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Abstract: Osteoarthritis is a common chronic condition in the elderly population and, with falls,
represents a major public health problem. Patients with hip or knee osteoarthritis often have poor
balance, which is considered an important risk factor for falls. In recent years, there has been
increasing research supporting the use of robotic rehabilitation to improve function after total knee
and hip replacement. The aim of this study is to investigate the effects of robotic balance rehabilitation
on elderly patients who have undergone hip and knee replacement, with the aim of reducing the risk
of falls and improving balance and walking, as well as motor function, fatigue, and overall quality of
life. Twenty-four elderly patients with knee or hip replacement underwent robotic balance treatment
with the Hunova® platform or conventional treatment three times a week for four weeks. Patients
underwent an assessment of balance, walking, autonomy, quality of life and fatigue. Patients who
underwent rehabilitation with Hunova® showed an improvement in dynamic balance (p = 0.0039)
and walking (p = 0.001) and a reduction in both motor (p = 0.001) and cognitive (p = 0.05) fatigue. The
study found that specific treatment for balance disorders in these patients could improve balance and
reduce the risk of falling.

Keywords: technological rehabilitation; balance; osteoarthritis; elderly

1. Introduction

Osteoarthritis, often known as OA, is a chronic condition characterised by a degenera-
tive process that causes the joint to lose more and more structural components. It causes
the gradual wear and tear of the articular cartilage, which are the tissues that lines the
ends of bones, which in turn causes reactive neoformation of bone tissue, resulting in joint
restriction and discomfort [1]. Several studies have shown that more than thirty percent
of adults over the age of sixty-five, i.e., approximately one in three, experience a fall on
a yearly basis [2–4]. The risk of falling may even increase by more than 50 percent with
increasing age or in the presence of specific pathologies associated with ageing; in fact, OA
affects almost all people in their 70 s, with the incidence reaching its highest point between
the ages of 75 and 79 [2,3].

Falls are a common cause of illness and mortality, and often compromise people’s
level of independence, which can lead to an early need for assistance. In 2022, it was
estimated that 28.6 per cent of people over 65 years in Italy fall during a year; of these,
43 per cent fall more than once, and 60 per cent of falls occur at home [4,5]. Falls and
osteoarthritis are both major issues that affect public health. Falls are the second leading
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cause of death from unintentional injuries worldwide, and an estimated 37.3 million people
require medical care each year because of their injuries [6]. Fractures are a major cause of
death and morbidity, as well as a strain on the socioeconomic system [7,8]. The elderly
have an increased risk of suffering from hip and knee osteoarthritis [9], as well as hip and
knee fractures [10].

Patients suffering from knee and hip OA often experience pain, muscle weakness,
impaired joint proprioception, and poor balance, all of which are important risk factors for
falls [11–13]. There is a correlation between fall risk and measurements in several domains,
such as assessment of cognitive and physical functioning, gender, age, comorbidities,
medication use, fear of falling, and environmental factors [14]. Age and gender are two
aspects of a person’s life that cannot be changed, and are among the elements that contribute
to the likelihood of falling.

Muscle function, balance control, and gait quality are three of the most significant
determinants of fall risk; however, effective fall prevention interventions can improve these
factors [15,16]. Fractures, requiring hospitalisation, are a common consequence of falls,
which also have an important negative effect on both motor and cognitive function. In
particular, for elderly patients undergoing hip or knee replacement surgery, the rehabili-
tation procedure for recovering the sense of balance and ability to walk is of paramount
importance for improving person’s autonomy and independence. In addition, to have
a good recovery after hip or knee replacement surgery, it is essential to engage in reha-
bilitation activities that improve walking ability and sense of balance while reducing the
risk of falling. In the past, post-surgical therapies for knee replacement have emphasized
‘conventional’ treatment protocols. These protocols included activities to improve range
of motion, stretching, and development of strength and endurance. Nevertheless, this
rehabilitation strategy did not significantly improve either the patient’s level of discomfort
or limb function [17]. On the other hand, more recent research has included more targeted
balance therapies, both bipodal and monopodal, with an emphasis on the fact that a bet-
ter outcome was achieved by introducing rehabilitative activities that stress the sensory
systems involved in balance [18].

The most effective form of exercise-based therapy is one that combines strength
training with other types of exercise, particularly functional and balance activities. For
an exercise routine to be effective in reducing an individual’s number of stumbles and
falls, it must be condensed in terms of both duration and intensity [19]. In addition, the
use of perturbation-based therapies [20] and stepping interventions helps to prevent the
occurrence of falls [21].

A higher level of intensity, objectivity, and standardisation of treatment procedures, as
well as the measurement of results, are possible with technological and robotic rehabilita-
tion [22–24]. In recent years, research supporting the use of robotic rehabilitation to improve
function after total knee and hip replacement has increased [25–28]. In particular, the use
of exoskeletal robots and end-effectors for gait recovery is gaining popularity [29,30].

Considering the literature on the topic [31–33], the purpose of the study is to investigate
the effects of robotic balance rehabilitation on elderly patients who have undergone hip
and knee replacements, with the aim of reducing the risk of falls and improving balance
and walking, as well as motor function, fatigue, and overall quality of life.

2. Materials and Methods

This is an interventional, randomised, controlled pilot study. Patients from the Post-
Acute Rehabilitation Unit of the Fondazione Policlinico Universitario A. Gemelli IRCCS in
Rome were evaluated between September 2022 and June 2023.

2.1. Inclusion and Exclusion Criteria

Patients had to meet the following inclusion requirements to be included in the study:
(i) ages ≥ 55; (ii) results of total or partial prosthetic hip or knee replacement surgery; (iii)
latency from the acute event between 5 days and 3 months; (iv) cognitive ability such
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that they could follow simple instructions and understand physiotherapist instructions, as
measured by the Token Test (score ≥ 26.5); (v) ability to walk without assistance or with
minimal help; and (vi) understanding and signing of informed consent.

In contrast, patients with: (i) systemic, neurological, cardiac pathologies that made
walking dangerous or caused motor deficits; (ii) oncological conditions; (iii) plantar ulcers;
or (iv) partial or total amputation of foot segments were excluded.

Patients who met the participation requirements were randomly assigned to one of
two groups: the experimental group, referred to as G-Hun, or the conventional group,
referred to as G-Conv. In addition to the traditional treatment that was offered by the
clinical practice, G-Hun patients participated in a specialised rehabilitation treatment for
balance using the Hunova® robotic platform (Movendo Technology srl, Genoa, Italy). In
contrast, G-Conv patients were only required to receive traditional treatment on a daily
basis.

2.2. Clinical and Technological Assessment

At baseline (T0) and after 4 weeks of treatment (T1), all patients underwent clinical
and instrumental assessment.

Clinical evaluation was performed using scales assessing motor performance and
balance, walking, autonomy, quality of life and fatigue.

The Berg Balance Scale (BBS), the Time Up&Go (TUG), the Italian Knee Injury and
Osteoarthritis Outcome Score (KOOS-I) and the Italian Hip disability and Osteoarthritis
Outcome Score (HOOS-I), the Short Physical Performance Battery (SPPB) and the Motricity
Index-Lower Limb (MI-LL) were used to assess motor performance and balance.

The BBS is an instrument used to assess a patient’s ability or inability to maintain
balance during a series of tasks, both static and dynamic. It is a scale consisting of 14
tasks, for each of which a value ranging from 0 to 4 can be assigned, where 0 indicates the
inability to perform or complete the proposed task and 4 the highest level of functionality.
A score below 45 indicates an increased risk of falling [34]. The TUG is a test to assess the
risk of falling in the elderly. It is performed by recording the speed with which a patient is
able to get up from a chair, walk a distance of 3 metres, turn around, return to the chair
and sit down. In the elderly population, a time ≥ 12 indicates a risk of falling [35]. The
HOOS and KOOS are two extremely similar self-administered questionnaires investigating
symptoms, at the hip joint level in the former, and at the knee level in the latter. They
consist of 40 and 42 items, respectively; both are divided into five subscales (symptoms,
pain, activities of daily living, physical function, sports and recreational activities, and
quality of life). All items can be scored from 0 (no difficulty) to 4 (high difficulty). For each
subscale, the result is calculated as a percentage, where higher percentages correspond to a
better condition [36,37]. The SPPB is a test that assesses balance, lower limb strength and
functional capacity in the elderly. Three specific domains are assessed, i.e., the ability to
stand for 10 s with feet in three different positions (side-by-side, semi-tandem and tandem);
gait, which is assessed by recording the time taken by the patient to walk 3 or 4 metres (the
fastest recorded); and the time taken by the patient to get up from a chair five times [38,39].
The MI-LL is a test used to assess motor impairment. Ankle dorsiflexion, knee extension,
and hip flexion are assessed for each lower limb [40].

The walking assessment was carried out through the Ambulation Index (AI), the
Walking Handicap Scale (WHS), the Functional Ambulation Classification (FAC), the 10-
Meter Walking Test (10 MWT), and the 6-Minute Walking Test (6 MWT).

The AI is a mobility assessment scale that evaluates the time and degree of assistance
needed to walk 8 metres. The patient is asked to walk 8 metres as quickly and safely as
possible, while the travel time and the type of assistance needed are recorded. The travel
time is used to assign a score to the patient: lower scores correspond to a higher degree of
independence and activity [41]. The WHS is a scale used to assess the quality of walking
in the home and social environment through six categories. Category 1 corresponds
to ‘walking only for exercise’, while category 6 corresponds to ‘walking in the social
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environment without limitations’ [42]. The FAC is a functional gait test that assesses the
patient’s ability to walk and the amount of help needed. A higher score corresponds to the
ability to walk independently [43]. The 10 mWT is a performance test that is used to assess
how long it takes a patient to travel a predetermined distance [44]. The 6 MWT is a test that
assesses walking endurance. The patient is asked to walk as far as possible in six minutes.
The final score is given by the metres walked by the patient [45].

For the assessment of autonomy, quality of life, and fatigue, the modified Barthel
Index (mBI), the EuroQoL-5D (EQ-5D) and the Modified Fatigue Impact Scale (MFIS) were
used.

The mBI is a scale that measures autonomy in performing the activities of daily living
(ADLs), such as personal hygiene, the ability to wash oneself, feed oneself, use the toilet,
the ability to dress oneself, bladder and bowel control, the ability to make transfers, the
use of a wheelchair, and the ability to walk and climb stairs. Higher scores correspond to
greater autonomy in ADLs [46]. The EQ-5D is an instrument used to assess health-related
quality of life. Overall, it assesses five dimensions: mobility, self-care, habitual activities,
pain, and anxiety/depression. Higher scores correspond to a worse health status [47]. The
MFIS is a scale that evaluates the influence that fatigue has on people’s lives. The impact of
weariness on a person’s physical, cognitive, and psychosocial functioning can be evaluated
with the help of this test. It consists of 21 items, each of which is assessed using a Likert
scale with five points, ranging from 0 (meaning “never”) to 4 (meaning “almost always”).
In addition to the overall score, it is possible to extract scores for the physical subscale, the
cognitive subscale, and the psychosocial subscale. Scores higher than 10 indicate increased
levels of weariness [48,49].

Considering instrumental assessment, the balance assessment was performed with the
use of the robotic platform (Hunova® Movendo Technology srl, Genoa, Italy). In particular,
the balance assessment was performed in both static and dynamic conditions while the
subject was standing. Specifically, stabilometric data were collected from the analysis of
centre of pressure (CoP) trajectories. Subsequently, the following balance performance
factors were calculated from the instantaneous CoP positions: CoP oscillation velocity
along the antero-posterior (AP) and mid-lateral (ML) axis, CoP trajectory length, area of
the 95% confidence ellipse, and the Romberg Test [ratio of the length value in the eyes
closed (OC) condition to the same value in the eyes open (OA) condition]. In addition,
trunk movement data were also collected.

2.3. Procedures

The Hunova® robotic platform is a medical device consisting of two electromechanical
platforms, a foot platform and the seat platform [50].

G-Hun patients underwent robotic treatment for improving balance using Hunova®

3 times a week for 45 min each, in addition to conventional treatment. In particular, the
technological rehabilitation performed with Hunova® mainly aimed to improve balance,
both sitting and standing; static and dynamic exercises, dual-task exercises and exercises
to improve trunk control were proposed. In particular, technological rehabilitation was
mainly geared towards improving balance, both in a sitting and standing position.

As for the standing exercises, they were first performed in bipodal position. This
position was adopted to train the patient to handle the load appropriately, to maintain the
standing position both in quiet environments and during activities that require continuous
adjustment of standing and trunk control, and to keep the load in the correct position.
Subsequently, training was performed to strengthen the core and improve propriocep-
tion, both on a stationary platform and using different perturbation modes (elastic mode,
fluid mode). As treatment progressed, exercises were performed in monopodal support,
both on the operated limb and the healthy limb, to restore proper load management and
proprioception, as well as to strengthen muscle tissue.

To strengthen the trunk and improve load control on the lower limbs and pelvis,
exercises performed while seated focused on these areas.
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To train the patient to complete several tasks simultaneously, dual-task activities
were performed while sitting and standing. Cognitive–motor coordination and dual-task
activities were performed.

G-Conv patients underwent only conventional rehabilitation treatment using major
rehabilitation methods (e.g., neurocognitive theory, progressive neuromuscular facilitation,
etc.).

2.4. Statistical Analysis

As this is a pilot study on a specific subgroup of patients, on whom the actual useful-
ness of the Hunova® has not yet been studied in the literature, the study was set up as a
pilot study. As such, no formal sample sizing was necessary. However, based on Julious’
rules (2005) of thumb for clinical pilot studies [51], 12 subjects per group were included for
a total population of 24 subjects.

The division into the two groups followed a randomisation algorithm according to
the random sorting procedure. The allocation sequence was generated through PASS2019
software.

The sample was described in its clinical and demographic variables using descriptive
statistical techniques. Quantitative variables were summarized with mean and standard
deviation (SD), and median and interquartile range (IQR) where appropriate. Qualitative
variables were presented through absolute and percentage frequency tables.

The Shapiro–Wilk probability test was used to assess the normality of the distribu-
tions [52]. The within-group analysis was based on the application of the Wilcoxon Signed
Rank test for each clinical and instrumental balance outcome registered at T0 and T1.

The between-group analysis was performed using The Mann–Whitney U test to
compare the percentage increase calculated for each group.

Regarding the clinical outcome, the between-group differences were analyzed by
comparing the changes from baseline of each clinical scale, defined as S(T1) − S(T0), where
S is one of the clinical outcomes. Instead, regarding the instrumental outcome, the between-
group differences were analyzed by comparing the percentage increase in each outcome,
defined as ∆S = (S(T1)−S(T0))

(S(T0)) .
The between-group analysis of clinical scales were conducted by considering the

differences between the scores, S(T1) − S(T0), because the minimum value of almost all
scales is 0, and normalization was not thus possible.

Statistical significance for each test was set at 0.05. Statistical analysis was performed
with SPSS 25 (IBM Corp., Armonk, NY, USA).

3. Results

Some 24 patients admitted to the post-acute rehabilitation unit between September
2022 and June 2023, 10 men and 14 women, with a mean age of 67.64 years (standard
deviation of ±23.67 years), were included in the study. The two groups did not differ in
terms of clinical and demographic characteristics, as shown in Table 1.

Table 1. Clinical and demographical characteristic of the whole sample at baseline.

G-Hun (n = 12) G-Conv (n = 12) p Value

Gender, % Male vs. Female 33.33 % vs. 66.67 % 50.00 % vs. 50.00 % p = 0.410

Age, years Mean ± SD 69.1 ± 24.6 65.6 ± 24.3 p = 0.887

Latency, days Mean ± SD 5.0 ± 1.4 5.0 ± 1.6 p = 0.514

Type of prosthesis, % Knee vs. Hip 58.33 % vs. 41.67 % 41.67 % vs. 58.33 % p = 1.000

Affected size, % Left vs. Right 66.67 % vs. 33.33 % 58.33 % vs. 41.67 % p = 0.755

G-Hun: experimental group G-Conv: conventional group; SD: standard deviation.
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Considering the motor, balance and walking assessments, the intragroup analysis
showed statistically significant improvements in the clinical scales in both groups, as shown
in Table 2. Regarding the intergroup comparison of clinical scales, however, a statistically
significant difference was found in TUG (p = 0.039), 10 MWT (p = 0.001) and 6 MWT
(p = 0.001) values (Figure 1).

Table 2. Intra-group and inter-group analysis of motor function, balance, gait and fatigue, autonomy
and quality-of-life scales.

G-Hun G-Con
T0

Median (IQR)
T1

Median (IQR) p Value T0
Median (IQR)

T1
Median (IQR) p Value p Value

G-Hun vs. G-Con
Motor function, balance and gait
MI-LL
prosthetic side 61.5 (48.75–65.5) 77 (74.5–92) p = 0.002 64 (52.5–66) 87 (74.5–91.25) p = 0.013 p = 0.319

MI-LL
non-prosthetic side 88 (82–100) 100 (92–100) p = 0.016 88 (76–94) 95.5 (91–100) p = 0.017 p = 0.799

TUG 31.60 (27.63–63.5) 22.93 (19.14–26.86) p = 0.002 23.85 (17.32–27.62) 12.82 (8.3–24.29) p = 0.002 p = 0.039

BBS 30 (22.75–32.25) 42 (38.75–48.5) p = 0.02 28 (18–33) 38.5 (33–54) p = 0.003 p = 0.089

SPPB_B 1 (1–2) 2 (2–3) p = 0.002 1 (1–1) 2 (1.75–4) p = 0.007 p = 0.713

SPPB_W 1 (1–1) 2 (1–2) p = 0.007 1 (1–1) 1 (1–3) p = 0.039 p = 0.843

SPPB_STS 1 (1–1) 2 (1.75–2) p = 0.004 1 (1–1) 1 (1–4) p = 0.007 p = 0.843

SPPB_TOT 3 (2.75–4) 6 (5–6) p = 0.002 3 (3–3) 4 (3.75–11) p = 0.011 p = 0.514

HAI 5 (4.75–6) 3 (2.75–4) p = 0.002 4.5 (2–5.25) 2 (2–2.5) p = 0.053 p = 0.671

FAC 1.5 (1–2) 4 (3–4) p = 0.002 2 (2–3) 3 (2.75–5) p = 0.002 p = 0.219

WHS 2 (2–1) 3.5 (3–4) p = 0.001 2 (2–2) 3 (3–5) p = 0.002 p = 0.932

10 MWT 20.16 (16.86–28.61) 12.19 (11.29–18.58) p = 0.001 17.4 (14.8–18.24) 15.69 (13.79–16.38) p = 0.002 p = 0.001

6 MWT 77.5 (60–106.25) 175 (133.75–212.5) p = 0.002 100 (85–1656) 150 (143.75–190) p = 0.003 p = 0.001
Fatigue, autonomy, and quality of life
mBI 50.5 (42.75–58.5) 91 (84–92.75) p = 0.002 43 (37.75–43) 64 (56–87) p = 0.002 p = 0.219

EQ-5D_VAS 52.5 (43.75–60) 85 (80–86.25) p = 0.003 47.5 (45–53.75) 80 (70–85) p = 0.003 p = 0.630

EQ-5D TOT 11 (10.5–15.25) 7 (6–7.25) p = 0.002 15 (14–15) 9 (7–11) p = 0.002 p = 0.713

MFIS_PHY 25 (22.5–28.25) 14 (10–16.5) p = 0.002 22 (21–22.25) 19 (16–19) p = 0.002 p = 0.001

MFIS_COG 13 (12–18.25) 3 (2–3.25) p = 0.003 11 (9–16.75) 8 (6–12) p = 0.002 p = 0.05

MFIS_PSY 7 (5.5–7.25) 3 (2–3.25) p = 0.003 5 (4.75–6.25) 3 (2–3) p = 0.003 p = 0.514

MFIS_TOT 43.5 (42–50.75) 23.5 (17.75–29.25) p = 0.002 41 (36–44) 30 (28–30) p = 0.002 p = 0.002

G-Hun: experimental group G-Conv: conventional group; MI-LL: Motricity index-Lower Limb; TUG: Timed
Up&Go; BBS: Berg Balance Scale; SPPB_B: Short Physical Performance Battery_Balance; SPPB_W: Short Physical
Performance Battery_Walking; SPPB_STS: Short Physical Performance Battery_Sit To Stand; HAI: Hauser Am-
bulation index; FAC: Functional Ambulation Classification; WHS: Walking Handicap Scale; 10 MWT: 10-Meter
Walking Test; 6 MWT: 6-Minute Walking Test; mBI: modified Barthel Index; EQ-5D: EuroQuoL-5 Dimensions;
MFIS_PHY: Modified Fatigue impact Scale_Physical; MFIS_COG: Modified Fatigue impact Scale_Cognitive;
MFIS_PSY: Modified Fatigue impact Scale_Psycosocial; in bold the significant results for p < 0.05.

Regarding the ratings of fatigue, autonomy and quality of life, the intra-group analysis
showed significant improvements for all the rating scales used, for both G-Hun and G-
Conv. Comparing the two groups, a statistically significant difference was found in MFIS
(p = 0.002), particularly for the physical subscale (p = 0.001) and the cognitive subscale
(p = 0.05).

Considering the subgroup of patients who underwent knee replacement, the intra-
group analysis between those who underwent robotic balance rehabilitation and those
who underwent conventional rehabilitation showed statistically significant differences in
most of the subscales comprising the KOOS-I, with the exception of the subscale related to
activities of daily living in the G-Hun (p = 0.080) and the G-Conv (p = 0.170) groups.

Otherwise, considering the subgroup of patients undergoing hip replacement, intra-
group analysis showed statistically significant results in all subscales of the HOOS-I only in
the G-Hun group (Table 3).
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T1

Median (IQR) p Value T0
Median (IQR)

T1
Median (IQR) p Value

KOOS-I
KOOS_S 70 (65–75) 35 (25–45) p = 0.013 91.66 (91.66–100) 75 (75–75) p = 0.046

KOOS_P 69.45 (66.66–75) 41.67 (41.67–52.77) p = 0.043 80 (80–100) 33.34 (33.34 + 75) p = 0.046

KOOS_ADL 69.12 (67.64–79.42) 48.53 (45.49–52.95) p = 0.080 70.58 (70.58–92.65) 51.18 (30.89–72.05) p = 0.170

KOOS_sport 100 (100–100) 50 (52–75) p = 0.024 100 (100–100) 81.25 (45–81.25) p = 0.042

KOOS_QoL 75 (62.5–81.25) 27.5 (25–31.25) p = 0.033 75 (68.75–75) 62.25 (56.25–62.25) p = 0.036

KOOS_TOT 74.50 (74.18–78.21) 42.02 (31.45–45.10) p = 0.013 82.04 (82.04–93.57) 58.43 (45.25–70.34) p = 0.016
HOOS-I
HOOS_S 66.67 (63.33–79.17) 33.33 (25–45.83) p = 0.018 75 (75–75) 66.67 (66.67–84.3) p = 0.680

HOOS_p 69.95 (62.5–83.75) 52 (32.5–37.5) p = 0.018 57.5 (57.5–57.5) 52 (32.5–80) p = 0.892

HOOS_ADL 70.59 (60.88–75.74) 43.75 (31.61–52.8) p = 0.018 60.3 (60.3–60.3) 54.42 (51.18–64.71) p = 0.684

HOOS_sport 100 (100–100) 50 (46.88–62.5) p = 0.017 100 (43.75–81.2) 100 (100–100) p = 0.180

HOOS_QoL 68.42 (65.25–75) 18.75 (11.13–31.25) p = 0.018 52 (43.75–81.2) 62.75 (62.75–62.75) p = 0.684

HOOS_TOT 78.32 (70.70–80.09) 36.89 (31.93–47.63) p = 0.018 67.47 (54.70–70.67) 60.10 (58.43–72.60) p = 0.684

G-Hun: experimental group G-Conv: conventional group; KOOS_S: KOOS_Symptoms; KOOS_P: KOOS_Pain;
KOOS_ADL: KOOS_Activity of Daily Living; KOOS_QoL: KOOS_Quality of Life; HOOS_S: HOOS_Symptoms;
HOOS_P: HOOS_Pain; HOOS_ADL: HOOS_Activity of Daily Living; HOOS_QoL: HOOS_Quality of Life;
significant results at p < 0.05 are in bold.

On the other hand, regarding the instrumental assessment of static balance, the intra-
group analysis showed no statistically significant results for either G-Hun or G-Conv. In
contrast, the intergroup comparison showed statistically significant results for the Romberg
index (p = 0.047) and the COP sway range in the mid-lateral direction with open eyes
(p = 0.026).

Conversely, instrumental assessment of dynamic balance showed significance for all
parameters considered for G-Hun, while G-Conv showed no statistically significant results.
Comparison between groups showed significance for open-eye sway area (p = 0.006),
open-eye COP path (p = 0.002), trunk movements (p = 0.035), trunk sway in the mid-
lateral direction (p = 0.001), and mean speed of COP sway in the antero-posterior direction
(p = 0.035) (Table 4).
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Table 4. Intra-group and inter-group analysis of instrumental assessment of the static and dynamic
conditions of the whole sample.

G-Hun G-Conv
T0

Mediana (IQR)
T1

Mediana (IQR) p Value T0
Mediana (IQR)

T1
Mediana (IQR) p Value p Value

G-Huv vs. G-Conv
Static Condition
Area-EC [cm2] 4.96 [4.17–6.50] 2.67 [1.87–6.08] p = 0.169 7.73 [5.98–9.5] 7.73 [5.98–9.5] p = 0.142 p = 0.186

Area-EO [cm2] 2.50 [2.05–3.34] 1.99 [1.18–3.58] p = 0.959 1.17 [0.95–3.1] 1.35 [1.17–3.1] p = 0.155 p = 0.361

Romberg Index 0.37 [0.36–0.55] 0.86 [0.37–1.40] p = 0.471 0.23 [0.14–0.33] 0.23 [0.14–0.47] p = 0.241 p = 0.047

COP path-EO [cm] 49.78 [36.02–70.64] 42.96 [31.00–61.78] p = 0.333 33.53 [28.25–35.79] 35.32 [29.3–35.79] p = 0.177 p = 0.303

COP path-EC [cm] 64.38 [49.44–118.26] 60.68 [49.56–88.22] p = 0.169 62.89 [46.76–115.83] 62.89 [46.76–115.83] p = 0.220 p = 0.119

Trunk movement-EO
[deg/s2] 0.05 [0.04–0.07] 0.05 [0.05–0.07] p = 0.735 0.04 [0.04–0.06] 0.04 [0.04–0.08] p = 1.000 p = 0.569

Trunk movement-EC
[deg/s2] 0.05 [0.05–0.12] 0.05 [0.05–0.05] p = 0.075 0.06 [0.04–0.1] 0.06 [0.04–0.01] p = 0.237 p = 0.277

Trunk sway range
AP-EO [deg] 2.80 [2.12–3.22] 3.03 [2.31–6.97] p = 0.059 2.12 [2.1–2.97] 2.12 [2.1–2.97] p = 0.256 p = 0.186

Trunk sway range
AP-EC [deg] 3.07 [2.42–4.16] 2.78 [2.24–3.32] p = 0.575 3.21 [2.52–4.09] 3.21 [2.52–4.09] p = 0.242 p = 0.608

Trunk sway range
ML-EO [deg] 1.25 [0.83–1.54] 1.28 [0.97–2.07] p = 0.507 0.81 [0.43.1.17] 0.81 [0.45–1.17] p = 0.158 p = 0.691

Trunk sway range
ML-EC [deg] 1.41 [1.26–1.90] 1.31 [0.98–2.03] p = 0.507 1.21 [0.86–1.43] 1.21 [0.86–1.43] p = 0.189 p = 0.331

COP sway range
AP-EO [cm] 1.96 [1.83–2.67] 1.75 [1.36–3.87] p = 0.959 2.96 [2.22–3.43] 2.96 [2.22–3.43] p = 0.164 p = 0.424

COP sway range
AP-EC [cm] 2.35 [2.21–3.01] 2.47 [2.14–2.77] p = 0.878 1.77 [1.5–2.23] 1.78 [1.5–2.23] p = 0.157 p = 0.424

COP sway range
ML-EO [cm] 3.63 [2.59–4.41] 2.83 [2.31–3.48] p = 0.92 3.74 [2.99–5.2] 3.74 [2.99–5.1] p = 0.174 p = 0.026

COP sway range
ML-OC [cm] 1.41 [1.27–2.12] 1.73 [1.10–2.29] p = 0.959 1.21 [0.65–1.49] 1.30 [1.03–1.49] p = 0.144 p = 0.691

Ratio of axes of the
ellipse-EO [%] 54.43 [48.07–57.68] 39.93 [35.21–49.86] p = 0.600 62.64 [50.72–71.79] 71.79 [60.55–71.9] p = 0.182 p = 0.055

Ratio of axes of the
ellipse -EC [%] 55.96 [46.60] 48.89 [46.46–73.37] p = 0.646 60.90 [48.86–81.69] 60.90 [54.77–81.69] p = 0.157 p = 0.119

Mean speed COP
AP-EO [cm/s] 1.38 [1.16–1.82] 1.29 [0.95–1.84] p = 0.721 0.86 [0.83–0.98] 0.98 [0.86–1.02] p = 0.139 p = 0.361

Mean speed COP
AP-EC [cm/s] 1.90 [1.48–4.06] 1.68 [1.56–1.96] p = 0.874 1.81 [1.41–4.02] 1.81 [1.41–4.02] p = 0.157 p = 0.186

Mean speed COP
ML-EO [cm/s] 0.77 [0.50–0.97] 0.66 [0.47–0.97] p = 0.283 0.70 [0.38–0.71] 0.70 [0.38–0.71] p = 0.177 p = 0.018

Mean speed COP
ML-EC [cm/s] 0.93 [0.66–1.54] 0.87 [0.67–1.87] p = 0.859 0.99 [0.8–1.19] 1.04 [0.99–1.19] p = 0.128 p = 0.569

Dynamic Condition
Area-EO [cm2] 38.47 [17.95–44.66] 3.06 [2.44–10.33] p = 0.006 39.50 [27.06–66.38] 39.50 [22.08–66.38] p = 0.177 p = 0.006

COP path-EO [cm] 85.00 [49.94–115.41] 28.17 [17.19–30.82] p = 0.004 94.26 [91.26–125.6] 94.26 [91.26–125.6] p = 0.240 p = 0.002

Trunk movement-EO
[deg/s2] 0.08 [0.08–0.16] 0.06 [0.05–0.07] p = 0.028 0.08 [0.07–0.11] 0.08 [0.07–0.11] p = 0.347 p = 0.035

Trunk sway range
AP-EO [deg] 4.40 [2.70–5.01] 2.87 [2.37–4.20] p = 0.248 3.96 [3.45–4.09] 3.96 [3.45–4.09] p = 0.184 p = 0.459

Trunk sway range
ML-EO [deg] 4.97 [2.96–5.91] 1.89 [1.48–2.45] p = 0.005 2.37 [1.92–5] 2.37 [1.92–5] p = 0.664 p = 0.001

COP sway range
AP-EO [cm] 7.16 [5.06–9.21] 3.23 [2.42–5.04] p = 0.059 7.82 [7.11–8.9] 7.11 [5.73–8.9] p = 0.378 p = 0.134

COP sway range
ML-EO [cm] 6.32 [4.32–7.41] 2.07 [1.55–3.81] p = 0.013 7.59 [5.6–10.38] 7.59 [5.6–10.38] p = 0.157 p = 0.093

Mean speed COP
AP-EO [cm/s] 2.49 [0.95–2.82] 0.56 [0.33–0.62] p = 0.012 2.42 [1.41–3.11] 2.42 [1.41–3.11] p = 0.124 p = 0.035

Mean speed COP
ML-EO [cm/s] 1.44 [0.93–2.23] 0.59 [0.34–0.78] p = 0.021 1.81 [1.36–2.54] 1.81 [1.36–2.54] p = 0.237 p = 0.055

G-Hun: experimental group G-Conv: conventional group; EO: eyes open; EC: eyes closed; COP: centre of pressure;
AP: antero-posterior; ML: medio-lateral; In bold the significant results for p < 0.05.
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4. Discussion

Evidence from the literature show that balance-specific treatment in elderly subjects
undergoing knee replacement had positive effects on proprioception, postural control,
balance, and coordination [53]. A meta-analysis showed that balance-specific treatment
improves motor performance, i.e., balance and walking, compared to conventional (i.e., non-
balance-specific) treatment alone [31]: according to the literature, traditional rehabilitation
treatment alone would not be sufficient to improve balance in this type of patient [54].

So far, there is no work in the literature using robotic balance rehabilitation for patients
with OA, so it is difficult to compare the results obtained from this study with those already
published.

Data analysis reported that patients undergoing balance-specific treatment with the
Hunova® showed a significant improvement in dynamic balance and walking, both in terms
of walking speed and distance travelled, compared to the group of patients undergoing
conventional rehabilitation alone. These data were also confirmed by the results of the
instrumental assessment, especially in its dynamic component. In this case, data analysis
showed a marked improvement in dynamic balance in the group of patients undergoing
rehabilitation with Hunova®, both compared to baseline and, for some specific parameters,
compared to the conventional rehabilitation group. In the latter case, in fact, patients in the
Hunova® group showed a significant improvement, especially in the reduction of swaying,
the reduction of swaying, and the reduction of trunk movements.

These results could be due to the fact that through the use of Hunova®, intervention
training based on perturbation, proprioception, and load perception was more effective
than conventional rehabilitation intervention alone.

The analysis of the results revealed two other interesting things: the first is that patients
undergoing a hip replacement and rehabilitation with Hunova® showed a significant
improvement in symptoms, pain, quality of life, and overall treatment efficacy compared
to the group of patients undergoing the same surgery and conventional rehabilitation
alone. The second is that when considering fatigue, patients in the Hunova® group showed
a significant reduction in fatigue in both the motor and cognitive components. These
results confirm what Castelli and colleagues [55] have already showed, albeit in a different
population undergoing robotic rehabilitation with Hunova®.

This study showed that elderly patients who underwent prosthetic hip and knee
replacement surgery had a significant improvement in terms of not only walking but also
in the reduction of postural oscillations, and consequently showed greater stability during
dynamic balance. These elements leading to improved balance performance and a reduced
risk of falling. Furthermore, this study shows that fatigue, which can be a contributing
factor to falls in elderly subjects, is also reduced in those patients who have undergone
specific treatment for balance disorders with the Hunova® platform.

Several studies have reported that a specific rehabilitation treatment for balance and
walking is effective in patients underwent surgery after OA [17,18,31,33]. To the best of our
knowledge, to treat those patients, beyond conventional physical therapy, technological
rehabilitation is carried out mainly by means of end-effectors and exoskeletons [25–28].

Some aspects need to be taken into account while analyzing these findings. First of
all, because these are preliminary findings, further research will be required to validate the
original theory. The sample size is the study’s primary limitation. However, as previously
mentioned, the Julious’ rules for Pilot Clinical Trials [51] were used to estimate the inclusion
of 12 patients each group, for a total population of 24 people. A further constraint on the
research is the absence of post-protocol and post-discharge follow-up. In fact, even after
being released from rehabilitation, certain longitudinal studies indicate that function may
continue to improve [56].

5. Conclusions

This is the first study involving a robotic platform in the recovery of those orthopaedic
patients. These preliminary findings provide a crucial foundation for more research.
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Hunova® may be a useful tool for enhancing elderly persons’ balance with hip or knee
replacement after OA.

The risk of falls in older persons may be reduced by using this technological rehabil-
itation therapy, which can improve motor performance, minimize fatigue, and improve
dynamic balance and ambulation.
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