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Abstract: Traditional route planning methods usually plan the “fastest” or “lowest cost” travel route
for users with the goal of finding the shortest path or the lowest cost, but this method cannot meet the
needs of tourism users for personalized and multifunctional travel routes. Given this phenomenon,
this paper proposes a personalized route planning model based on urgency. First, the model uses
the visitor’s historical tourism data and public road network data to extract their preferences, POI
(point of interest) relationships, edge scenic values and other information. Then, the planned route
function is determined according to the urgency value, which provides users with travel routes that
accommodate their interest preferences and urgency. Finally, the improved genetic algorithm based
on gene replacement and gene splicing operators is used to carry out numerical experiments on the
Xi’an and Wuhan road network datasets. The experimental results show that the proposed algorithm
is not only capable of planning routes with different functions for diverse users but also performs
personalized route planning according to their preferences.

Keywords: user preference; scenic route planning; POI relationship modelling; urgency; improved
genetic algorithm

1. Introduction
1.1. Background

Today, many enterprises (such as Google, Baidu, etc.) have launched map services
(Google Maps, Baidu Maps) based on road networks and public transport networks to plan
feasible routes between two points based on these services with the main aim to find the
shortest path or the lowest cost to achieve the fastest or most provincial route [1]. However,
in reality, tourism users not only pay attention to path length and travel cost but also
usually consider the utility value of the path [2]. For example, they may want to take a
quiet route to free themselves and enjoy their personal time, or some users may want to
take a route with good quality scenery so that travel is not boring or burdensome. They
can even stop and go, visit multiple favourite attractions along the way, and improve the
overall travel experience. Therefore, the fastest or most economical route does not meet the
diverse needs of tourism users [3].

At present, there are many studies on scenic tourism route planning. Most researchers
describe the problem as an OP (orientation problem) or AOP (arc orientation problem). The
OP [4] is a combination of selecting nodes and determining the shortest path between the
selected nodes. This can be seen as a combination of two classical problems: the knapsack
problem and the travelling salesman problem. The difference between AOP and OP is that
the weight of AOP is assigned to an arc, and the search object in the path search process
is an arc rather than a point. AOP and OP are NP (Non-deterministic Polynomial) hard
problems [5]. In addition, due to the large scale of the road network, finding the exact
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solutions to these two problems is time-consuming. Therefore, in practical applications, in
order to meet the needs of a rapid response, heuristic search methods are often used to find
their approximate solutions [6–8].

1.2. Related Works

In recent years, in relation to the two basic problems of OP and AOP, researchers
have conducted extensive and in-depth research on scenic route planning alone and by
combining user preferences.

Scenic route planning aims to plan routes with a large scenic score for users without
considering their preferences. Chen X et al. [1] believed that the more photos and check-in
times that are distributed on the road section, the higher its scenic score. Hence, they used
Open Street Map (OSM) to extract basic road network data, check-in data on Foursquare,
and Flickr photo data, to calculate the scenic value of the road section and propose a
scenic route planning system based on multisource heterogeneous crowdsourcing data to
recommend the best travel route between two points for users. Chen et al. [9] proposed a
two-stage scenic route planning framework. This framework first calculates the scenic score
of the road section and then uses a memetic algorithm (MA) to search and plan travel routes
with high scenic scores for users. Zheng et al. [10] proposed an enhanced GPS navigation
system, GPSView, which takes landscape factors into account in the route planning process
to plan a driving route with landscape and sightseeing properties for users so that travellers
can sightsee while driving. Skoumas et al. [11] extracted the spatial relationship between
POIs (points of interest) from tourism blogs, quantized the relationship with a probability
model, and established a POI relationship diagram. Then, Bayesian inference was used
to calculate the probability measure of spatial intimacy. Finally, the method was applied
to the road network to plan a more attractive route for users to guide them through their
favourite areas. Li et al. [12] proposed a new genetic algorithm based on a path network.
Each chromosome represents a feasible path which avoids the search cycle. The mutation
at a specific location can quickly plan the path. Demiryurek et al. [13] maintain that
with real-world spatial networks the edge’s travel times are time dependent, where the
arrival time to an edge determines the actual travel time on the edge, based on which they
proposed a time-dependent A* algorithm to accelerate the calculation speed of the online
path. Chen et al. [14–16] assume that the scenic score and travel time cost of each arc in the
road network are time dependent; that is, the scenic score of different POIs in various time
periods changes, and thus the travel time cost associated with assorted departure times
also differs. They defined this problem as a twofold time-dependent AOP and proposed an
MA to solve this problem. Similarly [9], Chen et al. [17] also believe that the utility value
and travel time cost on the arc in the road network are time dependent and constructed
a twofold time-dependent path planner to solve the problem. The difference is that they
modelled the utility value of the path so that it can be quantified according to specific needs.
For example, for security patrol personnel, the utility value could be the danger degree of
the path; for those taking exercise, the value could be the path’s quietness; and for tourists,
it could be its scenic value. This unified modelling method expands the application scope
of the method. Verbeeck et al. [18] proposed a fast local search metaheuristic method based
on the ant colony algorithm, which combines the principle of this system with the time-
dependent local search method to quickly provide an effective solution. Experiments show
that the algorithm can obtain high-quality route planning results with low computational
time, ensure that the route can be updated swiftly when new available traffic information
appears, and help tourists reach their destination quickly. In subsequent work, Lu et al. [19]
proposed an efficient MA to model more specific details in the tourism route planning
problem to improve the accuracy of recommendations for specific problems.

The scenic route planning method combined with user preferences has been used to
plan scenic routes that meet user preferences. Quercia et al. [20] provided street view data
of London to passersby, asking them to vote on which street view they considered more
beautiful, happier, or quieter, and then quantitatively analysed the results to recommend
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more of these types of paths to users. After verification and analysis, they found that,
compared with the shortest route, the recommended route did not increase the distance
cost but the route attractiveness far exceeded that of the shortest route. On the basis that
tourists’ preferences (such as expected starting and ending POI, must-see POI subset, etc.)
should be taken into account in route planning. Taylor et al. [21] defined the problem as a
TourMustSee problem and proposed an LP + M algorithm to solve the problem as one of
integer linear programming. The experimental results showed that the route recommended
by LP + M is better in terms of POI popularity, total POI visits, total travel time spent,
and POI(s). Liang et al. [22] considered a top-k route search problem, that is, the set of
given interest points and the travel cost between each interest point in the set, to find k
paths that meet the constraints and contain as many POIs as possible in the interest point
set. Therefore, they used a submodule function to model personalized demand, trim the
search space with user preferences and constraints, and obtain the optimal solution for
the top-k path search problem. Jiang et al. [23] asked users to manually input their own
preference information, set corresponding weights, and created a path search algorithm
based on A* and an effective pruning strategy for users to plan travel routes more in line
with their preferences in combination with starting and ending information and users’
maximum cost constraints. Zhang et al. [24] proposed a new route planning method that
comprehensively considered multiple factors (distance between impromptu interest points,
initial travel location, initial departure time, travel duration, total cost, score of interest
points, and popularity) and rated the route based on the comprehensive attractiveness index
to plan a route with a high comprehensive attractiveness index for users. Huang et al. [25]
proposed a multitask in-depth travel route planning framework, integrating rich auxiliary
information (including POI characteristics, user preferences and historical tourism routes),
and realizing more effective route planning methods. The framework realizes three kinds
of route planning tasks (next point recommendation, general route planning, and must
visit planning), which can simultaneously meet the diverse needs of users.

1.3. Motivations and Contributions

The scenic route planning method calculates the scenic value of arc or POI in the
road network through relevant crowdsourced data and maximizes the scenic score in the
process of path planning. Such methods can often plan travel routes with large scenic
scores for users. Route planning methods based on user preferences consider the visitor’s
personalized needs, but most of them require users to manually input their preferences
and then connect as many POIs as possible to form the optimal path. The above two
types of route planning methods aim to plan the route with the maximum scenic score for
users, but they do not consider the urgency of users’ travel and explore users’ interests and
preferences. Therefore, this paper proposes a personalized scenic route planning model
based on urgency. This model takes tourism users as the object to provide tourism users
with a multifunctional and personalized scenic route planning scheme. The goal is to plan
an optimal driving route that matches urgency and scenic features with users’ interests and
preferences. Therefore, the main contributions of this paper are summarized as follows:

1. A multifunctional and personalized time-dependent AOP is defined, which indicates
different travel schemes at various departure times for several user preferences with
specific travel urgency.

2. A personalized scenic tourism route planning model based on urgency is proposed
to solve the above time-dependent AOP. Through the steps of user preference ex-
traction, road network modelling and path optimization search, the model plans
multifunctional and personalized scenic routes to meet the needs of users.

3. The test was carried out on the road network dataset of Xi’an and Wuhan. Compared
with the three benchmark methods in the experiment, the proposed model can plan
routes with various functions according to specific urgencies as well as plan routes
with different neighbouring POIs for individual users. Therefore, the model has good
performance in terms of effectiveness.
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2. Problem Description and Modelling

For the convenience of description, the following definitions are given for the terms
subsequently used and the research questions.

2.1. Basic Concepts

Definition 1 (Road network G [17]). The road network is modelled as a directed graph
G = (N, E, scenicScore, travelTime), where N is a collection of nodes (intersections and dead
ends), E ∈ N × N is a collection of edges, scenicScore is the scenic value of nodes and edges in the
road network, and travelTime is the travel time of edges in the road network.

Definition 2 (Path R [17]). At time t0, a path is formed by connecting multiple edges in the
road network in turn. A path from the source point n0 to the destination nk is marked as
R
〈〈

e0,1, e1,2, . . . , ek−1,k
〉
, t0
〉
, where n0 and nk belong to the set N, e belongs to the set E, e0,1

represents the edge of node n0 to n1, and t0 is the departure time.

Definition 3 (User preference P). User preference is the preference vector for the POI feature
type obtained by mining the historical behaviour data of users. The user’s preference is expressed
as P(u) = (x1, x2, . . . , xm), where m is the embedding of the user preference into m-dimensional
space. In this paper, the method described in [26] is adopted to obtain user preferences from users’
historical check-in data, see Section 3.2 for details.

Definition 4 (User query Q [17]). The user’s query is defined as a quad, expressed as
Q〈n0, nk, t0, b〉, where n0 is the starting point, nk is the destination, t0 is the departure time,
and b is the time budget of user travel.

Definition 5 (Effective area). The area in the road network that the user may visit when starting
from n0 at time t0 and arriving at destination nk within travel time budget b.

Definition 6 (Scenic edge). In this paper, the edge with a scenic score greater than 0 is recorded
as scenic edge.

Definition 7 (Urgency). The urgency is used to describe the urgency of the user’s travel, that is,
whether the user is anxious to reach the destination. At time t0, the minimum travel time from
starting point n0 to destination nk is determined. In this case, the smaller the travel time budget b,
the more anxious the user is to reach the destination. Therefore, the urgency is defined as the ratio of
the shortest travel time between n0 and nk at time t0 to the time budget and is calculated as shown
in Formula (1).

urgency =
mintravelTime(n0, nk, t0)

b
(1)

where mintravelTime(n0, nk, t0) represents the shortest travel time from n0 to nk at
time t0.

Definition 8 (Quality ratio [6]). The quality ratio is used to describe the cost performance of the
path. That is, the higher the scenic score and the shorter the travel time is, the better the path is.
Therefore, the quality ratio is defined as the ratio of the scenic path score to the travel time and is
calculated as shown in Formula (2).

qualityRatio(R) =
scenicScore(R)
travelTime(R)

(2)

where scenicScore(R) and travelTime(R) are the scenic score and travel time cost of the
path, respectively. The higher qualityRatio(R) is, the better the path.
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2.2. Problem Modelling

According to the above definition, the modelling of personalized route planning
problem studied in this paper is as follows.

Definition 9 (Personalized scenic tourism route planning problem based on urgency
Ω). The problem is defined as Ω = (G, Q, P(u), urgency) for a given road network G, user query
condition Q, user preference vector P(u) and urgency, this paper can plan a personalized scenic
tourism route R meeting the urgency for user u. Specifically, this paper plans the travel route R
with different functions for users according to different values of urgency. That is, when users
are anxious to reach a destination, it can plan the route with the shortest travel time; when the
user is not anxious to reach the destination, it can plan the route with the largest scenic score for
the user; if urgency lies between the two, the route with the best quality ratio will be planned for
users. The simultaneous introduction of user preference information in the latter two path planning
processes can make the scenic features of path R conform to user preferences as much as possible.
Mathematically, the scenic tourism route planning problem based on urgency is a variant of the
AOP, as shown below.

f (R) =



max 1
travelTime(R)
= max∑k

i=0 ∑k
j=0

1
travelTime(ei,j)

× xi,j, urgency ≥ 0.7

maxqualityRatio(R)

= max∑k
i=0 ∑k

j=0
scenicScore(ei,j)

travelTime(ei,j)
× xi,j, 0.3 < urgency < 0.7

maxscenicScore(R)
= max∑k

i=0 ∑k
j=0 scenicScore(ei,j)× xi,j, urgency ≤ 0.3

(3)

subject to
xi,j ∈ {0, 1} (4)

∑k
j=1 x0,j = ∑k−1

i=0 xi,k = 1 (5)

∑k
i=0 xi,0 = ∑k−1

j=0 xk,j = 0 (6)

∑k
i=0 xi,j = ∑k

j=0 xi,j ≤ 1 (7)

dt(n0) = t0 (8)

travelTime(R) ≤ b (9)

dt(nj) = ∑k
i=0 (dt(ni)+travelTime(ei,j))× xi,j (10)

where xi,j represents whether the edge from node ni to node nj is included in the path, and
xi,j = 1 represents that the edge from node ni to node nj is included in the path; otherwise,
the edges from node ni to node nj are not included in the path. dt

(
nj
)

is the departure time
from node nj, and travelTime

(
ei,j
)

is the travel time on edge ei,j, which is determined by
the length of edge ei,j and the travel speed when starting from ni.

Formula (3) is an objective function, which means minimizing the travel time of the
path, maximizing the quality ratio of the path, or maximizing the scenic score of the path
according to the difference values of urgency. Formula (5) ensures that the planned path
starts from the starting point and ends at the end point. Formula (6) ensures that no edge
enters the starting point and no edge leaves the end point. Formula (7) guarantees that
any node connected with the edge on the path can pass through once at most. Formula (8)
guarantees that the user starts at t0. Formula (9) guarantees that the path travel time does
not exceed the time budget specified by the user. Formula (10) calculates the departure
time of node nj.
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3. Proposed Method
3.1. Model Overview

This paper proposes a personalized scenic tourism route planning model based on
urgency. The model overview is shown in Figure 1.
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As shown in Figure 1, this model takes tourist users as the object to plan an optimal
travel route that meets the query conditions and whose scenic features are in line with
user preferences. The main process of the model can be divided into three stages: user
preferences extraction and POI relationship modelling, scenic score calculation, and route
generation. The input data for user preference extraction and POI relationship modelling
are historical check-in data and scenic spot information data, and the output is the cor-
relation between the user preference vector and scenic spots. Scenic score calculation is
the second stage. The input data are road network data, the relationship matrix of POIs,
and preference vector of the user. The output is the effective edge scenic score. In the
process of the calculation of the edge scenic score, it is necessary to perform the steps of
the spatial road network projection, the scenic score calculation of POI, the neighbour
analysis table acquisition, and the scenic score calculation of edge. Finally, the edge scenic
score is calculated according to the POI scenic score of the edge neighbour. Considering
that different users prefer different types of POI, the experience value obtained during
sightseeing will also be different. Therefore, user preference information is combined with
the scenic score calculation. Route generation is the last stage which uses the improved
genetic algorithm to search the effective edge and obtain the best travel route from the
starting point to the end point that meets the user’s query conditions. This article will
explain each stage separately in the following sections.

3.2. User Preference Extraction

In this paper, the method in reference [26] extracts user preferences based on POI-type
information and user history check-in data. The details are as follows:
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1. The user-POI sign-in matrix I − Cm×n is obtained from the user-POI historical sign-in
data, where m is the number of users and n is the number of POIs. The values of each
element in the matrix I−C are shown in Formula (11):

Ici,j =

{
ci,j, sign-in times of user i to POIj
0, user i has not signed in to POIj

(11)

where Ici,j represents the number of sign-in times of user i to POIj, and i ∈ (1, 2, · · · , m)
and j ∈ (1, 2, · · · , n) are subscript variables.

2. The POI-type matrix I − Tn×l is obtained from the POI basic information data, where
n is the POI number and l is the POI-type number. The expression of the values of
each element in the matrix I − T is shown in Formula (12):

Itj,k =

{
1, POIj has type Tk
0, POIj does not have type Tk

(12)

where Itj,k indicates whether POIj has type feature Tk. j ∈ (1, 2, · · · , n) and
k ∈ (1, 2, · · · , l) are subscript variables.

3. The user-type sign-in matrix T − Cm×l is obtained from the user-POI sign-in matrix
I − Cm×n and the POI-type matrix I − Tn×l , where m is the number of users and l is
the number of POI types. The values of each element in the matrix T − C are shown
in Formula (13):

tci,k =

{
mi,k, sign-in times of user i for type Tk
0, user i has not signed in type Tk

(13)

where tci,k represents the number of sign-in times of user i for type feature Tk,
that is, the number of times the user has been to POI with type feature Tk, and
i ∈ (1, 2, · · · , m) and k ∈ (1, 2, · · · , l) are subscript variables.

4. After obtaining the U−T matrix, take the value in the matrix as the parameter, use
the linear regression model to obtain the type weight, and use the gradient descent to
optimize the weight value. Finally, take the N types with the largest weight value as
the user’s preferred type, and code the user preference vector.

3.3. POI Relationship Modelling

This paper calculates the scenic score of the edge according to the POI scenic score
of the adjacent edge. However, in the actual road network, there are often multiple POIs
adjacent to the same edge. At the same time, due to the different characteristics of POIs, the
scenic score will be lost when multiple POIs are combined. Therefore, to calculate the scenic
score for the edge more accurately, the relationship between POIs is mined and modelled
as follows:

r(i, j) =
√

Co_VP(i, j)× Sim(i, j) (14)

where r(i, j) represents the correlation between POIi and POIj, which is jointly determined
by the user’s common access probability Co_VP(i, j) to POIs and the feature similarity
Sim(i, j) between POIs. The larger r(i, j) is, the closer the relationship between POIi and
POIj, and the less the loss of scenic score when they are combined. The specific calculation
of Co_VP(i, j) and Sim(i, j) is shown in Formulas (15) and (16), respectively.

Co_VP(i, j) = α
Ni,j

Ni + Nj + Ni,j
+ (1− α)

∑m
k=1 min

(
uck,i, uck,j

)
∑m

k=1

(
uck,i + uck,j

) (15)

where Co_VP(i, j) is the co-visit probability between POIi and POIj, Ni,j is the number of
users who have visited POIi and POIj at the same time, Ni is the number of users who
have visited POIi but not visited POIj, uck,i is the number of times user k has signed at
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POIi, m is the number of users, and α is the weighting coefficient, set at 0.5 here. The larger
Co_VP(i, j), the more likely the user is to visit the two POIs at the same time, that is, the
closer the relationship between the two POIs from the user’s perspective.

Sim(i, j) = cos θ(Ti, Tj) =
Ti · Tj

‖Ti‖‖Tj‖
(16)

where Sim(i, j) is the cosine similarity between the eigenvectors of POIi and POIj, Ti is the
eigenvector of POIi. The larger Sim(i, j) is, the closer the relationship between POIi and
POIj.

3.4. Scenic Score Calculation

The scenic score is used to measure the quality of the landscape of the POI or the edge.
The larger the scenic score is, the higher the quality of the landscape of the POI or the edge,
and the more popular the users. In this paper, the scenic value of POI and the scenic value
of edge are calculated, respectively. The specific process is as follows.

1. The scenic score of POI. This is determined mainly by the corresponding score, level,
pictures, and comments of POI. The score, pictures, and comments are contributed by
the checking in of users, and the level is determined by the characteristics of the POI
itself. The greater these values are, the greater the scenic score of the POI. The specific
calculation is shown in Formulas (17) and (18).

s(i) = log( 3
√

score(i)× pictures(i)× comments(i) + level(i)) (17)

scenicScore(i) = s(i)× [1 + max(s(j))× wi)] (18)

where s(i) is the inherent scenic score of POIi and scenicScore(i) is the scenic score
felt by different users. Here, combined with user preferences, score(i), level(i), picture(i)
and comments(i) represent the data after POIi’s score, grade, number of photos, and
positive comments, respectively, are normalized to [0, 5]. The higher the score of the
POI, the more photos, the more positive comments, and the higher the star rating,
the higher the scenic score corresponding to the POI. max(s(j)) is the highest scenic
score of the POI. wi is the cosine similarity between the feature vector Ti of POIi and
the user preference vector P(u), which is called the reward factor here. The scenic
score of a POI is inherent. However, from the user’s perspective, those who like this
type of POI actually have a much better viewing experience than those who do not.
That is, POI will reward users. The more users like this type of POI, the greater the
reward factor and, hence, the greater the reward value. When wi is 0, the user does
not like this POI or does not have a historical data linked to it. Then, the POI may be
recommended to the user according to its inherent scenic score.

2. The scenic score of the edge. The scenic score of an edge is determined by the scenic
score of the POI of its neighbours. The more neighbouring POIs there are, the greater
the POI correlation, and the higher the POI scenic score, the higher the scenic score of
the corresponding edge. The specific calculation is shown in Formula (19).

scenicScore(ei,i+1) = scenicScore(1) +
m

∑
j=2

scenicScore(j)× r(j− 1, j) (19)

where m is the number of POI adjacent to edge ei,i+1, and r(j− 1, j) is the correlation
between POIj−1 and POIj.
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3.5. Route Generation
3.5.1. Effective Area Acquisition

For a given query condition, when planning the path from the start point to the end
point for users, the possible effective search area is only a small part of the entire road
network, and most of the areas cannot appear in the road. However, if we do not process
the road network and let the algorithm search the entire road network, the efficiency will
be extremely low. In this case, it is necessary to obtain a suitable effective search area from
the road network. Therefore, this paper adopts the method in [15] to cut the search area.
Specifically, we take the starting point and the ending point as the centre of the circle and r
as the radius to draw a circle. The intersecting part of the two circles is the effective area. r
refers to the distance travelled at the average driving speed v(t0) for b time starting at time
t0, i.e., r = v(t0)× b. The edges within the valid region are valid edges. Here, the effective
edge can be defined as: at time t0, starting from the starting point, the end point can be
reached within the time budget, and starting from the end point, the starting point can also
be reached within the time budget.

3.5.2. Chromosome Encoding

Since this paper plans corresponding travel routes for users according to the value
of urgency, different chromosome coding methods should be used for different values of
urgency. Several effective edge selection strategies for generating different chromosomes
are described below.

Strategy 1: The closest distance priority strategy. Priority is given to selecting the
effective edge closest to the current starting point in space so that more edges can be added
to the path.

Strategy 2: The shortest travel time priority strategy. Under time t0, the effective edge
with the shortest travel time is preferred so that more time budget can be reserved.

Strategy 3: The highest quality ratio priority strategy. Give priority to the effective
edge with the largest quality ratio to ensure higher cost performance.

Strategy 4: The maximum scenic score priority strategy. Priority shall be given to the
effective edge with the maximum scenic score to ensure a higher scenic score.

Strategy 5: Random priority strategy. An edge is randomly selected from the effective
area to avoid the problem that the above strategies may search for effective edges in small
areas of the road network.

Based on the above effective edge selection strategy, Algorithm 1 gives the pseudo
code of chromosome encoding.

In Algorithm 1, first, initialize an empty chromosome set, and then execute lines 3–24
to return the chromosome set under the condition that user constraints are met. Line 3
obtains the valid search area according to the method in Section 3.5.1; Lines 4–14 acquire
candidate edge sets, that is, using different effective edge selection strategies according to
different urgencies to generate candidate edge sets. Specifically, when urgency > 0.7, the
edge that is closer to the current starting point and shorter travel time is selected from the
valid region each time to join the candidate edge set. When urgency < 0.3, the candidate
edge is selected and added to the candidate edge set according to strategies 1, 2, 4, and
5. When 0.3 ≤ urgency ≤ 0.7, the candidate edge is selected and added to the candidate
edge set according to strategies 1, 2, 3, and 5. Lines 15 to 18 update the departure time,
remaining time budget, and starting point for each edge in the candidate edge set. Lines
19–24 recursively call the chromosome encoding function encoding () to generate all the
sub-chromosomes and carry out subsequent chromosome growth.
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Algorithm 1: encoding(n0, nk, b, urgency)

Input: starting point n0, ending point nk, time budget b, urgency
Output: set of chromosomes chrs

1: Function encoding(n0, nk, b, urgency)
2: chrs← ∅
3: obtaining the valid region
4: genes← ∅ //candidate edge set
5: if(urgency > 0.7) //plan the fastest route
6: select the edges en and e f according to strategy 1 and 2 respectively
7: genes← en ∪ e f
8: else if(urgency < 0.3) //plan the route with the maximum scenic value
9: select edges en, e f , em and er according to strategies 1, 2, 4 and 5 respectively
10: genes← en ∪ e f ∪ em ∪ er
11: else if(0.3 ≤ urgency ≤ 0.7) //plan the route with the maximum qualityRatio
12: select edges en, e f , eq and er according to strategies 1, 2, 3 and 5 respectively
13: genes← en ∪ e f ∪ eq ∪ er
14: end if
15: for(gene in genes)
16: t0 = t0 +

dist(n0,gene)
v(t0)

//update departure time

17: b = b− dist(n0,gene)
v(t0)

//update the remaining time budget
18: update n0 //update starting point
19: subbranchs = encoding(n0, nk, b, urgency)
20: for(subbranch in subbranchs)
21: chrs← chrs ∪ (gene + subbranch)
22: end for
23: chrs← chrs ∪ gene
24: end for
25: return chrs

3.5.3. Improved Genetic Algorithm

The genetic algorithm (GA) was designed according to the evolution law of organisms
in nature. It is a computational model of the biological evolution process that simulates
the natural selection and genetic mechanism of Darwinian biological evolution. It thus
searches for the optimal solution by simulating the natural evolution process [27–30].

In this study, an improved GA was used to search effective edges, and travel routes
satisfying constraint conditions and scenic features conforming to user preferences were
planned according to different urgencies. The algorithm flow chart is shown in Figure 2.
In the figure, the gene splicing operator and the gene replacement operator are two new
operators compared with the traditional genetic operator, and the gene splicing operator is
used to solve the problem of discontinuity of actual paths corresponding to chromosomes.
The gene replacement operator is an improved part of the traditional GA according to the
problem requirements. The purpose of adding this operator is to make a local optimization
adjustment of all the current chromosomes before each iteration generates a new population
to improve the performance of the final search results. b is the travel time budget, and C is
the maximum number of replacements.

1. Selection. This paper uses roulette to select offspring, that is, the probability of each
chromosome being selected is proportional to its fitness value. This method may not
ensure the best individual inherits the next generation, but it can avoid the impact of
super chromosomes on the overall evolution. At the same time, it is possible to pass
on the worst chromosome to the next generation.

2. Crossover. In this paper, the method of single point crossing is used to cross chro-
mosomes, that is, randomly select two chromosomes and determine the same edge
of the path to cross that can ensure the continuity of the path. If two chromosomes
have multiple identical edges, one of the same edges is randomly selected for crossing.
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If two chromosomes do not have the same edge of the path, then randomly select
one edge to cross, and the continuity of the path is guaranteed by the gene splicing
operator. The schematic diagram of the crossover operation is shown in Figure 3a, in
which the corresponding paths of the two chromosomes intersect at the edge f, so the
chromosomes are crossed at a single point at f to form two new chromosomes.
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3. Mutation. The mutation operation randomly selects an edge in a chromosome, ran-
domly selects another effective edge in the effective region, and then replaces the
selected edge on the chromosome with the effective edge. The variation here is ad-
justed with only a small probability. After the above crossover and mutation operators
have been executed, the problem of gene duplication in chromosomes may arise. In
practice, the user’s route from the starting point to the end point should be unidi-
rectional, and the user is not allowed to walk back and forth on a certain section of
road repeatedly. This situation will also increase the cost of useless paths. Therefore,
it is necessary to check the chromosomes and delete repeated edges. The schematic
diagram of the mutation operation is shown in Figure 3b, in which the gene f of the
chromosome mutates into gene g, resulting in the continuous occurrence of two gene
g in the chromosome. At this time, a duplicate gene g is deleted through the deletion
operation to form a new chromosome.

4. Gene Splicing. Gene splicing is mainly used to solve the problem of discontinuous
paths corresponding to chromosomes. In the operation of chromosome coding and
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cross mutation, the corresponding path of chromosome will be discontinuous, so this
paper uses the shortest path to fill the gap between edges. The specific process is to
map the chromosome to the actual path, fill the gap in the path by the shortest path,
and then code the edge that fills the gap into a gene, which is spliced to the corre-
sponding position of the chromosome. After filling the gap, the path corresponding
to the chromosome is the continuous feasible path in the actual road network. The
schematic diagram of the gene splicing operation is shown in Figure 4. The path
corresponding to the chromosome in the figure has a gap between edge c and edge
e, resulting in discontinuous paths. In this paper, the shortest path is used to find
edge d (corresponding gene d), and gene d is spliced to the chromosome using the
gene splicing operator to obtain a new chromosome. The corresponding path of this
chromosome is a continuous and feasible path.
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5. Gene Replacement. The gene replacement operation is a specific mutation operation
with close to high probability based on pattern theorem and random operation. The
core is to replace the inferior gene of the current chromosome with the better gene not
included in the current chromosome with a higher probability of Pr. Traditional GAs
are prone to slow convergence and poor solutions when the amount of data in the
search space is large. Therefore, this paper adds a gene replacement operator and, on
the premise of not exceeding the travel time budget and the maximum replacement
times, uses this operator many times to replace the inferior genes in the chromosome
to improve the fitness value of the chromosome and accelerate algorithm convergence.
After each execution of the gene replacement operator, the gene splicing operation
needs to be performed again to ensure that the current chromosome mapping to the
actual road network is continuous and feasible. Based on the above discussion, the
pseudo code of the gene replacement operator is shown in Algorithm 2.

In Line 2, chromosomes before replacement are temporarily stored for rollback. Line 3
is to calculate travelTime, qualityRatio and scenicScore of genes in the current chromosome.
Line 4 is to find the worst gene of travelTime, qualityRatio, and scenicScore from the current
chromosome, that is, to find the replaced gene. Lines 5–9 select K genes with travelTime
smaller than the replaced gene or qualityRatio and scenicScore larger than the replaced
gene from the region close to the replaced gene, and add them to the candidate replacement
gene set. Lines 10–11 randomly select a gene to be replaced from the candidate replacement
gene set. Lines 12–13 were used for the gene splicing operation and new chromosome
evaluation. Lines 14–18 indicate that when the new chromosome after replacement is better
than that before, the replacement is successful; otherwise, the algorithm will return to the
chromosome before replacement.

A schematic diagram of the gene replacement operation is shown in Figure 5. In the
figure, the short blue line represents the gene added to the current chromosome, and the
short yellow line represents the neighbouring gene of c.
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Algorithm 2: geneReplacement(q, K)

1: Function geneReplacement(q, K)
2: tempchromo ← currentchr //temporarily save the current chromosome
3: calculate travelTime, qualityRatio or scenicScore of genes
4: select the worst gene in travelTime,qualityRatio or scenicScore //look for the

replaced gene in the current chromosome
5: replacementgeneset ← ∅ //set of candidate replacement genes
6: while (number of candidate replacement genes < K) //search for candidate

replacement genes
7: select candidate replacement genes replacementgene
8: replacementgeneset ← replacementgeneset ∪ replacement gene
9: end while
10: the replacement gene replacement gene was randomly selected from

replacementgeneset
11: genes are replaced to produce chromosomes newchromo
12: gene splicing
13: chromosome evaluation
14: if (newchromo is better than tempchromo)
15: currentchr ← newchromo
16: else
17: currentchr ← tempchromo
18: end if
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4. Experimental Results and Analysis
4.1. Experimental Setup
4.1.1. Data Preparation

The road network dataset used in this paper is the road network data of Xi’an and
Wuhan downloaded from the OSM (https://www.openstreetmap.org/, (accessed on 10
September 2021)) platform (see Table 1 for details). The POI basic information data, user
history check-in data and user history rating data were crawled from Ctrip (https://you.
ctrip.com/, (accessed on 5 October 2021)) and Mafengwo (https://www.mafengwo.cn/
(accessed on 5 October 2021)). The basic POI information includes POI-type information,
number of photos, number of favourable comments, rating, star rating, etc. Historical user
check-in data and score data refer to the number of users’ check-in times and POI scores.
The crawled user data and POI data are shown in Table 2.

Table 1. Introduction to road network dataset.

City Number of Nodes Number of Edges Number of POIs

Xi’an 25,431 33,010 4138
Wuhan 28,153 34,512 4350

https://www.openstreetmap.org/
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Table 2. Introduction to other data.

City Number of Users Number of POIs Number of POI Types

Xi’an 1161 1587 10
Wuhan 1583 2039 10

4.1.2. Benchmark Algorithm

In this paper, three benchmark algorithms are used for comparison, namely, the
traditional GA, fastest algorithm, and MA. The details are as follows.

Fastest algorithm [13]. Ugur D et al. believed that the travel time was related to the
departure time, so they introduced the time factor in modelling the road network and used
the fastest path to plan the fastest travel route from the start point to the end point that met
the time constraints.

MA [15]. Chao C et al. believed that the travel time and scenic score on each side of the
road network are time dependent, so they defined the problem as a twofold time-dependent
AOP and proposed an MA to solve the problem.

4.1.3. Parameter Setting

After many experiments and comparisons, the experimental parameters are set as
follows: population size N = 20, iteration times T = 30, crossover probability Pc = 0.9,
mutation probability Pm = 0.15, gene replacement probability Pr = 0.95, and candidate
set size of replacement genes K = 4.

4.2. Experimental Result
4.2.1. Algorithm Gene Replacement Times and Convergence Analysis

To find the best times of gene replacement, this paper carried out several experiments
on the road network datasets of Xi’an and Wuhan,. The results are shown in Figure 6.
In the figure, when the number of gene substitutions is equal to 8, the chromosomal
scenic score reaches the maximum and will not change with an increase in the number
of gene substitutions. The reason for this phenomenon is that the selection conditions of
replacement genes are relatively strict, and the chromosomes are not very long after the
search area has been limited. Therefore, when replacement times reach a certain value,
it is difficult to find a replacement edge that meets the conditions. Therefore, this paper
considers that 8 is the best number of gene replacements. When the number of gene
replacements is greater than 8, gene replacement will not be performed.
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In addition, the convergence of several algorithms is experimentally analysed. The
results are shown in Figure 7. The figure shows that the fastest algorithm converges first.
When the number of iterations reaches 10, the improved GA converges. The MA and
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traditional GA reach the maximum scenic score after 15 iterations, and no change occurs in
subsequent iterations.
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4.2.2. Sensitivity Analysis of Algorithm to Starting and Ending Points

To prove that the proposed algorithm has the ability to plan routes, three pairs of
starting and ending pairs (OD pairs) were selected on the road network datasets of Xi’an and
Wuhan, and experiments conducted on three benchmark algorithms and improved genetic
algorithms (urgency = 0.2, t0 = 9 : 00). The average results are shown in Figure 8 (scenic
score) and Figure 9 (running time). In Figure 8, for different starting and ending points,
the four algorithms can plan routes with different scenic scores. The path scenic scores
of the fastest algorithm and the improved GA are always the minimum and maximum.
The path scenic score of the traditional GA is much lower than that of the improved GA,
which shows that the improved genetic algorithm based on the gene replacement operator
and the gene splicing operator has a good performance for this problem. The MA has a
lower scenic score than the improved GA because when the MA encodes the chromosome,
it randomly selects the edge close to the current origin, resulting in poor quality of the
chromosome.
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Figure 9 shows the running time of several algorithms for planning different starting
and ending routes. The fastest algorithm has the shortest running time, while the traditional
GA has the longest. The running time of the improved GA is shorter than that of the MA
and the traditional GA. The reason for this is that the improved GA adds a gene replacement
operator. The implementation of this operator speeds up algorithm convergence to a certain
extent. At the same time, the chromosome encoding method of the improved GA will
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not produce too many chromosomes. Overall, on the road network datasets of Xi’an
and Wuhan, the algorithms show identical performance, but the scenic score on the road
network datasets of Wuhan is higher because Wuhan has more POIs to climb, which makes
the density of scenic edges in the road network higher.
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4.2.3. Sensitivity Analysis of Algorithm to Urgency

To verify that the algorithm in this paper can plan different travel routes according
to different urgency levels, three urgency degrees were selected, namely, urgency = 0.2,
urgency = 0.5, and urgency = 0.8. The travel time, quality ratio, scenic score, and running
time were tested on the Xi’an and Wuhan road network datasets (departure time t0 = 9:00).
The average results are shown in Figure 10. Figure 10 shows that for different urgencies, the
travel time of the fastest algorithm is always the same and the shortest because the fastest
algorithm plans the shortest path between two points and is not affected by urgencies.
When urgency = 0.2, the improved GA aims to plan the route with the highest scenic score
for users. It can search more edges with high scenic scores, so the travel time is slightly
higher than that of the MA and the traditional GA. When urgency = 0.5, the goal of the
improved GA is to plan a route with a high-quality ratio for users, taking into account both
the scenic score and travel time of the edges. Therefore, the travel time is lower than that
of the MA. When urgency = 0.8, the improved GA and the traditional GA aim to plan the
shortest travel time route for users, however, due to the weak search ability of traditional
GA, the travel time is high. The MA is still used to plan the scenery route meeting time
constraints for users. Therefore, the travel time of the improved GA is close to that of the
fastest algorithm, while that of the MA is the highest.

The comparison results of the path quality ratio under different urgencies are shown
in Figure 11. In Figure 11, for different urgencies, the quality ratio of the fastest algorithm
is always the same and the lowest. When urgency = 0.2, the quality ratio of the MA is
the highest because in this case, the improved GA will add more scenic edges to the path
to maximize the scenic score of the path. The quality ratio of the improved GA is better
than that of the traditional GA, because the gene replacement operator improves the search
ability of the GA. When urgency = 0.5, the improved GA can maximize the quality ratio
of the path, so the quality ratio is the highest. When urgency = 0.8, the quality ratios of
several algorithms are close because there is not enough time budget to search for higher
quality edges.
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The comparison results of the scenic path score under different urgencies are shown
in Figure 12. For different urgencies, the scenic score of the fastest algorithm is always
the same and the minimum. When urgency = 0.2, the scenic score of the improved GA
is the highest because when it is not urgent, the goal of the improved GA is to maximize
the scenic score of the path, and compared with the MA and the traditional genetic, it
can search more and better scenic edges. When urgency = 0.5, although the goal of the
improved GA is to maximize the quality ratio of the path, the path scenic score is still the
largest. When urgency = 0.8, the scenic score of the improved GA is close to that of the
fastest algorithm and slightly lower than that of the MA. The reason for this result is that
the MA still chooses the scenic edge when encoding chromosomes, and the running time
and travel time of the algorithm will be relatively high. The scenic score of the traditional
GA is slightly higher than that of the improved GA, because although the traditional GA
also plans the fastest route for users at this time, its search ability is weaker than that of the
improved GA, so the path travel time is higher.

Finally, the comparison results of the algorithm running time under different urgencies
are shown in Figure 13. For different urgencies, the running time of the fastest algorithm
is the same and always the shortest. With urgency = 0.2 and urgency = 0.5, the running
time of the improved GA is slightly lower than that of the MA for two reasons. First, the
improved GA’s gene replacement operator has accelerated the convergence of the algorithm
to a certain extent. Second, the chromosome encoding method of the MA may generate a
large number of chromosomes, resulting in a slower search speed. When urgency = 0.8,
the running time of the improved GA is close to the fastest algorithm, while the running
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time of the MA is much higher because the chromosome encoding strategy of the MA in
this case is still to maximize the path scenic score, which wastes considerable time. On
the whole, compared with the traditional GA, the execution time of the improved GA is
much faster, which shows that the existence of both the gene replacement and gene splicing
operators greatly improves the efficiency of the algorithm.
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In summary, it is not difficult to see that when urgency = 0.2, the improved GA can
plan the route with the highest scenic score for users; when urgency = 0.5, the improved
GA can plan the route with the highest quality ratio for users; and when urgency = 0.8, the
improved GA can plan a route close to the fastest path for users. Therefore, the improved
GA can plan routes of different functions for users according to different values of urgency.

4.2.4. Sensitivity Analysis of Algorithm to Users

To prove that the proposed method can facilitate personalized scenic route planning,
three different users (i.e., different preferences for POI types) were selected, and experiments
conducted on three benchmark algorithms and the proposed algorithm many times. The
results are shown in Table 3 (the experiment was conducted on the Xi’an road network
dataset, and the departure time t0 = 9 : 00). The table shows that for three different users,
the route planned by the fastest algorithm is exactly the same because the fastest algorithm
looks only for the fastest path between two given points, regardless of other conditions of
the path. In contrast, the improved GA can plan different driving routes for different users.
The reason for this is that here user preference information in the process of POI scenic
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score calculation is introduced, that is, users with different preferences can obtain different
reward values when visiting a POI, thus ensuring that an edge with more POIs preferred
by the user is more easily found during a path search. Compared with the MA and the
traditional GA, the improved GA makes greater improvements to the scenic score of the
path, and the running time is the shortest.

Table 3. Comparison of 30 running results of different users on four algorithms.

User Fastest Algorithm Traditional GA Memetic Algorithm Improved GA

u1

scenic score
best value

301.25
534.82 555.38 615.03

average value 505.43 512.41 580.35

running time(s) best value
2.31

6.80 6.78 6.61
average value 7.02 6.96 6.75

u2

scenic score
best value

301.25
475.42 496.21 584.15

average value 451.23 472.63 560.24

running time(s) best value
2.31

5.51 5.47 5.35
average value 5.62 5.59 5.48

u3

scenic score
best value

301.25
392.84 412.25 454.51

average value 370.51 395.32 428.46

running time(s) best value
2.31

5.51 5.36 5.25
average value 5.63 5.41 5.33

The starting point O(Xiangzi Temple), the ending point D(Zhongshan Gate),
urgency = 0.2, and t0 = 9:00 are set here. The preferences of the selected three users are,
respectively, P(u1):(historical sites , cultural venues , characteristic buildings), P(u2):(religion,
natural scenery, characteristic buildings), and P(u3):(cultural venues, natural scenery,
red revolution). The visualized results of the path data obtained from the experiment
are shown in Figure 14a–c, respectively (the dark blue text in the figure describes the POI
names that are close to the path and meet the user’s preferences). In Figure 14a, user u1
can see the “Zhuque Gate”, “Shaanxi Provincial Local Records Museum”, “Drum Tower”,
“Bell Tower”, “Shaanxi Art Museum”, “Xincheng Theater”, and “Yongxing Square” along
the way. Among them, the “Zhuque Gate”, “Bell Tower”, and “Drum Tower” are historical
sites and characteristic buildings, and the “Shaanxi Provincial Local Records Museum”,
“Shaanxi Art Museum”, “Xincheng Theater”, and “Yongxing Square” are cultural venues.
These POIs not only improve the quality of path scenery but also make user u1’s travel
more fun.
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In Figure 14b, user u2 passes through the “Baoqing Temple Tower”, “Wolong Zen
Temple”, “Nancheng Mosque”, “Jiefang Road Mosque”, and “Jianguo Lane Mosque”
along the way. These POIs have religious, scenic, characteristic buildings, and other
characteristics, which are in line with user u2’s interests and preferences.

In Figure 14c, user u3 passes through the “Xi’an Academy of Arts and Sciences
Campus”, “Pine Garden”, “Guayuan”, “Xi’an Stele Forest Museum”, “Museum of Mass
Art”, and “Xi’an Incident Memorial Hall” along the way. The “Pine Garden” is rich in
vegetation, clean in environment, and adjacent to the moat and ancient city wall. The
“Pomegranate Garden” displays the cultural characteristics of the “Silk Road”. While
exhibiting Xi’an’s culture, it has also become a “city complex” integrating culture, tourism,
commerce, and life.

5. Conclusions

In this paper, a personalized scenic tourism planning model based on urgency is
proposed according to tourists’ personalized needs for scenic tourism routes. A large
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number of experiments were conducted on the road network datasets of Xi’an and Wuhan.
The results show that the proposed model can plan travel routes with different functions
that meet the conditions of users, and the scenic features along the routes are in line with
users’ preferences.

In the future, we will deepen our research from the following aspects. First, the time
factor will be introduced into the path planning process, that is, the change in POI scenic
score with time will be considered so that the scenic score of the path can be calculated
more accurately. Second, according to the obtained path, the nearest neighbour POI will
be extracted, the POI scored according to user preferences and the best travel time, and a
personalized guidance scheme generated to guide them to sign in to the POI along the way.
Finally, we will add a personalized scenic tourism route planning module on the smart
tourism platform, apply this method to the system, test the system by recruiting volunteers,
and collect relevant suggestions to continuously improve the system.
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