedule is chosen and this process is repeated until all jobs are scheduled. The worst case
complexity of a naive implementation of NEH is O(n3m), where n is the number of jobs
and m is the number of machines, but by applying the accelerations proposed in [33], the
complexity becomes O(n2m).

Since DPFSP has to decide about two things: the allocation of jobs to factories and the
sequence of jobs that will be processed at each factory, NEH might be combined with a rule
for the allocation. Such a rule might be “assign job j to the factory which completes it at the
earliest time” as proposed in [1], which gives the heuristic named NEH2, which seems to
perform better than other alternatives for DPFSP. An extension of NEH2 is NEH2_en [13],
which, after inserting a job into the best position among all factories, selects at random
either the previous or the following job and assesses its relocation at all possible positions
of the partial solution in the same factory. The worst case complexity for both NEH2 and
NEH2_en is O(n2mF), where F is the number of factories.

In this approach, NEH2 is used to produce initial solutions for the CP solver. In
particular, for each problem instance, NEH2 is executed multiple times (10 to 50, based on
the size of the problem) and the best solution (i.e., the solution with the lowest makespan)
is kept among all runs. Since NEH2 is deterministic, a minor modification is applied for
the algorithm to return a different solution at each run. After the first run, the sequence
of jobs created using the algorithm, based on the sum of each job’s processing times on
all machines, is “lightly” shuffled. This occurs by taking all triplets of consecutive jobs in
the original sequence and shuffling each triplet. Then, the subsequent steps of NEH2 are
executed as usual. This “trick” seems to work nicely since it consistently produces better
than the initial NEH2 solution for most cases, while the time burden imposed is minimal.

4.2. Model

In this section, the model of the problem is rigorously presented using a Constraint
Programming point of view. Let J be the set of jobs, F be the set of factories, and M be a set
of machines. Note that each factory has an identical set of machines M. Let xj f i be optional
interval variables defined over all combinations of j ∈ J, f ∈ F, i ∈ M. Each optional
interval variable is defined by its start time, size, and optionality. The size is a parameter
integer value Dji, ∀j ∈ J, i ∈M, denoting the processing time needed for job j at machine i,
which is known in advance. Since the machines in each factory are identical, the index f
does not appear at parameters Dji. An important point is that for each job j and factory
f , the interval variables for the machines of the factory share the same optional indicator,
meaning that either all these interval variables are present in the solution or all of them
are not present. Another set of auxiliary decision variables are boolean variables bj1 j2 f for
every pair of different jobs j1, j2 ∈ J and factory f ∈ F. The role of these variables is to
define the order of appearance of jobs in the schedule. So, bj1 j2 f assumes value 1 when job
j1 starts before job j2 at factory f and assumes value 0 for all other cases (i.e., when j2 starts
before j1 at factory f , or when jobs j1, j2 are scheduled at different factories).

In DPFSP, each job passes through all machines of the factory that it is scheduled to,
occupying the machines in the same order (permutation) as all other jobs. Hereafter, a
“task” will be each process of a job at a machine. Therefore, each job comprises a sequence
of tasks, with each task executed to a machine (i.e., the first task in the sequence is executed
at the first machine of a factory, the second task in the sequence is executed at the second
machine of the same factory, etc., as dictated by the workflow).

The objective is simply the finish time of the latest job and it should be minimized.
Since each job is a sequence of tasks for the objective, examining the end times of the last
tasks of all jobs as shown in Equation (1) suffices.

Next, the constraints of the problem are defined. Some constraints focus on tasks
executed on machine 0 (i.e., the first machine in the series of machines that undertake the
workflow) of the jobs. These constraints define how the jobs are distributed to factories and
the permutation of jobs that the machines of each factory will follow. This is modeled with

Appl. Sci. 2023, 13, 12562 7 of 26

Equations (2) and (3). Equation (2) defines that the task of each job executed at machine
0 should be scheduled without overlaps with other tasks also executed at machine 0 of
the same factory. Note that Equation (2) also determines the permutation of jobs that the
machines of each factory will process. Equation (3) ensures that each job will be scheduled
at exactly one factory. The equation is applied only to the first machines of each factory
since, as stated earlier, all optional interval variables x for each job, factory, and factory’s
machines are either all present in the solution or all of them are absent from it.

Equation (4) sets the order of appearance of jobs at each factory by enforcing order
between jobs for all possible pairs of jobs. It examines the presence of x variables at the
first machines of factories and whether the end time of a job is no later than the start time
of another job, setting the corresponding b variable to 1.

Equation (5) ensures that binary variables b involving job j and factory f assume value
0 if job j is not scheduled to factory f . This occurs because if job j is not present in factory f ,
the left parts of the inequalities in Equation (5) will be 0, pushing both b variables of the
right parts to 0 values. On the other hand, if job j is present in factory f , the left part of the
inequalities will be two, making the constraint redundant because the sum of two binary
variables will always be less or equal to two.

Equation (6) ensures that each task should start after its predecessor in the sequence of
a job’s tasks. Note that the sequence of tasks for a job are executed in turn on the machines
of a factory. So, this constraint ensures that the job should occupy a machine only after the
job has finished processing in the preceding machines.

Equation (7) maintains the permutation of jobs set by Equation (2) for machine 0 and
all other machines of the same factory. So, for every pair of jobs (j1, j2) that are executed at
the same factory f , job j1 will either precede or follow job j2 and this will be in accordance
with the value of variable bj1 j2 f . Moreover, Equation (7) ensures that all jobs executed at
machines other than machine 0 will not overlap. This occurs because given that two jobs
are executed at the same factory, either variable bj1 j2 f or variable bj2 j1 f will be 1, which
means that no overlap is possible because one job will start after the other job finishes.

Finally, Equation (8) is a simple symmetry breaking trick that enforces scheduling job
0 at factory 0. This occurs by setting the optional interval variable x000 to be present at the
solution, which does not exclude the optimal solution, since the factories are identical and
therefore interchangeable.

The full model about the DPFSP follows:

Minimize end(xj f |M|−1) ∀j ∈ J, ∀ f ∈ F (1)

subject to:

no_overlap({xj f 0|j ∈ J}) ∀ f ∈ F (2)

∑
f∈F

is_present(xj f 0) = 1 ∀j ∈ J (3)

is_present(xj1 f 0) ∧ is_present(xj2 f 0) ∧ end(xj1 f 0) ≤ start(xj2 f 0)⇒ bj1 j2 f = 1
else bj1 j2 f = 0

∀j1, j2 ∈ J : j1 6= j2, ∀ f ∈ F (4)

2 · is_present(xj1 f 0) ≥ bj1 j2 f + bj2 j1 f
2 · is_present(xj2 f 0) ≥ bj1 j2 f + bj2 j1 f

∀j1, j2 ∈ J : j1 6= j2, ∀ f ∈ F (5)

is_present(xj f i−1) ∧ is_present(xj f i)⇒ end(xj f i−1) ≤ start(xj f i) ∀j ∈ J, ∀ f ∈ F, ∀i ∈ 1 . . . |M| − 1 (6)

bj1 j2 f == 1⇒ end(xj1 f i) ≤ start(xj2 f i) ∀j1, j2 ∈ J : j1 6= j2, ∀ f ∈ F, ∀i ∈ 1 . . . |M| − 1 (7)

Appl. Sci. 2023, 13, 12562 8 of 26

is_present(x000) = 1 (8)

4.3. New Model after Throwing the Same Permutation Assumption

As stated in the introduction, adding P, which stands for permutation, to the flow-shop
scheduling problem shrinks the domain space from (n!)m to n!. This should make the work
of tentative solvers easier. In this section, a Constraint Programming model is presented
that throws the same permutation of jobs for all machines of each factory assumption,
which results in a smaller model capable of finding better or equal solutions with respect to
the solutions that the model of Section 4.2 generates.

The objective function of the model in Equation (9) remains the same as in the previous
model (i.e., Equation (1)) and represents makespan. Equation (10) states that no overlapping
jobs should exist for all machines of all factories. Equation (11) is identical to Equation (3)
of the previous model and ensures that each job will be scheduled to exactly one factory.
Equation (12) ensures that each job will be processed by the machines of the factory that
undertake the execution of the job, as dictated by the sequence of machines of the factory.
Finally, Equation (13) serves the same symmetry breaking goal that was described earlier
in Equation (8). The full model of the new problem, which will be referred to as DFSP
(Distributed Flow-shop Scheduling Problem), follows:

Minimize end(xj f |M|−1) ∀j ∈ J, ∀ f ∈ F (9)

subject to:

no_overlap({xj f i|j ∈ J}) ∀ f ∈ F, ∀i ∈M (10)

∑
f∈F

is_present(xj f 0) = 1 ∀j ∈ J (11)

is_present(xj f 0)⇒ end(xj f i−1) <= start(xj f i) ∀j ∈ J, ∀ f ∈ F, ∀i ∈ 1 . . . |M| − 1 (12)

is_present(x000) = 1 (13)

The DFSP model is considerably smaller than the previous one since the b variables of
the previous model are now eliminated, and, instead of six types of constraints, there are
only three. Table 1 shows formulas that compute the number of decision variables and the
numbers of the no_overlap and other constraints that the two models use.

Table 1. Formulas for the number of decision variables and constraints of the DPFSP model and the
DFSP model (n = numbers of jobs, m = number of machines, and F = number of factories).

DPFSP Model DFSP Model
Interval

Variables
Boolean

Variables
No_Overlap
Constraints Other Constraints Interval

Variables
No_Overlap
Constraints

Other
Constraints

nmF n(n− 1)F F n(n− 1)F(m + 1) + n + nF(m− 1) nmF mF n + nF(m− 1)

Table 2 shows the numbers of constraints and the number of interval and boolean
decision variables that the two models produce for some representative problem instances
(i.e., the first 70 out of the 120 problem instances for the two factories and seven factories of
the large dataset) of the benchmark. The great number of decision variables and constraints
for problem instances after the 30th place, especially for the DPFSP model, suggest that the
CP solver will probably not be able to reach optimal or near optimal solutions. Indeed, as
it will be demonstrated in Section 5, the CP solver can reach optimal solutions for many
problem instances of the first 30 for each group of problem instances as identified by the
number of factories. But, for the subsequent 30 problem instances, the performance of the

Appl. Sci. 2023, 13, 12562 9 of 26

CP approach degrades and solutions are relatively far from the best-known ones. For the
rest of the problem instances (i.e., places 61 to 120), the model is so big that the CP solver
has trouble creating the model in the first place, let alone reaching good solutions.

Table 2. Number of decision variables and constraints for DPFSP model and DFSP model for selected
problem instances of the large dataset (rows for factories ∈ {3, 4, 5, 6} and jobs ∈ {200, 500} are
not shown).

DPFSP Model DFSP Model

Problem Instances (F/J/M) Interval
Variables

Boolean
Variables

No_Overlap
Constraints

Other
Constraints

Interval
Variables

No_Overlap
Constraints

Other
Constraints

Ta001_2-Ta010_2 (2/20/5) 200 760 2 4740 200 10 180
Ta011_2-Ta020_2 (2/20/10) 400 760 2 8740 400 20 380
Ta021_2-Ta030_2 (2/20/20) 800 760 2 16,740 800 40 780
Ta031_2-Ta040_2 (2/50/5) 500 4900 2 29,850 500 10 450
Ta041_2-Ta050_2 (2/50/10) 1000 4900 2 54,850 1000 20 950
Ta051_2-Ta060_2 (2/50/20) 2000 4900 2 104,850 2000 40 1950
Ta061_2-Ta070_2 (2/100/5) 1000 19,800 2 119,700 2000 10 900
· ·
Ta001_7-Ta010_7 (7/20/5) 700 2660 7 16,540 700 35 580
Ta011_7-Ta020_7 (7/20/10) 1400 2660 7 30,540 1400 70 1280
Ta021_7-Ta030_7 (7/20/20) 2800 2660 7 58,540 2800 140 2680
Ta031_7-Ta040_7 (7/50/5) 1750 17,150 7 104,350 1750 35 1450
Ta041_7-Ta050_7 (7/50/10) 3500 17,150 7 191,850 3500 70 3200
Ta051_7-Ta060_7 (7/50/20) 7000 17,150 7 366,850 7000 140 6700
Ta061_7-Ta070_7 (7/100/5) 3500 69,300 7 418,700 3500 35 2900
· ·

Figures 3 and 4 show the optimal schedules that result from the DPFSP model and
the DFSP model, respectively, for the fourth problem instance of the group of prob-
lems with two factories, six jobs, and four machines of the small dataset. The Y-axis
of the figure displays the factories, and for each factory, each machine using the nota-
tion f<factory_id>_m<machine_id>. The schedule produced by the DFSP model has a
makespan of 436 time units, which is smaller than the schedule created using the DPFSP
model, which is 440 time units. The more favorable result of the schedule by the DFSP
model is attributed to the fact that each machine can have a different permutation of jobs
processed in it. So, in Figure 4 at factory 1, machines 0 and 1 process jobs in the sequence
j4, j1, j0, j2, but machines 2 and 3 process jobs using the sequence j1, j4, j0, j2. On the other
hand, as shown in Figure 3, all four machines of factory 1 peruse the same permutation of
jobs, which is j4, j0, j3, j1. The greater degree of freedom given to the DFSP model allows the
CP solver to find a better solution than the DPFSP for this problem instance. In Section 5, it
will be seen that this occurs in many other problem instances of the small dataset and the
large dataset.

If the “permutation” component of the problem is added to it not as a physical
requirement (e.g., conveyor belt) but as a means of making the problem easier for various
solvers to search for near-optimal solutions, then dropping it does not change the gist of the
problem. The DPFSP model is able to find solutions in the larger search space that allows
different job permutations for the machines of the same factory, but it satisfies the vital
constraint of processing each job using the same sequence of machines (i.e., workflow),
which is 0, 1, 2, ..., |M| − 1 in this case, and can be any sequence of machines by naming the
machines appropriately. The “good” behavior of the DFSP model can be attributed to the
efficient implementations of the global constraint no_overlap and the interval variables
that the CP solver employs.

Appl. Sci. 2023, 13, 12562 10 of 26

Figure 3. Optimal schedule (makespan = 440) according to the DPFSP model for the fourth problem
instance with two factories, six jobs, and five machines (per factory) of the small dataset (problem
instance: I_2_6_5_4).

Figure 4. Optimal schedule (makespan = 436) according to the DFSP model for the same problem
instance as in Figure 3.

Appl. Sci. 2023, 13, 12562 11 of 26

4.4. A Novel Heuristic for Achieving Lower Bounds

This section presents a heuristic for computing lower bounds of problem instances
that apply to DPFSP and DFSP. Let i ∈ M be the index of the ith machine in a series of
machines that is replicated across all factories. The heuristic evenly distributes the total
process time of all jobs at machine i of a factory. This should ideally occur when the total
process time of all jobs at machine i is divided by the number of factories, giving value
AVEi. The lower bound is computed by examining each machine i in the series of machines
in turn. For each machine i, two values are computed: the shortest total execution time of a
job for machines that precede machine i, and the shortest total execution time of a job for
the machines that come after machine i. Potential lower bounds are calculated by adding
these two minimum values to AVEi. Finally, the maximum of the potential lower bounds
for all machines is the lower bound. Algorithm 1 describes the procedure in pseudo-code.

Algorithm 1 Lower Bound Heuristic
Input: A DPFSP problem instance
Output: A lower bound for the makespan of all possible schedules
1: for i← 0 . . . |M| − 1 do
2: AVEi ← Average process time of all jobs at machine i
3: end for
4: A← AVE0+ minimum total execution time at machines 1 . . . |M| − 1 from a single job
5: B ← AVE|M|−1+ minimum total execution time at machines 0 . . . |M| − 2 from a

single job
6: C ← ∅
7: for i← 1 . . . |M| − 2 do
8: Li ←minimum total execution time at machines 0 . . . i− 1 from a single job
9: Ri ←minimum total execution time at machines i + 1 . . . |M| − 1 from a single job

10: C ← C ∪ {Li + AVEi + Ri}
11: end for
12: return max(A, B, max(C))

The main idea behind the computation of the lower bound is depicted in Figure 5,
where at the left of the figure, the situation is shown where machine i is the first machine;
in the right of the figure, the situation of machine i is the last machine is depicted; and
in the middle of the figure, the situation is depicted where the machine i is any machine
in between.

Figure 5. Makespan lower bounds considering execution of all jobs without gaps at each machine
in turn.

Appl. Sci. 2023, 13, 12562 12 of 26

A proof of the validity of the lower bound follows:

Proof of the Validity of the Lower Bound. For computing the lower bound we assume
that at a certain machine i, all jobs are scheduled without any gaps between them. This
naturally occurs at machine 0, but it can also occur at other machines too. Note that gaps
might occur for each machine i ∈ 1 . . . M− 1 because the start of a job at this machine must
be postponed until the same job finishes at machine i− 1 and the job that was previously
processed at machine i has finished its execution. Let AVEi be the average process time of
all jobs at machine i (AVEi is computed by totaling the process times of all jobs at machine
i and dividing it by the number of factories). Then, let Li be the minimum sum of process
times for machines that precedes machine i, among all jobs, by a single job. Likewise, let
Ri be the minimum sum of process times for machines that come after machine i, among
all jobs, by a single job. Clearly, when machine i is the first machine, L0 will be zero, and
when machine i is the final machine, RM−1 will be zero. We assert that the maximum
Li + AVEi + Ri among all machines will be a lower bound for the problem.

Let us assume that we know the optimal solution, where for each machine, the jobs
are scheduled as dictated by a specific permutation of jobs, with possible gaps in between
consecutive jobs. Let D∗i be the duration from the time that machine i starts processing to
the time that it finishes processing the last job in the optimal solution, at a factory where
D∗i ≥ AVEi. We are sure that such a factory exists because the average value of a set is
always less or equal than its maximum value. Moreover, let L∗i be the time that machine i
starts processing. This time is shifted to the right due to the process of the first job in the
optimal solution at the machines that precede machine i. Likewise, let R∗i be the duration
between finishing processing for the last job of the optimal permutation at machine i and the
makespan of the schedule. It holds that Li <= L∗i because by definition, Li is the smallest
possible total process duration among all jobs. Likewise, Ri <= R∗i , since Ri is again the
smallest possible total process duration of a single job among all jobs for machines after
machine i. So, it follows that Li + AVEi + Ri ≤ L∗i + D∗i + R∗i . Based on this observation,
we expect the maximum among Li + AVEi + Ri for all machines i to be a lower bound for
the problem.

5. Results

The experiments that gave the results reported in this section were all obtained via
runs on an Apple Mac mini, with an M2 Pro chip having 10 cores (six performance and four
efficiency) and 16 GB of RAM. The solver used was Google’s ORTools (version 9.7.2996) [30]
and its CP-SAT solver. All of the code was written in plain Python (version 3.10).

5.1. Lower Bounds Derived via the Heuristic

Here, the results generated by the lower bound heuristic described in Section 4.4 are
presented. Figures 6 and 7 show the percentage difference of the lower bounds that the
heuristic produces with respect to the best-known values for all problem instances of the
benchmark’s small dataset and large dataset, respectively. The problem instances for the
small and large datasets are grouped based on the number of factories. For each group for
the small dataset, the problem instances are arranged in a sequence where the number of
jobs is 4, 6, 8, 10, 12, 14, and 16, and the number of machines is two, three, four, and five,
while the five problem instances exist for each combination of the number of jobs and the
number of machines. Likewise, for each group of problem instances of the large dataset,
the sequence of problem instances contains 10 problem instances for each combination of
jobs and machines as described in Section 2.1.

Appl. Sci. 2023, 13, 12562 13 of 26

Figure 6. Distance of lower bounds to the best-known values for problem instances of the “small”
dataset. Order of appearance of problem instances in x-axis: factories ∈ {2, 3, 4} × jobs ∈
{4, 6, 8, 10, 12, 14, 16} ×machines ∈ {2, 3, 4, 5}

By examining lower bound values for the problem instances of the small dataset, one
case (i.e., I_2_16_2_5) was identified where the lower bound computed via the heuristic is
equal to the optimal solution of the problem.

Figure 7. Distance of lower bounds to the best-known values for problem instances of the
“large” dataset.

By observing the two figures, it can be seen that there is a tendency to increase
the percentage difference when the number of factories increases. Moreover, for each
dataset (i.e., small and large) for problem instances with the same number of factories, the

Appl. Sci. 2023, 13, 12562 14 of 26

percentage differences tend to decrease for problem instances with greater numbers of jobs
and machines.

The values of the lower bounds produced by the heuristic for all problem instances
can be consulted at the GitHub repository https://github.com/chgogos/DPFSP_CP, ac-
cessed on 2 November 2023.

5.2. Results for Problem Instances of the Small Dataset

The DPFSP model’s results for all 420 instances of the small dataset are excellent.
All problem instances are solved to optimality, where the optimality is reached for each
instance in a matter of seconds or less. The maximum time needed for solving an instance
was 1.44 s (for instance, I_3_16_5_3), while the average time of solving them was 0.14 s per
instance (i.e., 58.8 s to solve all instances of the small dataset optimally).

Applying the DFSP model, the makespans of many problem instances are further
minimized, since now the model constraints allow for such solutions to exist. Indeed, there
are 65 problem instances having solutions with smaller makespans than the makespans of
the optimal solutions for the DPFSP model and these problem instances, alongside their
solutions, are presented in Table A1 in Appendix A. The last column of the table shows
the job permutations assigned to each factory machine in the format of a string where the
factories are separated with semicolons and the machines of each factory are separated with
commas. For each machine, the sequence of jobs is indicated as a string of job ids separated
by dashes. So, for example, in the first line of the table, for problem instance I_2_6_5_4, the
solution “3-5,3-5,3-5,3-5,3-5;4-1-0-2,4-1-0-2,1-4-0-2,1-4-0-2,1-4-0-2” at the rightmost column
means that factory 0 processes the sequence of jobs 3-5 in all of its five machines and factory
1 processes the sequence of jobs 4-1-0-2 for machines 0, 1, and 2, but the sequence changes
for machines 3 and 4 to 1-4-0-2. This allows for us to achieve a better makespan value of
436 over 440, (as already seen in Figures 3 and 4), which would have been the optimal
solution if the permutation of jobs remained the same for all machines of factory 1, as is
dictated by the DPFSP problem statement. Again, the solutions reached for all problem
instances are the optimal ones according to the DFSP model and all solutions are reached
almost immediately (i.e., maximum time = 3.54 s, for instance I_2_16_4_1, average time =
0.087 s, and total time needed to optimally solve all instances = 36.12 s).

The complete list of objective costs, execution times, and permutations of jobs that
are given to the machines of each factory for all problem instances of the small dataset, for
the DPFSP model and for the DPSP model, can be found at https://github.com/chgogos/
DPFSP_CP, accessed on 2 November 2023.

5.3. Results for Problem Instances of the Large Dataset

Experiments were also run for problem instances of the large dataset. The problem
instances selected were the smaller ones of the large dataset. Experiments only used the
first 30 problem instances for each case of two, three, four, five, six, and seven factories,
totaling 180 problem instances. This means there were 10 problem instances for each case
of scheduling 20 jobs at 5, 10, and 20 machines per factory for two to seven factories. Other
problem instances that involved 50, 100, 200, and even 500 jobs, starting at problem index
31 for each factory number group, proved to be beyond the capabilities of this paper’s
approach for producing optimal results. This behavior was anticipated since the size of the
problem (i.e., number of decision variables, number of constraints) assumes high values
starting at problem index 31 (i.e., jobs = 50) and reaches extremely high values for problem
instances with 100, 200, and 500 jobs.

This paper’s approach optimally solved the majority of the problem instances within
the time allotted for execution to the CP solver, which was 300 s on the hardware and
software setting described at the beginning of Section 5. In particular, optimal values were
found for 13 out of the 30 problem instances for two factories and for all problem instances
(5× 30 = 150 problem instances) for three, four, five, six, and seven factories. Moreover,
comparison with the best-known results of Ruiz et al. [13] revealed that all best-known

https://github.com/chgogos/DPFSP_CP
https://github.com/chgogos/DPFSP_CP
https://github.com/chgogos/DPFSP_CP

Appl. Sci. 2023, 13, 12562 15 of 26

results were reached, proving that 163 of them are indeed optimal. For the 17 problem
instances that the CP approach proposed in this paper was not able to prove optimality
within the allotted time, a lower bound is provided by the approach instead. These lower
bounds (all about problem instances with two factories) are presented in the Appendix A at
Table A2. Furthermore, the solutions’ objective (i.e., makespan), the best-known objective
values, and the time needed, either due to the 300 s timeout or because the optimal solution
was found, are presented in Appendix A at Tables A2–A7. In the column “Makespan” of
these tables, the star symbol indicates an optimal result, while the plus symbol indicates
that the solution is not proven optimal but is equal to the best-known solution.

The time needed to prove optimality for each problem instance that is eventually
proved optimal is usually longer than the time needed to reach the optimal value. Indeed,
by analyzing these times, it was found that, on average, the optimal value is reached at
a fraction of the time needed to prove optimality. This is graphically shown in Figure 8.
Moreover, Table 3 shows statistics across the problem instances about how many times
reaching optimality is faster than proving optimality.

The DFSP model has also been applied to the same problem instances (i.e., the first
30 instances for factories in 2,3,4,5,6,7) of the large dataset. Among the solutions for the
180 problem instances, 133 were optimally solved within 300 s of execution time. The
comparison of the solutions with the best-known solutions for the DPFSP model showed
that, on 142 of them, the solution that the DFSP model produced is better. On 33 problem
instances, the solutions of the DFSP model are equal to the best-known solutions for the
DPFSP model, and in only five problem instances, the solutions’ objective values are worse
(Ta_013_2 with 1008 instead of 1001, Ta_018_2 with 1027 instead of 1025, Ta_021_2 with 1676
instead of 1674, Ta_027_2 with 1677 instead of 1671, and Ta_028_2 with 1621 instead of 1610).
Figure 9 compares the execution times that were needed by the solver to reach optimality
for both the DPFSP and DFSP models, for problem instances that were optimally solved
within 300 s. As expected, the DFSP model, having more degrees of freedom, is a more
difficult problem, and for the majority of problem instances, it needs more time to prove
optimality. Nevertheless, this effect is minimized when more factories are added. This can
be attributed to the fact that the number of jobs that are distributed to each factory becomes
smaller when more factories exist, resulting in fewer possible schedules per factory.

Figure 8. Time needed by the exact solver to prove optimality vs. time needed to reach the optimal
solution for 163 problem instances where the optimal solution is reached within 300 s.

Appl. Sci. 2023, 13, 12562 16 of 26

Table 3. Statistics about how many times reaching an optimal solution is faster than proving it is
indeed optimal.

Factories Optimal Solutions Reached within 300 s Mean Stdev Median Min Max

2 13/30 8.95 8.59 4.62 1.41 31.27
3 30/30 3.56 2.65 2.52 1.44 10.76
4 30/30 4.36 3.45 3.27 2.14 17.22
5 30/30 4.07 1.76 3.53 1.53 10.12
6 30/30 5.24 2.75 4.61 3.22 18.34
7 30/30 5.22 2.63 4.80 3.28 18.10

The complete list of objective costs, execution times, and permutations of jobs that are
given to the machines of each factory for all problem instances of the large dataset, for the
DPFSP model and the DPSP model, can be found at https://github.com/chgogos/DPFSP_
CP, accessed on 2 November 2023.

Figure 9. Time needed by the exact solver to prove optimality for the DPFSP model vs. the DFSP
model, for 133 problem instances where optimality is reached by both models within 300 s.

6. Discussion

In optimization, exact methods backed up by solvers like CP solvers, MIP solvers,
SAT solvers, and others have several advantages over approximate methods like heuristics,
meta-heuristics, and hyper-heuristics. They provide global optimality with theoretical
guarantees, they compute lower bounds, and, during execution, they provide information
about the gap between the current solution and the current lower bound. Nevertheless,
they have disadvantages like the difficulty in modeling complex real-world situations, the
long execution times, and, of course, the combinatorial explosion problem that refers to
the rapid growth in the number of possible solutions when dealing with combinatorial
problems (i.e., problems of making selections, arrangements, or choices from a finite set of
discrete elements or objects, often subject to certain constraints or conditions). The DPFSP
is such a problem that the number of decision variables and constraints quickly become
astronomically large.

In the experiments, the execution time allowed for each problem instance was only
300 s. Experiments using 300 s of execution time for the problem instances with 50 jobs
returned mediocre results. It is expected that better results will be found, more solutions
will be verified as optimal, and perhaps new optimal solutions will be identified once more
execution time is given. This might be advantageous for problem instances with 50 jobs,
where a few hours of execution time for each problem instance should reveal good results,

https://github.com/chgogos/DPFSP_CP
https://github.com/chgogos/DPFSP_CP

Appl. Sci. 2023, 13, 12562 17 of 26

as some preliminary experiments have indicated. Nevertheless, this does not scale for
problem instances with even more jobs (e.g., 100 jobs or more).

The CP approach can be used in DPFSPs of very large sizes, provided that a solution
is built and that the CP solver “sees” only a manageable size of the otherwise intractable
via the CP model’s full problem. In such scenarios, the selection of jobs, factories, and
machines that might be free to be moved by the CP solver can be decided randomly or
based on a pattern (e.g., allow for task rearrangement in a single factory, allow for the move
of a small number of tasks of relatively big sizes together with tasks of smaller sizes, and
allow for the move of tasks that are responsible for the current makespan).

Another idea for further improving the results or addressing larger problem sizes is
to use the solution that the less heavy DFSP model produces and then try to repair it to
satisfy the DPFSP problem’s permutation constraint. Indeed, the attempt of repair might be
undertaken by the DPFSP model, allowing it to move only a subset of the problem’s tasks.

When the modified NEH heuristic provided relatively good solutions, a strange
behavior was noticed for problem instances of big sizes (e.g., jobs = 50 or bigger). The CP
solver used (Google’s ORTools) greatly delayed creating the starting solution, and in some
cases, the 300 s were not enough to return a solution. This might be caused by the setup of
the internal data structures that the CP solver uses in order to continue the search process.
Of course, more CP solvers can be used, including the IBM ILOG CP solver and others.

Another remark worth noticing is that for the problem instances of the large dataset
with 20 jobs, it proved easier to find optimal solutions when many factories existed
(e.g., seven), rather than when there were only two factories. This can be explained
by noticing that once the jobs are distributed in the many factories, the combinations of
jobs that can be arranged in each factory are significantly smaller.

Finally, a few remarks can be made about the proposed heuristic in Section 5.1 that
finds lower bounds. Firstly, it is expected that once the problem increases in size, the lower
bounds derived by heuristics will be less tight, and this is indeed the case. Secondly, the
usefulness of lower bounds should be highlighted since they can help in assessing the
effectiveness of solutions that have no other way of knowing how good they are. Finally,
values computed by the heuristic are lower bounds for the DPFSP and DFSP problems.

7. Conclusions

The Distributed Permutation Flow-shop Scheduling Problem (DPFSP) is a problem
that originated from the famous Permutation Flow-shop Scheduling problem relatively
recently and managed to attract the attention of many researchers. This can be attributed
to the fact that nowadays, the modern manufacturing world is more distributed than
ever, with many factories processing together deliveries that must be completed in an
optimal manner.

This work presented an approach to the problem based on formulating it using
Constraint Programming (CP) and its scheduling features (i.e., interval variables and non-
overlap constraints). Two models were presented: one for the original problem (i.e., DPFSP)
and one for the problem after dropping the same permutation of jobs across all machines
of each factory constraint. Both models were simple enough and managed to solve optimal
problem instances of sizes that were, to the best of my knowledge, previously unable to
be solved using an exact method. Moreover, a novel way of computing lower bounds for
DPFSP was presented that was capable of generating relatively tight lower bounds. The
approaches were tested on known public datasets for the DPFSP and the results suggest
that CP is a viable choice for the problem, given the advances that the theory has made
in this area, the capable implementation of CP solvers, and the processing capabilities of
modern commodity computer systems.

Appl. Sci. 2023, 13, 12562 18 of 26

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Results of this research can be found at the github repository https://
github.com/chgogos/DPFSP_CP, accessed on 2 November 2023. The dataset that was used for the
Distributed Permutation Flow-shop Scheduling Problem are public and were made available by
the research group “Sistemas de Optimización Aplicada SOA”. A mirror of the dataset is kept in
https://github.com/chgogos/DPFSP_CP/blob/main/DPFSP.7z, accessed on 2 November 2023.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CP Constraint Programming
DFSP Distributed Flow-shop Scheduling Problem
DPFSP Distributed Permutation Flow-shop Scheduling Problem
FSP Flow-shop Scheduling Problem
JSP Job-shop Scheduling Problem
NHE Nawaz, Enscore, and Ham heuristic
PFSP Permutation Flow-shop Scheduling Problem
SAT Satisfiability

https://github.com/chgogos/DPFSP_CP
https://github.com/chgogos/DPFSP_CP
https://github.com/chgogos/DPFSP_CP/blob/main/DPFSP.7z

Appl. Sci. 2023, 13, 12562 19 of 26

Appendix A

Table A1. 65 of the 420 problem instances of the small dataset that have as optimal makespan a smaller value for the DFSP model than the optimal makespan for the
DPFSP model.

Instance DPFSP
Makespan

DFSP
Makespan Time (s) Jobs Permutation per Machine per Factory

I_2_6_5_4 440 436 0.01 3-5,3-5,3-5,3-5,3-5;4-1-0-2,4-1-0-2,1-4-0-2,1-4-0-2,1-4-0-2
I_2_8_5_1 468 457 0.01 2-5,2-5,5-2,5-2,5-2;0-1-4-6-7-3,0-1-4-6-7-3,0-1-4-6-7-3,0-1-4-6-7-3,0-1-4-6-7-3
I_2_8_5_4 463 459 0.02 2-7-1-3,2-7-1-3,2-1-7-3,2-1-7-3,2-1-7-3;4-0-6-5,4-0-6-5,0-4-6-5,0-4-6-5,0-4-6-5
I_2_8_5_5 376 372 0.02 5-2-7,5-2-7,5-2-7,5-2-7,5-2-7;6-0-4-3-1,6-0-4-3-1,6-4-0-3-1,6-4-0-3-1,6-4-0-3-1
I_2_10_4_2 415 414 0.02 0-2-8-5-1,0-2-8-5-1,0-2-8-5-1,0-2-8-5-1;3-4-9-7-6,3-4-9-7-6,3-4-9-6-7,3-4-9-6-7
I_2_10_5_2 439 432 0.03 8-9-7-5,8-9-7-5,9-8-7-5,9-8-7-5,9-8-7-5;2-3-4-1-0-6,2-3-4-1-0-6,2-3-4-1-0-6,2-3-4-1-0-6,2-3-1-4-0-6
I_2_10_5_3 518 512 0.04 4-5-2-6,4-5-2-6,4-5-2-6,4-5-2-6,4-5-2-6;8-3-9-1-0-7,8-3-9-1-0-7,3-8-9-1-0-7,3-8-9-1-0-7,3-8-9-1-0-7
I_2_12_4_2 460 455 0.05 2-6-10-4-3-1,2-6-10-4-3-1,2-6-10-4-3-1,2-6-10-4-3-1;8-9-11-7-0-5,8-9-11-7-0-5,8-9-11-7-5-0,9-8-11-7-5-0
I_2_12_4_5 410 405 0.04 4-1-9-3-0,4-1-9-3-0,4-1-9-0-3,4-1-9-0-3;11-8-6-7-5-2-10,11-8-6-7-5-2-10,11-8-7-6-5-2-10,11-8-7-6-5-2-10
I_2_12_5_2 443 440 0.15 5-6-10-8-7-3-0,6-5-10-8-7-0-3,6-5-10-8-7-0-3,6-5-8-10-7-0-3,6-5-8-10-7-3-0;1-2-11-4-9,1-2-11-9-4,1-2-11-9-4,1-11-2-9-4,1-11-2-9-4
I_2_12_5_3 488 485 0.06 8-10-11-6-4,8-10-11-6-4,8-10-11-6-4,8-10-11-6-4,8-10-11-6-4;1-7-2-9-3-5-0,1-7-2-9-3-5-0,1-7-2-3-9-5-0,1-7-2-3-9-5-0,1-7-2-3-5-9-0
I_2_12_5_4 492 487 0.08 0-10-9-4-7-5,0-10-9-4-5-7,0-10-9-4-5-7,0-10-9-5-4-7,0-10-9-5-7-4;3-11-6-8-2-1,3-11-6-8-2-1,3-11-6-8-2-1,3-11-6-8-2-1,3-11-6-8-2-1
I_2_12_5_5 573 572 0.11 6-4-10-5-1-0,6-4-10-5-1-0,6-4-10-5-1-0,6-10-4-5-1-0,6-10-4-1-5-0;7-9-3-8-2-11,7-9-3-8-2-11,7-9-3-8-2-11,7-9-3-8-2-11,7-9-3-8-2-11
I_2_14_4_1 458 457 0.11 12-4-11-9-5,12-4-11-9-5,12-4-11-9-5,12-4-11-9-5;10-13-6-0-1-8-3-7-2,10-6-0-13-1-8-3-7-2,10-6-0-1-13-8-3-7-2,10-6-0-1-8-3-7-2-13
I_2_14_5_1 536 534 0.2 8-10-7-12-0-6-2,8-10-7-12-0-6-2,8-10-7-12-0-6-2,8-10-7-12-0-6-2,8-10-7-12-0-6-2;9-4-13-5-3-1-11,9-4-13-5-3-1-11,9-4-13-3-5-1-11,9-4-13-

3-5-1-11,9-4-13-3-5-1-11
I_2_14_5_2 553 551 0.14 11-9-12-8-3-5-7,11-9-12-8-3-5-7,11-9-12-8-3-5-7,11-9-12-3-8-5-7,11-9-12-3-8-5-7;4-10-6-0-13-1-2,4-10-0-13-6-1-2,4-10-0-13-6-1-2,4-10-0-

13-6-1-2,4-10-0-13-6-1-2
I_2_14_5_3 558 555 0.22 4-3-13-2-0-11,4-3-13-2-0-11,4-3-13-2-11-0,4-3-13-2-11-0,4-3-13-2-11-0;5-1-7-9-6-10-12-8,5-1-7-9-6-10-12-8,5-1-7-9-10-6-12-8,5-1-7-9-10-

12-6-8,5-1-7-9-10-12-6-8
I_2_14_5_4 480 474 0.37 6-4-12-7-3-9-10-1,6-4-12-7-9-10-3-1,6-4-12-7-9-10-3-1,6-4-12-7-9-10-3-1,6-4-12-7-9-10-3-1;13-2-8-0-11-5,13-2-8-0-11-5,13-2-8-11-0-5,2-

13-8-11-0-5,2-13-8-0-11-5
I_2_14_5_5 541 538 0.21 2-9-4-3-0-11-13,2-9-4-3-0-13-11,2-9-4-3-0-13-11,2-9-4-0-3-13-11,2-9-4-0-3-13-11;7-10-5-6-1-12-8,7-10-5-6-1-12-8,7-10-5-6-1-12-8,7-5-10-

6-1-12-8,7-5-10-6-1-12-8
I_2_16_4_1 585 583 3.54 13-4-7-6-5-3-8,13-4-7-6-5-3-8,13-4-7-6-5-3-8,13-4-7-6-5-3-8;0-12-14-15-2-1-11-10-9,0-14-12-15-2-1-11-10-9,14-0-12-15-2-1-11-10-9,14-

12-0-15-2-1-10-11-9
I_2_16_4_2 588 587 0.45 7-6-5-15-3-13-2,7-6-5-15-3-13-2,7-6-5-3-15-13-2,7-6-5-3-15-13-2;10-1-12-14-9-8-11-4-0,10-1-12-14-9-11-8-4-0,10-1-12-14-9-11-8-4-0,10-

1-12-14-9-11-8-4-0
I_2_16_5_1 526 523 1.82 2-9-5-6-14-12-1-0,2-9-5-6-14-12-1-0,2-9-5-6-14-12-1-0,2-9-5-6-14-12-1-0,2-9-5-6-14-12-1-0;8-13-11-7-4-3-10-15,8-13-11-7-4-3-10-15,8-

13-11-7-4-3-10-15,8-13-11-4-7-3-10-15,8-13-11-4-7-3-10-15

Appl. Sci. 2023, 13, 12562 20 of 26

Table A1. Cont.

Instance DPFSP
Makespan

DFSP
Makespan Time (s) Jobs Permutation per Machine per Factory

I_2_16_5_3 652 649 1.83 5-15-7-8-1-12-10,5-15-7-8-1-12-10,5-15-7-8-1-12-10,5-15-7-8-1-12-10,5-15-7-8-1-12-10;6-4-0-13-14-9-11-2-3,6-4-0-14-13-9-11-2-3,4-0-6-
14-13-9-11-2-3,4-0-6-14-13-9-11-2-3,4-0-6-13-14-9-11-2-3

I_2_16_5_5 653 646 0.83 14-11-0-15-7-1-13-2,14-15-0-7-11-1-13-2,14-15-0-7-1-11-13-2,14-15-0-1-7-11-13-2,14-15-0-1-7-11-13-2;12-10-6-3-4-9-8-5,12-10-6-3-4-9-
8-5,12-10-6-3-4-9-8-5,12-10-3-6-4-9-8-5,12-10-3-6-4-9-8-5

I_3_6_5_3 413 380 0.01 0,0,0,0,0;3-4-1,3-4-1,3-4-1,3-4-1,3-4-1;2-5,2-5,2-5,5-2,5-2
I_3_6_5_4 388 382 0.01 5,5,5,5,5;4-0,4-0,4-0,4-0,4-0;2-3-1,2-3-1,2-1-3,2-1-3,2-1-3
I_3_8_5_1 344 342 0.02 6,6,6,6,6;0-7-4,0-7-4,0-7-4,0-7-4,0-7-4;5-3-2-1,5-3-2-1,5-3-2-1,3-5-2-1,3-5-2-1
I_3_8_5_2 320 319 0.02 2-3,2-3,2-3,3-2,3-2;0-6-4,0-6-4,0-6-4,0-6-4,0-6-4;5-1-7,5-1-7,5-1-7,1-5-7,1-5-7
I_3_12_4_1 357 353 0.04 8-9-10-4,8-9-10-4,8-9-10-4,8-9-10-4;11-0-6-5,11-0-6-5,0-11-6-5,0-11-6-5;7-1-2-3,7-1-2-3,7-1-2-3,7-1-2-3
I_3_12_4_4 414 408 0.06 8-10-0,8-10-0,8-10-0,8-10-0;1-2-9-3,1-2-9-3,1-2-9-3,1-2-9-3;4-11-7-5-6,4-11-7-5-6,4-11-5-7-6,4-11-5-7-6
I_3_12_5_3 438 431 0.04 2-8-5,2-8-5,2-8-5,2-8-5,2-5-8;4-0-11-1-7,4-0-11-1-7,4-0-11-1-7,0-4-11-1-7,0-4-11-1-7;9-10-3-6,9-10-3-6,9-10-3-6,9-10-6-3,9-10-6-3
I_3_12_5_4 414 413 0.04 8-11-6,8-11-6,8-11-6,8-6-11,8-6-11;10-4-3-0,10-4-3-0,10-4-3-0,10-4-3-0,10-3-4-0;5-1-9-7-2,5-1-9-7-2,5-1-7-2-9,5-1-7-2-9,5-1-7-2-9
I_3_14_4_5 381 371 0.08 4-9-5-10,4-9-10-5,4-10-9-5,4-10-9-5;11-3-7-0-1-6,11-3-7-0-1-6,11-3-7-0-1-6,11-3-7-0-1-6;2-13-8-12,2-13-8-12,2-13-8-12,2-13-8-12
I_3_14_5_2 497 491 0.14 8-12-11-1,8-12-11-1,8-12-11-1,8-12-11-1,8-12-11-1;9-6-10-3-0,9-6-10-3-0,9-6-10-3-0,9-6-3-10-0,9-6-3-10-0;13-4-7-2-5,13-4-7-2-5,13-4-7-

2-5,13-4-7-2-5,13-4-7-2-5
I_3_14_5_4 494 490 0.13 5-9-10-0-6,5-9-10-0-6,5-9-10-0-6,5-9-10-6-0,5-9-10-6-0;7-13-2-1,7-13-2-1,7-13-2-1,7-13-1-2,7-13-1-2;11-12-3-8-4,11-12-3-8-4,11-12-3-8-

4,11-12-3-8-4,11-12-3-8-4
I_3_14_5_5 491 489 0.44 10-2-1-3,10-2-1-3,10-2-1-3,10-2-1-3,10-2-1-3;9-6-5-4-0,9-6-5-4-0,9-6-5-4-0,9-6-5-4-0,9-6-5-4-0;8-7-12-11-13,8-7-12-11-13,8-12-11-7-13,8-

12-11-7-13,12-8-11-7-13
I_3_16_3_1 340 339 0.15 4-15-2-8,4-2-8-15,4-2-8-15;3-10-7-0-13-14,3-7-10-0-13-14,3-10-7-0-13-14;1-5-9-11-6-12,1-5-9-11-6-12,1-5-9-11-6-12
I_3_16_3_3 350 349 0.1 4-12-1-10,4-12-1-10,4-12-1-10;2-11-6-15-0-13-5,2-11-6-15-0-13-5,2-11-6-15-0-13-5;3-7-14-8-9,3-7-14-8-9,3-7-14-8-9
I_3_16_3_5 362 361 0.12 9-3-7-14-15,9-3-7-14-15,9-3-7-14-15;1-0-2-12-6,1-0-2-12-6,1-0-2-12-6;10-8-11-5-4-13,10-8-11-5-4-13,10-8-11-5-4-13
I_3_16_4_1 422 421 0.32 1-11-9-12-8,1-11-9-12-8,1-11-9-12-8,1-11-9-12-8;10-5-7-3-0,10-5-7-3-0,10-5-7-3-0,10-5-7-3-0;2-15-4-6-14-13,2-15-4-6-14-13,15-2-4-6-13-

14,15-4-2-6-13-14
I_3_16_4_2 458 457 0.27 12-1-11-7-13,12-11-7-13-1,12-11-7-13-1,12-11-7-13-1;15-5-2-8-3-0,15-5-2-8-3-0,15-5-2-8-3-0,15-5-2-8-3-0;4-9-14-10-6,4-9-14-10-6,4-9-

14-10-6,4-9-14-10-6
I_3_16_4_3 421 417 0.17 11-7-5-6-4-14,11-7-5-6-4-14,11-7-6-5-14-4,11-7-6-5-14-4;13-12-2-0-9,13-12-2-0-9,13-12-2-0-9,13-12-2-0-9;3-10-1-15-8,3-10-1-15-8,3-10-

1-15-8,3-10-1-15-8
I_3_16_4_4 430 429 0.36 0-13-2-6-7,0-13-2-6-7,0-13-2-7-6,0-13-2-7-6;5-10-9-8-1-11,5-10-9-8-1-11,5-10-9-8-1-11,5-10-9-8-1-11;4-3-15-12-14,4-3-15-12-14,4-3-15-

12-14,4-3-15-12-14
I_3_16_4_5 419 411 0.33 12-1-10-5-4,12-1-10-5-4,1-12-10-5-4,1-12-10-5-4;6-3-8-9-14-0,6-3-8-9-14-0,6-3-8-9-14-0,6-3-8-9-14-0;11-13-2-15-7,11-13-2-15-7,11-13-2-

15-7,11-13-2-15-7
I_3_16_5_1 453 449 0.23 9-3-8-11-5,9-3-8-11-5,9-3-8-11-5,9-3-8-11-5,9-3-8-11-5;6-0-10-13-15-14-2,6-0-10-13-15-14-2,6-10-0-13-15-14-2,6-10-0-13-15-14-2,6-10-0-

13-15-14-2;4-1-7-12,4-1-7-12,4-1-7-12,4-1-7-12,4-1-7-12

Appl. Sci. 2023, 13, 12562 21 of 26

Table A1. Cont.

Instance DPFSP
Makespan

DFSP
Makespan Time (s) Jobs Permutation per Machine per Factory

I_3_16_5_2 500 499 2.45 12-15-11-4,12-15-11-4,12-15-11-4,12-15-11-4,12-15-11-4;0-2-5-13-10-14-3,0-2-5-10-13-14-3,0-2-5-10-13-14-3,0-2-5-10-13-14-3,0-5-10-2-
13-14-3;9-7-6-8-1,9-7-6-8-1,9-7-6-8-1,9-7-6-8-1,9-7-6-8-1

I_3_16_5_3 476 475 1.42 15-11-6-4-10,15-11-6-10-4,15-11-6-4-10,15-11-6-4-10,15-11-6-4-10;14-3-1-0-5,14-1-0-5-3,1-14-0-5-3,1-14-0-5-3,1-14-0-5-3;8-9-7-12-2-
13,8-9-7-12-2-13,8-9-12-7-2-13,8-9-12-7-2-13,8-9-12-7-2-13

I_3_16_5_4 524 519 0.6 10-0-14-2-11,10-0-14-2-11,10-0-14-2-11,10-0-14-2-11,0-10-14-2-11;3-8-12-1-6-7,3-8-12-1-6-7,3-8-12-1-6-7,3-8-12-1-6-7,3-8-12-1-6-7;5-9-
13-15-4,5-9-13-15-4,5-9-15-13-4,5-9-15-13-4,9-5-15-13-4

I_3_16_5_5 473 469 0.89 6-2-12-3-0,6-2-12-3-0,2-6-12-3-0,2-6-12-3-0,2-6-12-3-0;11-13-1-8-4,11-13-1-8-4,11-13-1-8-4,11-13-1-8-4,11-13-1-8-4;15-10-5-14-7-9,15-
10-5-14-7-9,10-15-5-14-7-9,10-15-14-5-9-7,10-15-14-5-9-7

I_4_12_4_1 290 286 0.04 3-5,3-5,5-3,5-3;4-11-9-1,4-11-9-1,4-11-9-1,4-11-9-1;8-2-7,8-2-7,8-2-7,8-2-7;10-6-0,10-6-0,10-6-0,10-6-0
I_4_12_4_5 331 327 0.04 1-7-4,1-7-4,1-7-4,1-7-4;8-11-2,8-11-2,8-2-11,8-2-11;6-10,6-10,6-10,6-10;0-3-5-9,0-3-5-9,0-3-5-9,0-3-9-5
I_4_12_5_2 396 395 0.05 5-3,5-3,5-3,5-3,5-3;1-8-9-7,1-9-8-7,1-9-8-7,1-9-8-7,1-9-7-8;6-2-4,6-2-4,6-2-4,2-6-4,2-6-4;11-0-10,11-0-10,11-10-0,11-10-0,11-10-0
I_4_12_5_3 415 411 0.06 1-2-0,1-0-2,1-0-2,1-2-0,1-0-2;4-5,4-5,4-5,5-4,5-4;8-11-7,8-11-7,8-11-7,8-11-7,8-11-7;3-9-10-6,3-9-10-6,3-9-10-6,3-9-10-6,3-9-10-6
I_4_12_5_4 372 360 0.05 6,6,6,6,6;8-11-1,8-11-1,8-11-1,8-1-11,8-1-11;4-10-5,4-10-5,4-10-5,4-10-5,4-10-5;7-9-0-2-3,7-9-0-2-3,7-9-0-2-3,7-9-0-3-2,7-9-0-3-2
I_4_14_4_5 297 292 0.06 4-12-13,4-12-13,4-12-13,4-12-13;8-5-10,8-5-10,8-5-10,8-5-10;3-9-6-7,3-9-6-7,3-9-7-6,3-9-7-6;0-2-1-11,0-2-1-11,0-2-1-11,0-2-1-11
I_4_14_5_1 398 397 0.14 8-9-5-6,8-9-5-6,8-9-5-6,8-5-9-6,8-5-9-6;3-7-11,3-7-11,3-7-11,3-7-11,3-7-11;10-13-12,10-13-12,10-13-12,13-10-12,13-10-12;0-1-2-4,0-1-2-

4,0-1-2-4,0-1-2-4,0-1-2-4
I_4_14_5_4 425 423 0.12 7-11,7-11,7-11,7-11,7-11;13-4-1-3,13-4-1-3,13-4-1-3,13-4-1-3,13-4-1-3;6-12-9-10,6-12-9-10,6-12-9-10,6-12-10-9,6-12-10-9;0-2-8-5,0-2-8-

5,0-8-2-5,0-8-2-5,0-8-2-5
I_4_14_5_5 432 427 0.1 2-9-3,2-3-9,2-3-9,2-3-9,2-3-9;4-13-1-5,4-13-1-5,4-13-1-5,4-13-1-5,4-13-1-5;11-6-12-10,11-6-12-10,11-6-12-10,11-6-12-10,11-6-12-10;7-0-

8,7-0-8,7-0-8,0-7-8,0-7-8
I_4_16_3_3 312 311 0.06 0-6-2-1,0-6-2-1,0-6-2-1;9-5-10-13,9-5-10-13,9-5-10-13;14-8-3,14-8-3,14-8-3;15-7-4-12-11,15-7-4-12-11,15-7-4-12-11
I_4_16_4_1 323 319 0.11 12-5-2,12-5-2,12-5-2,12-5-2;1-14-7-11-15,1-14-7-11-15,1-14-7-11-15,1-14-7-15-11;8-6-10-4-3,8-6-10-4-3,6-8-10-4-3,6-8-10-4-3;13-0-9,13-

0-9,13-0-9,13-0-9
I_4_16_4_2 359 357 0.12 5-13-3-1,5-13-3-1,5-13-3-1,5-13-3-1;6-8-10,6-8-10,6-8-10,6-8-10;9-7-12-15,9-7-12-15,9-7-12-15,9-7-12-15;2-14-0-11-4,2-14-0-11-4,2-14-0-

11-4,2-14-0-11-4
I_4_16_4_3 373 369 0.19 4-7-0,4-7-0,4-0-7,4-0-7;8-13-10-12,8-13-10-12,8-13-10-12,8-13-10-12;2-6-3-11,2-6-3-11,2-3-6-11,2-6-3-11;14-15-1-9-5,14-15-1-9-5,14-15-

1-9-5,14-15-1-9-5
I_4_16_4_5 397 390 0.14 5-14-13-9-3,5-14-13-9-3,5-14-13-3-9,5-14-13-3-9;15-8-12-11,15-8-12-11,15-8-12-11,15-8-12-11;4-6-7,4-6-7,4-6-7,4-6-7;10-1-0-2,10-1-0-

2,10-1-0-2,10-1-0-2
I_4_16_5_3 365 363 0.2 4-0-5,4-0-5,4-0-5,4-0-5,4-0-5;3-1-7-15,3-1-7-15,3-1-7-15,3-1-7-15,3-1-7-15;12-8-10-14-11,12-8-10-14-11,12-8-10-14-11,12-8-10-14-11,12-

8-10-14-11;9-6-13-2,9-6-13-2,9-6-13-2,9-6-13-2,9-6-13-2
I_4_16_5_4 447 441 0.25 3-11-12,3-11-12,3-11-12,3-11-12,3-11-12;6-15-1-10,6-15-1-10,6-15-1-10,6-15-1-10,6-15-1-10;5-8-9-2,5-8-9-2,5-8-9-2,5-8-9-2,5-8-9-2;0-7-

13-4-14,0-7-13-4-14,0-7-13-4-14,0-7-13-4-14,0-7-13-4-14

Appl. Sci. 2023, 13, 12562 22 of 26

Table A2. Results for the problem instances 1–30 of the large dataset for 2 factories (∗ indicates
optimality, + indicates equality with the best known solution).

Instance (F/J/M) LB Makespan Best Known (by [13]) Time (s)

Ta001_2 (2/20/5) 746 746∗ 746 161.7
Ta002_2 (2/20/5) 768 768∗ 768 35.1
Ta003_2 (2/20/5) 645 645∗ 645 33.7
Ta004_2 (2/20/5) 765 765∗ 765 183.3
Ta005_2 (2/20/5) 730 730∗ 730 143.6
Ta006_2 (2/20/5) 705 705∗ 705 17.0
Ta007_2 (2/20/5) 706 706∗ 706 62.3
Ta008_2 (2/20/5) 709 709∗ 709 45.0
Ta009_2 (2/20/5) 719 719∗ 719 44.1
Ta010_2 (2/20/5) 645 645∗ 645 33.6
Ta011_2 (2/20/10) 1049 1049∗ 1049 218.3
Ta012_2 (2/20/10) 927 1117+ 1117 300.0
Ta013_2 (2/20/10) 854 1001+ 1001 300.0
Ta014_2 (2/20/10) 789 911+ 911 300.0
Ta015_2 (2/20/10) 959 959∗ 959 160.3
Ta016_2 (2/20/10) 796 925+ 925 300.0
Ta017_2 (2/20/10) 989 989∗ 989 114.1
Ta018_2 (2/20/10) 846 1025+ 1025 300.0
Ta019_2 (2/20/10) 878 1023+ 1023 300.0
Ta020_2 (2/20/10) 882 1073+ 1073 300.0
Ta021_2 (2/20/20) 1404 1674+ 1674 300.0
Ta022_2 (2/20/20) 1336 1566+ 1566 300.0
Ta023_2 (2/20/20) 1478 1720+ 1720 300.0
Ta024_2 (2/20/20) 1420 1634+ 1634 300.0
Ta025_2 (2/20/20) 1441 1694+ 1694 300.0
Ta026_2 (2/20/20) 1417 1654+ 1654 300.0
Ta027_2 (2/20/20) 1417 1671+ 1671 300.0
Ta028_2 (2/20/20) 1393 1610+ 1610 300.0
Ta029_2 (2/20/20) 1409 1663+ 1663 300.0
Ta030_2 (2/20/20) 1377 1602+ 1602 300.0

Table A3. Results for the problem instances 1–30 of the large dataset for 3 factories (∗ indicates
optimality).

Instance (F/J/M) Makespan Best Known (by [13]) Time (s)

Ta001_3 (3/20/5) 575∗ 575 20.0
Ta002_3 (3/20/5) 578∗ 578 60.5
Ta003_3 (3/20/5) 505∗ 505 6.7
Ta004_3 (3/20/5) 602∗ 602 48.1
Ta005_3 (3/20/5) 563∗ 563 11.2
Ta006_3 (3/20/5) 552∗ 552 4.2
Ta007_3 (3/20/5) 545∗ 545 11.2
Ta008_3 (3/20/5) 557∗ 557 9.6
Ta009_3 (3/20/5) 552∗ 552 13.0
Ta010_3 (3/20/5) 501∗ 501 4.3
Ta011_3 (3/20/10) 871∗ 871 17.1
Ta012_3 (3/20/10) 922∗ 922 69.6
Ta013_3 (3/20/10) 834∗ 834 14.4
Ta014_3 (3/20/10) 758∗ 758 64.1
Ta015_3 (3/20/10) 798∗ 798 7.8
Ta016_3 (3/20/10) 767∗ 767 31.4
Ta017_3 (3/20/10) 820∗ 820 8.6
Ta018_3 (3/20/10) 851∗ 851 38.7
Ta019_3 (3/20/10) 840∗ 840 26.2

Appl. Sci. 2023, 13, 12562 23 of 26

Table A3. Cont.

Instance (F/J/M) Makespan Best Known (by [13]) Time (s)

Ta020_3 (3/20/10) 890∗ 890 31.1
Ta021_3 (3/20/20) 1466∗ 1466 36.1
Ta022_3 (3/20/20) 1383∗ 1383 47.2
Ta023_3 (3/20/20) 1509∗ 1509 160.7
Ta024_3 (3/20/20) 1439∗ 1439 31.0
Ta025_3 (3/20/20) 1474∗ 1474 91.2
Ta026_3 (3/20/20) 1458∗ 1458 78.2
Ta027_3 (3/20/20) 1466∗ 1466 142.6
Ta028_3 (3/20/20) 1417∗ 1417 106.5
Ta029_3 (3/20/20) 1467∗ 1467 114.6
Ta030_3 (3/20/20) 1402∗ 1402 34.6

Table A4. Results for the problem instances 1–30 of the large dataset for 4 factories (∗ indicates
optimality).

Instance (F/J/M) Makespan Best Known (by [13]) Time (s)

Ta001_4 (4/20/5) 489∗ 489 6.1
Ta002_4 (4/20/5) 489∗ 489 27.6
Ta003_4 (4/20/5) 440∗ 440 2.5
Ta004_4 (4/20/5) 517∗ 517 39.3
Ta005_4 (4/20/5) 485∗ 485 6.7
Ta006_4 (4/20/5) 478∗ 478 2.4
Ta007_4 (4/20/5) 469∗ 469 5.3
Ta008_4 (4/20/5) 482∗ 482 8.2
Ta009_4 (4/20/5) 475∗ 475 6.7
Ta010_4 (4/20/5) 429∗ 429 3.0
Ta011_4 (4/20/10) 780∗ 780 6.1
Ta012_4 (4/20/10) 830∗ 830 41.6
Ta013_4 (4/20/10) 752∗ 752 3.6
Ta014_4 (4/20/10) 680∗ 680 17.9
Ta015_4 (4/20/10) 717∗ 717 4.2
Ta016_4 (4/20/10) 688∗ 688 8.9
Ta017_4 (4/20/10) 743∗ 743 4.6
Ta018_4 (4/20/10) 762∗ 762 10.3
Ta019_4 (4/20/10) 755∗ 755 6.5
Ta020_4 (4/20/10) 802∗ 802 7.2
Ta021_4 (4/20/20) 1361∗ 1361 21.1
Ta022_4 (4/20/20) 1293∗ 1293 15.9
Ta023_4 (4/20/20) 1397∗ 1397 20.2
Ta024_4 (4/20/20) 1348∗ 1348 8.8
Ta025_4 (4/20/20) 1368∗ 1368 31.5
Ta026_4 (4/20/20) 1354∗ 1354 17.9
Ta027_4 (4/20/20) 1360∗ 1360 47.5
Ta028_4 (4/20/20) 1315∗ 1315 18.5
Ta029_4 (4/20/20) 1362∗ 1362 26.7
Ta030_4 (4/20/20) 1296∗ 1296 13.6

Table A5. Results for the problem instances 1–30 of the large dataset for 5 factories (∗ indicates
optimality).

Instance (F/J/M) Makespan Best Known (by [13]) Time (s)

Ta001_5 (5/20/5) 440∗ 440 5.3
Ta002_5 (5/20/5) 435∗ 435 14.6
Ta003_5 (5/20/5) 393∗ 393 2.0
Ta004_5 (5/20/5) 468∗ 468 39.7
Ta005_5 (5/20/5) 434∗ 434 6.7

Appl. Sci. 2023, 13, 12562 24 of 26

Table A5. Cont.

Instance (F/J/M) Makespan Best Known (by [13]) Time (s)

Ta006_5 (5/20/5) 433∗ 433 2.2
Ta007_5 (5/20/5) 430∗ 430 1.8
Ta008_5 (5/20/5) 435∗ 435 2.9
Ta009_5 (5/20/5) 427∗ 427 5.8
Ta010_5 (5/20/5) 390∗ 390 2.0
Ta011_5 (5/20/10) 729∗ 729 4.0
Ta012_5 (5/20/10) 770∗ 770 14.6
Ta013_5 (5/20/10) 698∗ 698 3.3
Ta014_5 (5/20/10) 634∗ 634 16.4
Ta015_5 (5/20/10) 671∗ 671 3.4
Ta016_5 (5/20/10) 640∗ 640 4.5
Ta017_5 (5/20/10) 693∗ 693 3.8
Ta018_5 (5/20/10) 715∗ 715 6.6
Ta019_5 (5/20/10) 709∗ 709 3.9
Ta020_5 (5/20/10) 753∗ 753 4.3
Ta021_5 (5/20/20) 1297∗ 1297 10.1
Ta022_5 (5/20/20) 1234∗ 1234 8.8
Ta023_5 (5/20/20) 1336∗ 1336 14.7
Ta024_5 (5/20/20) 1294∗ 1294 8.2
Ta025_5 (5/20/20) 1300∗ 1300 10.2
Ta026_5 (5/20/20) 1286∗ 1286 9.7
Ta027_5 (5/20/20) 1294∗ 1294 9.4
Ta028_5 (5/20/20) 1258∗ 1258 8.7
Ta029_5 (5/20/20) 1300∗ 1300 13.1
Ta030_5 (5/20/20) 1236∗ 1236 8.7

Table A6. Results for the problem instances 1–30 of the large dataset for 6 factories (∗ indicates optimality).

Instance (F/J/M) Makespan Best Known (by [13]) Time (s)

Ta001_6 (6/20/5) 407∗ 407 3.1
Ta002_6 (6/20/5) 403∗ 403 22.6
Ta003_6 (6/20/5) 369∗ 369 1.6
Ta004_6 (6/20/5) 432∗ 432 15.5
Ta005_6 (6/20/5) 404∗ 404 2.6
Ta006_6 (6/20/5) 402∗ 402 1.9
Ta007_6 (6/20/5) 430∗ 430 1.4
Ta008_6 (6/20/5) 408∗ 408 2.6
Ta009_6 (6/20/5) 396∗ 396 2.6
Ta010_6 (6/20/5) 365∗ 365 1.6
Ta011_6 (6/20/10) 693∗ 693 3.3
Ta012_6 (6/20/10) 730∗ 730 3.6
Ta013_6 (6/20/10) 673∗ 673 3.1
Ta014_6 (6/20/10) 603∗ 603 6.3
Ta015_6 (6/20/10) 650∗ 650 4.4
Ta016_6 (6/20/10) 613∗ 613 6.7
Ta017_6 (6/20/10) 671∗ 671 2.8
Ta018_6 (6/20/10) 692∗ 692 3.0
Ta019_6 (6/20/10) 702∗ 702 2.7
Ta020_6 (6/20/10) 722∗ 722 3.2
Ta021_6 (6/20/20) 1257∗ 1257 7.1
Ta022_6 (6/20/20) 1191∗ 1191 7.1
Ta023_6 (6/20/20) 1320∗ 1320 6.4
Ta024_6 (6/20/20) 1257∗ 1257 6.8
Ta025_6 (6/20/20) 1280∗ 1280 7.7
Ta026_6 (6/20/20) 1256∗ 1256 7.0
Ta027_6 (6/20/20) 1250∗ 1250 10.5
Ta028_6 (6/20/20) 1232∗ 1232 8.1
Ta029_6 (6/20/20) 1257∗ 1257 17.4
Ta030_6 (6/20/20) 1197∗ 1197 7.5

Appl. Sci. 2023, 13, 12562 25 of 26

Table A7. Results for the problem instances 1–30 of the large dataset for 7 factories (∗ indicates
optimality).

Instance (F/J/M) Makespan Best Known (by [13]) Time (s)

Ta001_7 (7/20/5) 384∗ 384 4.1
Ta002_7 (7/20/5) 381∗ 381 13.9
Ta003_7 (7/20/5) 360∗ 360 1.5
Ta004_7 (7/20/5) 413∗ 413 3.2
Ta005_7 (7/20/5) 385∗ 385 1.9
Ta006_7 (7/20/5) 383∗ 383 1.6
Ta007_7 (7/20/5) 430∗ 430 1.5
Ta008_7 (7/20/5) 385∗ 385 4.7
Ta009_7 (7/20/5) 376∗ 376 3.0
Ta010_7 (7/20/5) 347∗ 347 1.9
Ta011_7 (7/20/10) 668∗ 668 6.2
Ta012_7 (7/20/10) 706∗ 706 3.7
Ta013_7 (7/20/10) 649∗ 649 3.4
Ta014_7 (7/20/10) 586∗ 586 3.0
Ta015_7 (7/20/10) 628∗ 628 3.4
Ta016_7 (7/20/10) 591∗ 591 3.9
Ta017_7 (7/20/10) 671∗ 671 3.0
Ta018_7 (7/20/10) 692∗ 692 3.1
Ta019_7 (7/20/10) 702∗ 702 2.9
Ta020_7 (7/20/10) 707∗ 707 2.9
Ta021_7 (7/20/20) 1237∗ 1237 7.0
Ta022_7 (7/20/20) 1191∗ 1191 6.7
Ta023_7 (7/20/20) 1320∗ 1320 6.6
Ta024_7 (7/20/20) 1239∗ 1239 10.2
Ta025_7 (7/20/20) 1253∗ 1253 7.2
Ta026_7 (7/20/20) 1256∗ 1256 7.0
Ta027_7 (7/20/20) 1232∗ 1232 7.5
Ta028_7 (7/20/20) 1227∗ 1227 6.9
Ta029_7 (7/20/20) 1240∗ 1240 6.9
Ta030_7 (7/20/20) 1166∗ 1166 7.0

References
1. Naderi, B.; Ruiz, R. The distributed permutation flowshop scheduling problem. Comput. Oper. Res. 2010, 37, 754–768. [CrossRef]
2. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic sequencing and scheduling:

A survey. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326.
3. Garey, M.R.; Johnson, D.S.; Sethi, R. The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1976, 1, 117–129.

[CrossRef]
4. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]
5. Pinedo, M.L. Scheduling; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. . [CrossRef]
6. Johnson, S.M. Optimal two-and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68.

[CrossRef]
7. Reisman, A.; Kumar, A.; Motwani, J. Flowshop scheduling/sequencing research: A statistical review of the literature, 1952–1994.

IEEE Trans. Eng. Manag. 1997, 44, 316–329. [CrossRef]
8. Gupta, J.N.; Stafford, E.F., Jr. Flowshop scheduling research after five decades. Eur. J. Oper. Res. 2006, 169, 699–711. [CrossRef]
9. Iyer, S.K.; Saxena, B. Improved genetic algorithm for the permutation flowshop scheduling problem. Comput. Oper. Res. 2004,

31, 593–606. [CrossRef]
10. Framinan, J.M.; Gupta, J.N.; Leisten, R. A review and classification of heuristics for permutation flow-shop scheduling with

makespan objective. J. Oper. Res. Soc. 2004, 55, 1243–1255. [CrossRef]
11. Maccarthy, B.L.; Liu, J. Addressing the gap in scheduling research: a review of optimization and heuristic methods in production

scheduling. Int. J. Prod. Res. 1993, 31, 59–79. [CrossRef]
12. Naderi, B.; Ruiz, R. A scatter search algorithm for the distributed permutation flowshop scheduling problem. Eur. J. Oper. Res.

2014, 239, 323–334. [CrossRef]
13. Ruiz, R.; Pan, Q.K.; Naderi, B. Iterated Greedy methods for the distributed permutation flowshop scheduling problem. Omega

2019, 83, 213–222. [CrossRef]
14. Perez-Gonzalez, P.; Framinan, J.M. A review and classification on distributed permutation flowshop scheduling problems. Eur. J.

Oper. Res. 2023. [CrossRef]
15. Duan, J.; Wang, M.; Zhang, Q.; Qin, J. Distributed shop scheduling: A comprehensive review on classifications, models and

algorithms. Math. Biosci. Eng. 2023, 20, 15265–15308. [CrossRef]
16. Liu, H.; Gao, L. A discrete electromagnetism-like mechanism algorithm for solving distributed permutation flowshop scheduling

problem. In Proceedings of the 2010 International Conference on Manufacturing Automation, Hong Kong, China, 13–15 December
2010; pp. 156–163.

http://doi.org/10.1016/j.cor.2009.06.019
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1007/978-3-031-05921-6
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1109/17.618173
http://dx.doi.org/10.1016/j.ejor.2005.02.001
http://dx.doi.org/10.1016/S0305-0548(03)00016-9
http://dx.doi.org/10.1057/palgrave.jors.2601784
http://dx.doi.org/10.1080/00207549308956713
http://dx.doi.org/10.1016/j.ejor.2014.05.024
http://dx.doi.org/10.1016/j.omega.2018.03.004
http://dx.doi.org/10.1016/j.ejor.2023.02.001
http://dx.doi.org/10.3934/mbe.2023683

Appl. Sci. 2023, 13, 12562 26 of 26

17. Gao, J.; Chen, R. A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem. Int. J. Comput. Intell.
Syst. 2011, 4, 497–508.

18. Gao, J.; Chen, R.; Deng, W.; Liu, Y. Solving multi-factory flowshop problems with a novel variable neighbourhood descent
algorithm. J. Comput. Inf. Syst. 2012, 8, 2025–2032.

19. Gao, J.; Chen, R.; Deng, W. An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem. Int.
J. Prod. Res. 2013, 51, 641–651. [CrossRef]

20. Lin, S.W.; Ying, K.C.; Huang, C.Y. Minimising makespan in distributed permutation flowshops using a modified iterated greedy
algorithm. Int. J. Prod. Res. 2013, 51, 5029–5038. [CrossRef]

21. Xu, Y.; Wang, L.; Wang, S.; Liu, M. An effective hybrid immune algorithm for solving the distributed permutation flow-shop
scheduling problem. Eng. Optim. 2014, 46, 1269–1283. [CrossRef]

22. Fernandez-Viagas, V.; Framinan, J.M. A bounded-search iterated greedy algorithm for the distributed permutation flowshop
scheduling problem. Int. J. Prod. Res. 2015, 53, 1111–1123. [CrossRef]

23. Hamzadayı, A. An effective Benders decomposition algorithm for solving the distributed permutation flowshop scheduling
problem. Comput. Oper. Res. 2020, 123, 105006. [CrossRef]

24. Khare, A.; Agrawal, S. Effective heuristics and metaheuristics to minimise total tardiness for the distributed permutation flowshop
scheduling problem. Int. J. Prod. Res. 2021, 59, 7266–7282. [CrossRef]

25. Alaghebandha, M.; Naderi, B.; Mohammadi, M. Economic lot sizing and scheduling in distributed permutation flow shops.
J. Optim. Ind. Eng. 2019, 12, 103–117.

26. Gogos, C.; Valouxis, C.; Alefragis, P.; Goulas, G.; Voros, N.; Housos, E. Scheduling independent tasks on heterogeneous processors
using heuristics and Column Pricing. Future Gener. Comput. Syst. 2016, 60, 48–66. [CrossRef]

27. Gavranović, H.; Buljubašić, M.; Demirović, E. Variable neighborhood search for google machine reassignment problem. Electron.
Notes Discret. Math. 2012, 39, 209–216. [CrossRef]

28. Valouxis, C.; Gogos, C.; Dimitsas, A.; Potikas, P.; Vittas, A. A Hybrid Exact–Local Search Approach for One-Machine Scheduling
with Time-Dependent Capacity. Algorithms 2022, 15, 450. [CrossRef]

29. Alonso-Pecina, F.; Hernández, J.A.; Sigarreta, J.M.; Vakhania, N. Fast approximation for scheduling one machine. Mathematics
2020, 8, 1524. [CrossRef]

30. Perron, L.; Didier, F. Google’s ORTools CP-SAT. Available online: https://developers.google.com/optimization/cp/cp_solver
(accessed on 15 October 2023).

31. Pan, Q.K.; Ruiz, R. A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Comput.
Oper. Res. 2013, 40, 117–128. [CrossRef]

32. Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983,
11, 91–95. [CrossRef]

33. Taillard, E. Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 1990, 47, 65–74. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/00207543.2011.644819
http://dx.doi.org/10.1080/00207543.2013.790571
http://dx.doi.org/10.1080/0305215X.2013.827673
http://dx.doi.org/10.1080/00207543.2014.948578
http://dx.doi.org/10.1016/j.cor.2020.105006
http://dx.doi.org/10.1080/00207543.2020.1837982
http://dx.doi.org/10.1016/j.future.2016.01.016
http://dx.doi.org/10.1016/j.endm.2012.10.028
http://dx.doi.org/10.3390/a15120450
http://dx.doi.org/10.3390/math8091524
https://developers.google.com/optimization/cp/cp_solver
http://dx.doi.org/10.1016/j.cor.2012.05.018
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/0377-2217(90)90090-X

	Introduction
	Problem Description
	Benchmark Instances

	Related Work
	Materials and Methods
	Heuristics
	Model
	New Model after Throwing the Same Permutation Assumption
	A Novel Heuristic for Achieving Lower Bounds

	Results
	Lower Bounds Derived via the Heuristic
	Results for Problem Instances of the Small Dataset
	Results for Problem Instances of the Large Dataset

	Discussion
	Conclusions
	Appendix A
	References

