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Abstract: Indoor object detection is a fundamental activity for the development of applications of
mobility-assistive technology for visually impaired people (VIP). The challenge of seeing interior
objects in a real indoor environment is a challenging one since there are numerous complicated issues
that need to be taken into consideration, such as the complexity of the background, occlusions, and
viewpoint shifts. Electronic travel aids that are composed of the necessary sensors may assist VIPs
with their navigation. The sensors have the ability to detect any obstacles, regardless of whether they
are static or dynamic, and offer information on the context of an interior scene. The characteristics
of an interior scene are not very clear and are subject to a great deal of variation. Recent years have
seen the emergence of methods for dealing with issues of this kind, some of which include the use of
neural networks, probabilistic methods, and fuzzy logic. This study describes a method for detecting
indoor objects using a rotational ultrasonic array and neutrosophic logic. A neutrosophic set has been
seen as the next evolution of the fuzzy set because of its indeterminate membership value, which is
absent from conventional fuzzy sets. The suggested method is constructed to reflect the position of
the walls (obstacle distance) and to direct the VIP to move freely (ahead, to the right, or to the left)
depending on the degree of truthiness, the degree of indeterminacy, and the degree of falsity for the
reflected distance. The results of the experiments show that the suggested indoor object detecting
system has good performance, as its accuracy rate (a mean average precision) is 97.2 ± 1%.

Keywords: indoor navigation; visually impaired people; neutrosophic logic; object detection

1. Introduction

The World Health Organization (WHO) released research on the prevalence of persons
with visual impairments, and they found that over 285 million people throughout the world
are blind or visually impaired (VI). Of these individuals, 39 million are totally blind, while
another 246 million have some degree of visual impairment. The vast majority of persons
living with VI live in economically developing countries. People with VI have a far more
difficult time than the general population with everyday tasks like navigating their sur-
roundings safely, going to the store, or even recognizing friends and family members. One
of the most challenging activities is moving about on one’s own in a strange environment
due to the high danger involved (i.e., a possible collision with static or dynamic obstacles).
Because of this, the majority of VI individuals walk on routes that they are familiar with
while consistently discovering new ones [1].

VIPs require assistance with autonomous displacement in order to properly orient
themselves and navigate their surroundings. This assistance should include built-in capa-
bilities for the detection and recognition of obstacles as well as desired destinations like
rooms, staircases, and elevators. Within this context, it is of the utmost importance to
create electronic travel assistance (ETA) solutions that may increase the safe mobility of
VIPs indoors and outdoors and provide supplementary awareness of foreign surround-
ings [2,3]. However, despite the fact that the global positioning system (GPS) signal isn’t
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particularly strong inside, VIPs still need to be able to find their way around in unfamiliar
environments. This indicates that more specialized methods or technologies will need to
be implemented [4].

There are now two types of indoor localization methods: those that rely on infras-
tructure and those that don’t. To use infrastructure-based techniques, you must have
access to WiFi, which is essential. Walls act as barriers that weaken the signal strength of
WiFi access points, making this mode of data transfer inefficient. As the name implies,
infrastructure-less techniques do not rely on any existing networks or infrastructure [5].
Fast processing, extensive coverage, an enhanced range of detection of static and dynamic
obstacles, and the ability to operate day and night are the requirements of the VIP [6]. The
interfaces and image processing subsystems are given special attention because of the fast
technological advancements in this quickly growing field.

Context awareness is the capacity of computer systems to sense, detect, understand,
and react to the features of the user’s surrounding environment. The user must be made
aware of the sensory data in the current environment, which is a core premise of designing
context-aware ETAs. Ultrasonic signal processing is used often in non-destructive material
testing, medical tissue characterization, robotic applications, etc. [5]. The categorization
process is highly dependent on the retrieved characteristics used to represent the object [6,7].
Although there are situations in which just simple signal processing is necessary, there are
other situations in which extracting these properties is a difficult endeavor. Several bits of
information may be derived from the amplitude of a signal, but this is not always the most
accurate representation of the signal. Sometimes, the frequency of a signal is more relevant
when its frequency components conceal more particular information. Numerous earlier
publications have proposed different sets of ultrasonic characteristics taken from the time
and frequency domains (e.g., wavelet transform) and explored the viability of employing
such parameters for ultrasonic signal classification [8,9].

The front, left, and right sides of a navigator are all possible locations for an obstacle
to appear. Therefore, ultrasonic sensor outputs (distances to the obstacles from the left,
right, and front sensors) are used further for VIP’s current walking context estimation.
Because this is not a quantifiable measurement, its accuracy cannot be guaranteed. The
ability of fuzzy logic systems to effectively describe uncertainty across a wide variety of
settings and applications is well established. In a nutshell, it provides a practical means of
depicting the imprecise and uncertain features that are intrinsic to the real world. The use of
fuzzy-based approaches in the context of adaptive techniques results in rapid convergence
and decreased complexity in the context of nonlinear conditions that change over time.
The merging of human expert knowledge into an already-available numerical dataset is
well-suited for a fuzzy technique, which is highly appropriate for this purpose. Because
of this, several articles over the last five years have addressed the explanation of fuzzy
logic-based indoor navigation systems for VIPs [10–12].

Neutrosophic logic research in several disciplines is advancing rapidly [13–16]. A
generalization of fuzzy logic called neutrosophic logic was introduced by Smarandache [17].
Similar to fuzzy logic, intuitionistic logic, and three-valued logic, in which a variable x
is described by the triple values x = (t, i, f ), where t stands for the degree of truth, f for
the degree of false, and i stands for the degree of indeterminacy, neutrosophic logic is an
extension of these approaches. A neutrosophic set has been considered the next evolution
of the fuzzy set for indeterminacy membership values that are absent from the vague set.
Compared to the vague and fuzzy sets, the neutrosophic set’s three memberships are more
expressive for making decisions. Only partially complete or inconsistent information is
outside the scope of fuzzy set theory’s ability to process. The purpose of the mathematically
developed model known as neutrosophic logic (NL) is to account for several kinds of
uncertainty, including ambiguity, inconsistency, redundancy, and incompleteness [14–16].

The neutrosophic controller is a novel system that, in comparison to its fuzzy analogs,
is both more broadly applicable and more tolerant of indeterminacy. Like their fuzzy
analogs, neutrosophic systems might benefit from the expertise of human operators. To
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further complicate matters, it is very unlikely that the data received by the system would
be wholly complete and determinate, making it impossible to create a precise mathematical
model that would represent system behavior. Non-linearity, time-varying processes to be
regulated, significant unexpected external disturbances, deteriorating sensors, and other
challenges to collecting accurate and trustworthy measurements all contribute to data that
is incomplete and uncertain [17–19]. The concept of the range of neutralities is absent
from fuzzy logic controller and allied logics because the focus of these logics is only on
the membership or non-membership of a particular element to a certain class, and thus
cannot account for the uncertainty that may arise in the data collection process for the
reasons given above. Therefore, a neutrosophic controller is offered to cope with such
circumstances when there is a chance of indeterminacy and incompleteness in the collected
data [20,21]. The basic inference process of fuzzy logic and neutrosophic logic is shown in
Figure 1.
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Neutrosophic controllers are suggested to consist of four modules. (a) neutrosophication
module, (b) neutrosophic rule base, (c) neutrosophic engine, and (d) de-neutrosophication mod-
ule. First, data is gathered on all the factors that matter for the process under management.
Second, we use the truth, falsity, and indeterminacy membership functions of neutrosophic
sets to capture the truth, falsity, and indeterminacy of the obtained measures. The pro-
cess at this point is known as neutrosophication. Third, the inference engine uses the
neutrosophied measurements to assess the control rules recorded in the neutrosophic rule
base. The results of this analysis will define one or more neutrosophic sets over the space
of all potential actions. The fourth and last module of the cycle involves collapsing this
neutrosophic set into a single (crisp) value using a triplet format like x (t, i, f ), which would
be the most accurate representation of the derived neutrosophic set. De-neutrosophication
is the term for this procedure [22–26].

1.1. Motivation

For the purposes of this article, ultrasonic sensors are of particular interest to us. This
sensor has substantial potential for use in a variety of applications. One of the advantages
of using ultrasonic sensors is the ease with which we can collect distance information
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from nearby objects without the need for expensive processing. They are also capable of
functioning in poor visibility settings, which makes them perfect for use both during the
day and throughout the night. Therefore, the ultrasound sensor seems like an excellent
option for our system to detect and identify a variety of objects. Nevertheless, one of the
difficulties that autonomous systems continue to face is recognizing objects in a variety
of viewing situations. Therefore, the purpose of our research is to provide a challenge
by using just a single ultrasound sensor for obstacle detection. We are also taking into
consideration the limitations of this sensor type, which include the fact that the reflected
distances are not always accurate.

Uncertain information is handled probabilistically and represented in numerical form
during decision analysis. Due to the high levels of uncertainty, indeterminacy, and ambigu-
ity that are present in the object detection domain, the same sensor might reflect multiple
distances depending on the viewing conditions that are present. Therefore, neutrosophic
logic will take into consideration the uncertainty that is present inside the indoor obstacle
detection domain and will offer the degree of uncertainty for each distance. Incomplete or
inconsistent information is outside the scope of the fuzzy set theory’s capabilities.

1.2. Contribution

In this paper, we investigate using ultrasonic sensors to detect the location of the
walls (obstacle’s distance) and guide the visually impaired person to move freely (forward,
right, or left). Because it is built from off-the-shelf parts, our solution is inexpensive and
convenient to use because it does not need any specialized hardware. Additionally, our
methodology took advantage of the wavelet form of ultrasonic waves. Ultrasonic sensors
obtain range data associated with the obstacles in the surrounding environment, but these
readings are inherently imprecise. This is the data sent into the neutrosophic logic model
for locating and identifying items in a scene, regardless of their size, shape, or position.

Multi-criteria decision-making issues and other technical applications in uncertain
settings benefit greatly from the usage of neutrosophic sets [16]. Our major goal in this
article is to investigate the application of the concept of neutrosophic logic to the problem
of obstacle identification in a dynamic, ambiguous indoor environment through (1) using
trapezoidal neutrosophic numbers to represent input parameters (antecedents), (2) by
modeling qualitative aspects of human comprehension through the AND operator, we
may construct neutrosophic IF-THEN rules to estimate the location of the walls, and
(3) analyzing the accuracy rate in light of the de-neutrosophication of the consequents. To
the best of our knowledge and from the latest research, neutrosophic logic is not yet used
to detect and recognize indoor obstacles for VIPs.

This article’s remaining sections are organized as follows: The Section 2 performs a
literature review on indoor object identification using machine learning approaches. The
recommended strategy is discussed in Section 3, which is based on a review of existing
approaches. The suggested model is validated in Section 4 via a series of experiments,
followed by a discussion of the results. The concluding portion, Section 5, provides a
summary of the work and proposes prospective future research topics.

2. Related Work

In the literature, input modules used in indoor navigation systems are categorized into
three classes depending on the navigation sensors employed: non-camera-based, camera-
based, and hybrid [1,2]. Non-camera-based systems perceive the environment and display
it to the user using a variety of sensors. Camera systems rely mostly on a live camera feed
or pictures to represent the surrounding environment. Hybrid systems include both forms
of inputs. Common in industrial contexts, non-camera-based technologies are often utilized
for robot navigation. These technologies have been presented as a solution to the challenge
of interior navigation for the visually impaired.

Visually impaired users of non-camera-based systems must carry the appropriate
equipment (tag or tag reader, smartphone, or other receiver/transmitter device) when
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moving around their environment in order to be trackable. The electronic tags include
data needed to search for further information in a database and to pinpoint the user’s
position on an environmental map. IR sensors for indoor navigation are typically used to
determine the distance from an obstacle [27]. Numerous academics and researchers have a
strong interest in real-time indoor object detection. The problem is to reliably and precisely
recognize the item in an image or video. In general, interior settings vary from outside
ones. Typically, indoor scenery consists of several backdrop pieces and decorations [27].

Various methods are reported in the literature for detecting and recognizing walls,
holes, and descending and ascending stairs. Infrared sensors, laser sensors, and monocular
cameras are common components in these systems [27–31]. Sensor-based ETA systems
capture environmental data and communicate it to the VI user via a range of audible or
haptic signals. Computer vision advancements have resulted in the fast development
of assistance gadgets based on artificial intelligence for outdoor and indoor navigation.
The authors were able to identify on-floor obstacles in real-time with no a priori training
thanks to the use of traditional computer vision techniques, including color histogram
representation and edge detection [1–3]. The technology violates the hand-free restriction
imposed by VI users while being unobtrusive and cheap. In addition, it is unable to detect
obstacles that hang over its path.

Indoor object identification based on machine learning methods is used in many other
famous works as well [32–34]. The real-time restriction is frequently not satisfied by this
kind of technique, which is heavily reliant on processing resources and has a very high
computational cost. Recently, deep convolutional neural network (DCNN) models have
received a lot of interest for a variety of computer vision applications. This method has
been used to recognize indoor objects [35–38]. Feature extraction utilizing DCNN and
posture estimation were used to solve the issue of indoor placement. Other navigational
aids for the mobility of individuals with VIP have been developed by combining artificial
vision with map matching and GPS [1].

Fuzzy logic was shown to be helpful in addressing navigational issues for those with
visual impairments in a large body of research [39]. Fuzzy rules, for example, have been
utilized by some academics to assign preferences to things depending on the features of the
objects themselves. Another group of researchers used a sophisticated sensor logic system
to create a mobile route guiding assistance for those who are blind or partially sighted.
Fuzzy control principles and image depth were combined to develop a novel obstacle
avoidance strategy. A new guiding system, the directed elliptical model with fuzzy logic,
has been developed to monitor medium-range traffic conditions in real-time for visually
impaired pedestrians [39,40].

Using Bluetooth Low Energy (BLE) beacons, the authors in [10] investigated several
indoor localization techniques. A position-finding strategy based on fuzzy logic and the
received signal strength indication from BLE beacons and the geometric distance between
the current beacon and the fingerprint point was suggested. Based on their findings, the
fuzzy logic type-2 fingerprinting approach might be used in conjunction with BLE beacons
to provide accurate indoor positioning. With a mean localization error of 0.43 meters
and a mean navigation accuracy of 98.21%, the algorithm performed well. In [39], the
authors presented a new method for avoiding obstacles using image depth and fuzzy
control principles. Their method uses fuzzy logic to precisely alert the VI user of possible
impediments so that they may avoid them without the user needing any prior knowledge
of the surroundings.

For a summary of the current state of research on the topic, readers might read the
most up-to-date surveys [41–44]. They display a broad variety of indoor and outdoor
wearable and assistive devices-based navigation approaches and provide an analytical
analysis of each, pointing out its benefits and shortcomings. The authors furthermore
provide a taxonomy of wearable and assistive technologies that are grounded in both
qualitative and quantitative criteria for assessment. It is clear that every strategy has its
benefits and drawbacks, and that no one strategy is sufficient. Here, after examining a wide
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range of technologies, we found that the tradeoff between accuracy and the cost of creating
and implementing an indoor navigation system was a significant barrier to its widespread
adoption. In this research, we build on this insight by proposing a unique system that
combines sensor-based approaches with soft computing technologies to gather enough
information to provide an accurate indoor navigation solution for people with VI.

The primary purpose of this study is to provide neutrosophic logic modifications to the
widely utilized fuzzy-based indoor object detection. Like their fuzzy analogs, neutrosophic
systems might benefit from the insight of human operators. The membership grade in
Fuzzy Sets (FS) is utilized to deal with uncertainty, but in neutrosophic sets (NS), the truth,
indeterminacy, and falsity membership grades are treated as separate entities [13]. The next
section describes the suggested method.

3. Methodology

The majority of today’s indoor navigation techniques depend on expensive and im-
perfect laser and optical sensors [41–44]. The ultrasonic technology’s inexpensive price,
insensitivity to the object’s surface, and light make it a promising tool for locating obstacles
within buildings [43]. Ultrasonic-based indoor object identification for VIPs has been the
subject of a number of theoretical investigations, but there is still room for improvement in
terms of both accuracy and processing efficiency.

In our research, using a neutrosophic logic controller, a reliable approach for obstacle
avoidance, whether static or dynamic, has been proposed with low cost and acceptable
accuracy. In order to correctly identify and categorize the object feature types, a neutro-
sophic classification model is constructed. This model includes rules for neutrosophicat-
ing data, reasoning with it, and de-neutrosophicizing it. Decision-making rules tailored
to the needs of the visually impaired have been established. These messages are sent
through any Internet-of-Things device in order to let a visually impaired person move
about safely [14,15]. Figure 2 depicts the suggested framework’s architecture.

3.1. Obstacle Detection Using Ultrasonic Sensor

Our model makes use of ultrasonic technology to determine the exact distance between
the sensor and the target. The duration of the pulse may be used to calculate the distance [3].
An ultrasonic sensor has both a transmitter and a receiver. One sensor, the transmitter,
broadcasts a sound frequency, while another, the receiver, picks up the frequency reflected
off of the object. Calculating the distance between two points involves calculating the time
it takes to transmit and receive a frequency by the frequency’s speed divided by two. The
operation of an ultrasonic sensor is shown in Figure 3 [7]. The ultrasonic sensor works
equally well in bright and dim settings. Unlike other sensors like lasers and radar, it is not
affected by the colors or materials of its target. Sensor types such as ultrasonic, laser, and
radar are compared and contrasted in Table 1 [8].
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Table 1. Sensors advantages and disadvantages.

Sensors Advantages Disadvantages

Ultrasonic sensor

• High sensitivity
• High frequency
• High penetrating power
• The ease of detecting external and deep

objects
• High accuracy
• Simple interface with a microcontroller or

any type of controller,
• Low power utilization
• Low cost

• Some materials can distort an
its reading, density, and
consistency

Laser sensor

• Sensitivity
• High resolution
• Reliability
• Wide measurement range

• Must be clean and free from dirt
and other foreign materials
otherwise accuracy will be
affected

• Narrow range of operating
temperatures

Radar sensor

• Radar signal can penetrate through objects
• Can be used in any environmental

conditions
• Can distinguish between moving and still

objects
• Count passing people
• Accurate
• Reliable

• Unable to distinguish between
very close objects

• Unable to recognize the color of
objects

• Unable to recognize objects that
are placed behind a conductive
sheet

For this application, the ultrasonic sensor specifications are as follows: a maximum
detection range of 300 cm, a dead distance of 3 cm, a distance resolution of 5 mm, and a
beam angle of 60◦, see [30] for more information. As a result, an ultrasonic sensor may now
be used to generate a distance dataset in enclosed spaces. Many measurements of room
dimensions, floor levels, stair heights, and other features will be included in these files.
The wavelet transform will be used to extract features from these observations (distance
dataset). All these measurements will be filtered out except for the wall distances, which
will serve as input variables for the neutrosophic model.

3.2. Feature Extraction Using Wavelet Transform

In order to extract characteristics from ultrasonic signals, a number of effective signal-
processing algorithms have been proposed. These include the Hilbert-Huang transform,
the fast Fourier transform, and symbolic dynamic filtering. However, owing to the nonsta-
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tionary properties of ultrasonic defect signals, wavelet transform-based approaches have
shown to be the most effective and commonly employed [3].

When working with signals collected at discrete intervals in time, the DWT (discrete
wavelet transform) technique is used to get the wavelet transform. In the frequency domain,
the DWT performs an analysis by first applying a high-pass filter and then a low-pass filter,
to the signal in order to separate it into its coarse approximation and detailed information,
as illustrated in Figure 4 [8,9]. Figure 5 depicts DWT with different decomposition levels of
the simulated ultrasonic signal. In our case, clustered DWT will be utilized to overcome the
time variance and huge dimension of DWT coefficients. It employs the energy of several
frequency bands to cluster coefficients [45,46]. Clustering separates the discrete wavelet
coefficient into disjoint clusters for which a single robust feature may be calculated. Finally,
each component of the feature vector may be identified by calculating the energy of each
cluster through its associated row vector. After employing a clustered discrete wavelet
transform to extract features, the distance measurements are now complete.
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Due to its focus on membership and non-membership of an element to a particular
class, fuzzy logic and related logics fail to address the indeterminate nature of data acquired
due to factors such as incomplete knowledge, stochasticity, or the acquisition errors (intrin-
sically imperfect observations, the quantitative errors in measures). The non-membership
value must be equal to one minus the membership value for the fuzzy logic notion to
hold [38]. Neutrosophic logic is a non-traditional approach to tripartition analysis that
takes into account qualifications like degree of truthiness (T), degree of indeterminacy (I),
and degree of falsity (F) [47,48]. A comparison of neutrosophic and fuzzy classifiers is
shown in Figure 6 [14].
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A single-valued neutrosophic set N through X taking the form N = {x, TN(x), IN(x),
FN(x) : x ∈ X}, where X be a universe of discourse, TN(x) : X→ [0, 1] , IN(x) : X→ [0, 1]

and FN(x) : X→ [0, 1] with 0 ≤ TN(x) + IN(x) + FN(x) ≤ 3 for all x ∈ X. TA(x),
IA(x) and FA(x) represent truth membership, indeterminacy membership and falsity
membership degrees of x to N. A linear trapezoidal neutrosophic number is defined as
ÃNeu = (a, b, c, d; e, f , g, h; i, j, k, l) whose truth, indeterminacy and falsity member-
ship is defined as [49–51]:

TÃ_Neu =



0 x < a
x−a
b−a a ≤ x < b

1 b ≤ x < c
d−x
d−c c ≤ x ≤ d

0 x > d

(1)
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IÃ_Neu =



1 x < e
f−x
f−e e ≤ x < f

0 f ≤ x < g
x−g
h−g g ≤ x ≤ h

1 x > h

(2)

FÃ_Neu =



1 x < i
j−x
j−i i ≤ x < j

0 j < x < k
x−k
l−k k ≤ x ≤ l

1 x > l

(3)

where 0 ≤ TÃNeu
(x) + IÃNeu

(x) + IÃNeu
(x) ≤ 3, x ∈ ÃNeu. The pictorial view is shown in

Figure 7.
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The suggested neutrosophic rule-based indoor obstacle detection expands upon the
fuzzy rule-based system by making use of neutrosophic logic. Statements of neutrosophic
logic, rather than fuzzy logic, are used as antecedents and consequences of “IF-THEN”
rules in the proposed paradigm. It has three steps: First, there is neutrosophication,
which entails transforming crisp inputs into the neutrosophic knowledge base through the
truth-membership, falsity-membership, and indeterminacy-membership functions. In the
second stage, the neutrosophic “IF-THEN” rules leverage the knowledge base to generate
neutrosophic results. The third stage, “deneutrosophication,” uses three functions similar
to those used in “neutrosophication” to transform the neutrosophic results produced in the
previous phase into a crisp one.

Step 1: Neutrosophication

In our case, two ultrasonic sensors were combined to assess the distance of an obstacle
in front of and to the left of the user who obtained that information through a VIPs belt-
like assistant device that interacts with the smart watch to provide an alarm message
for obstacle avoidance. In the universe of discourse, the inputs SD f ront and SDle f t are
retrieved in accurate numerical form. By applying membership functions to the inputs, we
may ascertain how deeply they are embedded inside the specified neutrosophic category.
There is no set membership percentage; it might be zero or one. In our example, there are
three linguistic categories, “Low,” “Medium,” and “High,” all with linear membership
functions. In our suggested procedure, we use trapezoidal neutrosophic numbers with
linear membership functions for the two sensors readings:

- SD f ront: minimum sensor reading within a 60 degree arc located at the front of
the belt;
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- SDle f t: minimum sensor reading within a 60 degree arc located at the left of the belt.

Statistics on these measurements are provided in Table 2, and their categorization
according to distance is shown in Table 3. These readings are classified based on the
expected movement into four classes: move-forward (MF), slight-right-turn (RTslight),
sharp-right-turn (RTsharp), and slight-left-turn (SLT). The distribution of these readings is
as follows:

- move-forward: 2205 samples (40.41%);
- slight-right-turn: 826 samples (15.13%);
- sharp-right-turn: 2097 samples (38.43%);
- slight-left-turn: 328 samples (6.01%).

Table 2. Ultrasonic Sensors data statistics for raw distances.

Sensor Data Max Min Mean Standard Deviation

SD f ront 5 0.4950 1.29031 0.62670

SDle f t 5 0.3400 0.68127 0.34259

Table 3. Range classification for raw distances.

Level From To

Low 0.000 0.499

Medium 0.500 0.899

High 0.900 5.000

Step 2: Inference Engine and Rule Evaluation

Using two layers of linguistic variables, nine rules are formulated to classify data from
SD f ront and SDle f t sensors readings. The design of the IF-THEN rules in neutrosophic logic
takes into account the knowledge and experience of experts. Each rule is listed in Table 4
below. Once the membership degree of each antecedent component has been obtained,
the rule that will be executed may be determined. When more than one component of an
antecedent appears in a rule, the AND operator is employed to get a single value. When this
is done, just one truth value remains. The AND operator is symbolized by min (minimum)
in this context. The fired IF-THEN rules and the min operator are used to get a final decision
concerning expected movement.

µr = min(µS1,r, µS2,r) (4)

µr is the single truth value for the rth rule, µs1,r is the membership value of SD f ront for rth
rule, and µs2,r is the membership value of SDle f t for rth rule. EM is the output variable
(consequent) representing the expected movement. EM expressions are also given in
linguistic variables that includes ‘MF’, ‘ RTslight’, ‘ RTsharp’, and ‘SLT’.

EM =

max(µ1,r, MF); max
(

µ2,r, RTslight

)
;

max
(

µ3,r, RTsharp

)
; max(µ4,r, SLT)

 (5)
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Table 4. Neutrosophic logic-based indoor detection: a set of basic rules.

Rule Antecedent SDfront Antecedent SDleft Consequent EM

1 High High RTsharp
2 High Medium SLT
3 High Low SLT
4 Medium High RTsharp
5 Medium Medium RTsharp
6 Medium Low RTsharp
7 Low High RTsharp
8 Low Medium MF
9 Low Low SLT

Step 3: De-Neutrosophication

To guarantee that the output values are distributed fairly across the surrounding neu-
trosophic EM sets, they are normalized before de-neutrosophication. The lower trapezium
(a, b, c, d), the left-most upper trapezium (e, f, g, h), and the right-most upper trapezium
(i, j, k, l) each contain fuzzy numbers corresponding to any real integer α ∈ R. The de-
neutrosophication of the linear trapezoidal neutrosophic number is provided by using
the area removal approach for the de-neutrosophication of the single-valued trapezoidal
neutrosophic number [49].

R(D̃, α) =
R(Ã, α) + R(B̃, α)R(C̃, α)

3
(6)

For α = 0,

R(D̃, 0) =
a + b + c + d + e + f + g + h + i + j + k + l

12
(7)

4. Evaluation and Discussion

The goal of this analysis is to find a solution that will make it easier and more affordable
for people with VI to go about their daily lives (obstacle detection). The experiments were
conducted on an ×64-based processor and 8 GB of DDR3 memory on an Intel®CoreTM
i7-5500 CPU running at 2.50 GHz. We used the Python programming language to build the
suggested obstacle detection model and handle the neutrosophic rules. The following are
the characteristics of an ultrasonic sensor: working frequency: 40 Hz, maximum range: 5 m,
minimum range 2 cm, trigger input signal: 10 µS TTL pulse, echo output signal: input TTL
lever signal and the range in proportion, dimensions: 45 × 20 × 15 mm3, a 60◦ beam angle.
The user can adapt this wearable prototype according to their personal preferences by using
a mobile device with Bluetooth communication. The suggested model was constructed
based on the distance of the obstacle using two belt sensors and a single output (expected
movement direction). After the activation of the device, the distances of the obstacle from
two sensors will be sent to the neutrosophic controller. Then, a determination will be made
using the nine neutrosophic rules. The user will get this input via their headphones. The
whole procedure will be used iteratively. In the absence of a barrier, the user’s route will
remain unchanged (straight).

A machine learning method based on neutrosophic logic has been developed to extract
relationships, modeled as rules, from a dataset (the raw distances of an obstacle from two
ultrasonic sensors). There are nine rules that are built according to the statistics of these
dataset and their range classification summarize the strongest connections among the two
variables SD f ront and SDle f t. These could be employed to predict the expected movement
that must be taken into account during the movement of the VIPs to avoid obstacles for an
unseen piece of data collected under the same conditions, using the belt-like assistant device
that interacts with the smart watch to provide an alarm message for obstacle avoidance,
with a significant level of accuracy, while at the same time providing a linguistic snapshot of
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the inherent pattern in the data set. This makes neutrosophic logic an important modelling
tool in control systems where non-crisp inputs are required.

To ensure the accuracy of our system, we used a dataset consisting of readings from
two sensors (5456 samples) as input; 75% of the dataset was used to train the model, while
the other 25% was used to evaluate its performance. The characteristics of the datasets
used for the objective evaluation are mentioned in detail in the neutrosophication step. We
separated the objects in each scene into two categories after realizing that certain objects
don’t count as obstacles unless they’re directly in the way of the user or preventing him or
her from moving forward.

To evaluate the performance of the neutrosophic classifier in the process of detecting
obstacles, two versions of the proposed model were built based on the core modules: one
using a neutrosophic classifier and the other using a traditional fuzzy logic classifier in-
spired by the work in [39]. Table 5 shows the obstacle detection rate in the used dataset. The
results reveal the superiority of the neutrosophic classifier, with an improvement of about
6%. Neutrosophic logic, with its three levels of membership, is able to effectively capture
ambiguity and provide solutions that are close to reality. By including a neutrosophic set
in the model, we may reduce the number of times visually impaired people collide with
obstacles.

Table 5. Evaluation results for the tested dataset.

Model Version Accuracy for Avoiding Obstacles

Neurotropic-based version 97.71%

Fuzzy-based version 91.27%

In the second set of experiments, we compared the effectiveness of our proposed
model to that of one that uses visual sensors to determine the shape of obstacles as in the
work presented in [39]. The results are shown in Table 6. The efficiency of the proposed
model in increasing accuracy by about 3% can be attributed, to the fact that the neutrosophic
module in our model uses wavelet-based ultrasonic distance characteristics rather than user
position based on two visual sensors, as is the case with the conventional camera-based
obstacle detection paradigm.

Table 6. Comparative results for different type of sensors for obstacle detection.

Model Accuracy for Avoiding Obstacles (Average)

Ultrasonic sensor-based model 97%

Visual sensor–based model [39] 94%

In general, there are still issues with current methods of object detection using cameras.
These issues include viewpoint variation, deformation, occlusion, illumination conditions,
a cluttered or textured background, and finally intra-class variation. Make sure there is
enough variety in the training data to develop a strong object detector capable of resolving
these typical object detection issues. Take use of different viewpoints, illumination condi-
tions, and objects in different backgrounds. Data augmentation methods (e.g., ultrasonic
sensors to extract distance measurements) may be used to synthesize the necessary data if
you cannot locate real-world training data with all these variables.

According to the average rate of obstacle detection for users, as seen in Table 7, left-
side obstacle detection was 89%, right-side obstacle detection was 86%, and front obstacle
detection was 97%. Many-massage feedback caused the user to get confused when there
were multiple obstacles in the user’s immediate vicinity.
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Table 7. Successful detection of obstacle types.

Obstacle Type Accuracy for Avoiding Obstacles (Average)

Front 98%

left 89%

Right 86%

To calculate the time complexity of the whole system, we had to combine the time complex-
ity of the detection algorithm with the time complexity of the obstacle avoidance algorithm. Our
method for obstacle avoidance is implemented after a sensor-based feature extraction technique
for object recognition has been implemented, which takes less memory and computation time
than prior systems [39]. The suggested obstacle avoidance method has a linear time complexity
of O (n), where n is the number of identified obstacles. This indicates that our system as a whole
delivers a quicker and more reliable obstacle avoidance mechanism. For more experiments close
to this field of research, the reader can refer to [52–60].

Limitations of the Proposed Model

In the context of indoor object identification, neutrosophic logic has several advan-
tages. These include the following: the ability to handle data from multiple sources; the
resolution of complex problems using only partial or imprecise information; and the pro-
duction of trustworthy outcomes in numerous cases of multi-criteria decision-making. The
neutrosophic controller is a revolutionary system that is more generalizable and tolerant of
uncertainty than its fuzzy counterparts. In cases where there is a potential of indeterminacy
and incompleteness in the acquired data, as in ours, a neutrosophic controller is employed
as a means of dealing with the situation. Using neutrosophic logic has its benefits since
it can tell the difference between a truth that holds true in only one or a few worlds and
a truth that holds true in every world. To the same extent, neutrosophic logic delineates
between relative and absolute falsehood.

Although the suggested model makes use of neutrosophic logic, doing so presents a
number of challenges that severely restrict its effectiveness. These restrictions are a result
of how the neutrosophic inference engine was built. According to the proposed model, in
neutrosophic sets, truth, falsehood, and indeterminacy are all independent; it is unknown
how they influence one another in the decision-making process. Not only that, but the
sets of inference rules and the membership functions were also developed by hand by a
specialist in the field. It’s preferable to produce them automatically based on data you
already have. Finally, the variables used to characterize the distance to the obstacle have a
significant impact on the performance of the proposed model. Selecting these characteristics
requires an optimization method.

5. Conclusions

This study presents a new approach that utilizes sensors and artificial intelligence
technology to make it easier for visually impaired people to move safely in indoor build-
ings. The hardware for the suggested system consists of a standard smartphone, some
ultrasonic sensors, and a belt worn around the waist. One of the most novel aspects of the
suggested assistive gadget is the software that combines data from ultrasonic sensors with
a neutrosophic reasoning-based controller. Despite the object’s position, size, or shape, the
system is able to confidently identify it as a part of the scene.

The primary focus of this research is on enhancing popular methods of fuzzy-based
indoor object avoidance using neutrosophic logic. The neutrosophic approach uses permu-
tations of three independent factors (truth, indeterminacy, and falsity). On the other hand,
the fuzzy approach uses permutations of two independent factors (truth and falsehood)
to handle uncertainty. Therefore, the neutrosophic approach is more generalized than
the fuzzy approach. Decision-makers and problem-solvers attempt to promote truth and
decrease indeterminacy and falsity.
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Extensive experimental assessment using benchmarks and real data from VIPs demon-
strates the dependability and robustness of the proposed system. We begin with an objective
assessment of the obstacle detection and classification modules, and then go on to provide
a subjective assessment of our system by presenting the level of satisfaction and comments
from the VIPs who have used our prototype. Subjects deemed our technology to be user-
friendly, lightweight, wearable, and unobtrusive, meeting both the hands-free and ears-free
criteria. In addition, calculation time is minimized, and warning signals are delivered
quickly enough for the VIP to walk properly. In the future, in order to apply more control
over one’s surroundings, a more in-depth comprehension of the scenario will be required
using another type of logic, such as spherical and picture fuzzy sets [61,62]. Furthermore,
the proposed technology may be expanded to recognize other commonplace interior objects
including doors, stairs, elevators, signs, text, and furniture.
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localization system for navigation of visually impaired people in buildings. Sensors 2019, 19, 2114. [CrossRef] [PubMed]

11. Chang, T.; Chien, Y. Indoor positioning method for smart mobile device based on fuzzy Wi-Fi fingerprint. In Proceedings of the
IEEE International Conference on Consumer Electronics, Taoyuan, Taiwan, 28–30 September 2020; pp. 1–2.

12. Wei, Y.; Kou, X.; Lee, M. Development of a guide-dog robot system for the visually impaired by using fuzzy logic based human-
robot interaction approach. In Proceedings of the International Conference on Control, Automation and Systems, Gwangju,
Republic of Korea, 20–23 October 2013; pp. 136–141.

13. Ansari, A.Q.; Biswas, R.; Aggarwal, S. Neutrosophic classifier: An extension of fuzzy classifier. Appl. Soft Comput. 2013, 13,
563–573. [CrossRef]

http://doi.org/10.3390/s20143935
http://doi.org/10.1007/s11042-020-09662-3
http://doi.org/10.1007/s11063-020-10197-9
http://doi.org/10.3390/s20030636
http://doi.org/10.1007/s00521-012-1305-7
http://doi.org/10.3390/s19092114
http://www.ncbi.nlm.nih.gov/pubmed/31067769
http://doi.org/10.1016/j.asoc.2012.08.002


Appl. Sci. 2023, 13, 2150 18 of 19

14. Hefny, A.; Hassanien, A.; Basha, S. Neutrosophic rule-based identity verification system based on handwritten dynamic signature
analysis. Comput. Mater. Contin. 2021, 69, 2367–2385. [CrossRef]

15. Abdel-Basset, M.; Gunasekaran, M.; Mohamed, M.; Smarandache, F. A novel method for solving the fully neutrosophic linear
programming problems. Neural Comput. Appl. 2019, 31, 1595–1605. [CrossRef]

16. Kavitha, B.; Karthikeyan, S.; Maybell, P. An ensemble design of intrusion detection system for handling uncertainty using
Neutrosophic Logic Classifier. Knowl.-Based Syst. 2012, 28, 88–96. [CrossRef]

17. Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic; American Research Press: Rehoboth, DE, USA, 2005; pp. 1–141.
18. Essameldin, R.; Ismail, A.; Darwish, S. Quantifying Opinion Strength: A Neutrosophic Inference System for Smart Sentiment

Analysis of Social Media Network. Appl. Sci. 2022, 12, 7697. [CrossRef]
19. Habib, S.; Ashraf, A.; Butt, M.; Ahmad, M. Medical diagnosis based on single-valued neutrosophic information. Neutrosophic Sets

Syst. 2021, 42, 302–323.
20. Karamustafa, M.; Cebi, S. Extension of safety and critical effect analysis to neutrosophic sets for the evaluation of occupational

risks. Appl. Soft Comput. 2021, 110, 107719. [CrossRef]
21. Basha, S.; Abdalla, A.; Hassanien, A. Neutrosophic rule-based classification system and its medical applications. In Big Data in

Psychiatry; Academic Press: Cambridge, MA, USA, 2021; pp. 119–135.
22. Gómez, L.; Guerrero, M.; de Oca Sanchez, J.; Paladines, M.; Lopez, A. Neutrosophic Statistical Analysis of E-commerce.

Neutrosophic Sets Syst. 2021, 44, 170–178.
23. Govindan, K.; Ramalingam, S.; Deivanayagampillai, N.; Broumi, S.; Jacob, K. Markov chain based on neutrosophic numbers in

decision making. Kuwait J. Sci. 2021, 48, 1–16. [CrossRef]
24. Gal, I.; Ciocîrlan, A.; Vlădăreanu, L. The Hybrid Position/Force Walking Robot Control Using Extenics Theory and Neutrosophic

Logic Decision. Sensors 2022, 22, 3663. [CrossRef] [PubMed]
25. Karunakaran, H.; Bhumireddy, V. Utilizing Neutrosophic Logic in the Design of a Smart Air-Conditioning System. Appl. Sci.

2022, 12, 9776. [CrossRef]
26. Ouallane, A.; Broumi, S.; Ayele, E.; Bakali, A.; Bahnasse, A.; Talea, M. Towards Intelligent Road Traffic Management Based on

Neutrosophic Logic: A Brief Review. Neutrosophic Sets Syst. 2022, 51, 7.
27. Kandalan, R.; Namuduri, K. Techniques for constructing indoor navigation systems for the visually impaired: A review. IEEE

Trans. Hum.-Mach. Syst. 2020, 50, 492–506. [CrossRef]
28. Sreenivasulu, K. A Comparative review on object detection system for visually impaired. Turk. J. Comput. Math. Educ. 2021, 12,

1598–1610.
29. Bouhamed, S.; Kallel, I.; Masmoudi, D. Stair case detection and recognition using ultrasonic signal. In Proceedings of the

International Conference on Telecommunications and Signal Processing, Rome, Italy, 2–4 July 2013; pp. 672–676.
30. Munoz, R.; Rong, X.; Tian, Y. Depth-aware indoor staircase detection and recognition for the visually impaired. In Proceedings of

the IEEE International Conference on Multimedia & Expo Workshops, Seattle, WA, USA, 11–15 July 2016; pp. 1–6.
31. Elmannai, W.; Elleithy, K. Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future

directions. Sensors 2017, 17, 565. [CrossRef] [PubMed]
32. Ng, S.; Kwok, C.; Chung, S.; Leung, Y.; Pang, H.; Lam, C.; Lau, K.; Tang, C. An intelligent mobile application for assisting visually

impaired in daily consumption based on machine learning with assistive technology. Int. J. Artif. Intell. Tools 2021, 30, 1–12.
[CrossRef]

33. Priya, T.; Sravya, K.; Umamaheswari, S. Machine-learning-based device for visually impaired person. In Artificial Intelligence and
Evolutionary Computations in Engineering Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 79–88.

34. Mallikarjuna, G.; Hajare, R.; Pavan, P. Cognitive IoT system for visually impaired: Machine learning approach. Mater. Today Proc.
2022, 49, 529–535. [CrossRef]

35. Wu, J.; Hu, W.; Coelho, J.; Nitu, P.; Paul, H.; Madiraju, P.; Smith, R.; Ahamed, S. Identifying buildings with ramp entrances using
convolutional neural networks. In Proceedings of the Annual Computer Software and Applications Conference, Milwaukee, WI,
USA, 15–19 July 2019; Volume 2, pp. 74–79.

36. Bashiri, F.; LaRose, E.; Badger, J.; D’Souza, R.; Yu, Z.; Peissig, P. Object detection to assist visually impaired people: A deep neural
network adventure. In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, 19–21 November
2018; Springer: Cham, Switzerland, 2018; pp. 500–510.

37. Akilandeswari, J.; Jothi, G.; Naveenkumar, A.; Sabeenian, R.; Iyyanar, P.; Paramasivam, M. Design and development of an indoor
navigation system using denoising autoencoder based convolutional neural network for visually impaired people. Multimed.
Tools Appl. 2022, 81, 3483–3514. [CrossRef]

38. Pintado, D.; Sanchez, V.; Adarve, E.; Mata, M.; Gogebakan, Z.; Cabuk, B.; Chiu, C.; Zhan, J.; Gewali, L.; Oh, P. Deep learning
based shopping assistant for the visually impaired. In Proceedings of the IEEE International Conference on Consumer Electronics,
Las Vegas, NV, USA, 11–13 January 2019; pp. 1–6.

39. Elmannai, W.; Elleithy, K. A novel obstacle avoidance system for guiding the visually impaired through the use of fuzzy control
logic. In Proceedings of the IEEE Annual Consumer Communications & Networking Conference, Las Vegas, NV, USA, 12–15
January 2018; pp. 1–9.

40. Silva, C.; Wimalaratne, P. Fuzzy-logic-based walking context analysis for visually impaired navigation. Sens. Mater. 2019, 31,
1305–1324. [CrossRef]

http://doi.org/10.32604/cmc.2021.018017
http://doi.org/10.1007/s00521-018-3404-6
http://doi.org/10.1016/j.knosys.2011.12.004
http://doi.org/10.3390/app12157697
http://doi.org/10.1016/j.asoc.2021.107719
http://doi.org/10.48129/kjs.v48i4.9849
http://doi.org/10.3390/s22103663
http://www.ncbi.nlm.nih.gov/pubmed/35632072
http://doi.org/10.3390/app12199776
http://doi.org/10.1109/THMS.2020.3016051
http://doi.org/10.3390/s17030565
http://www.ncbi.nlm.nih.gov/pubmed/28287451
http://doi.org/10.1142/S0218213021400029
http://doi.org/10.1016/j.matpr.2021.03.666
http://doi.org/10.1007/s11042-021-11287-z
http://doi.org/10.18494/SAM.2019.2232


Appl. Sci. 2023, 13, 2150 19 of 19

41. Islam, M.; Sadi, M.; Zamli, K.; Ahmed, M. Developing walking assistants for visually impaired people: A review. IEEE Sens. J.
2019, 19, 2814–2828. [CrossRef]

42. Jafri, R.; Ali, S.; Arabnia, H.; Fatima, S. Computer vision-based object recognition for the visually impaired in an indoors
environment: A survey. Vis. Comput. 2014, 30, 1197–1222. [CrossRef]

43. Silva, C.; Wimalaratne, P. State-of-art-in-indoor navigation and positioning of visually impaired and blind. In Proceedings of the
International Conference on Advances in ICT for Emerging Regions, Colombo, Sri Lanka, 6–9 September 2017; pp. 1–6.

44. Joshi, R.; Yadav, S.; Dutta, M.; Travieso-Gonzalez, C. Efficient multi-object detection and smart navigation using artificial
intelligence for visually impaired people. Entropy 2020, 22, 941. [CrossRef]

45. Rabby, M.; Islam, A.; Belkasim, S.; Bikdash, M. Wavelet transform-based feature extraction approach for epileptic seizure
classification. In Proceedings of the ACM Southeast Conference, Virtual, 15–17 April 2021; pp. 164–169.

46. Waldekar, S.; Saha, G. Analysis and classification of acoustic scenes with wavelet transform-based Mel-scaled features. Multimedia
Tools Appl. 2020, 79, 7911–7926. [CrossRef]

47. Saravanakumar, S. A real time approach on genetically evolving intrusion detection using neutrosophic logic inference system. In
Proceedings of the International Conference on Computing Intelligence and Data Science, Coimbatore, India, 7–8 April 2018;
Infinite Study: Hurstville, NSW, Australia, 2018; Volume 7, pp. 49–62.

48. Hassan, M.H.; Darwish, S.M.; Elkaffas, S.M. An Efficient Deadlock Handling Model Based on Neutrosophic Logic: Case Study on
Real Time Healthcare Database Systems. IEEE Access 2022, 10, 76607–76621. [CrossRef]

49. Pai, S.; Gaonkar, R. Safety modelling of marine systems using neutrosophic logic. J. Eng. Marit. Environ. 2021, 235, 225–235.
[CrossRef]

50. Basha, S.; Tharwat, A.; Abdalla, A.; Hassanien, A. Neutrosophic rule-based prediction system for toxicity effects assessment of
bio transformed hepatic drugs. Expert Syst. Appl. 2019, 121, 142–157. [CrossRef]

51. Karkar, J.K.A.; Al-Maadeed, S.; Al-Attiyah, A. Comparative analysis of computer-vision and BLE technology based indoor
navigation systems for people with visual impairments. Int. J. Health Geogr. 2019, 18, 29.

52. Guerrero, L.; Vasquez, F.; Ochoa, S. An indoor navigation system for the visually impaired. Sensors 2012, 12, 8236–8258. [CrossRef]
[PubMed]

53. Heya, T.; Arefin, S.; Chakrabarty, A.; Alam, M. Image processing based indoor localization system for assisting visually impaired
people. In Proceedings of the IEEE International Conference on Ubiquitous Positioning, Indoor Navigation, and Location-Based
Services, Wuhan, China, 22–23 March 2018; pp. 1–7.

54. Martinez-Sala, A.; Losilla, F.; Sánchez-Aarnoutse, J.; García-Haro, J. Design, implementation and evaluation of an indoor
navigation system for visually impaired people. Sensors 2015, 15, 32168–32187. [CrossRef]

55. Nguyen, Q.; Vu, H.; Tran, T.; Nguyen, Q. Developing a way-finding system on mobile robot assisting visually impaired people in
an indoor environment. Multimed. Tools Appl. 2017, 76, 2645–2669. [CrossRef]

56. Ahmetovic, D.; Murata, M.; Gleason, C.; Brady, E.; Takagi, H.; Kitani, K.; Asakawa, C. Achieving practical and accurate indoor
navigation for people with visual impairments. In Proceedings of the International Web for All Conference, Perth, Australia, 2
April 2017; pp. 1–10.

57. Mahida, P.; Shahrestani, S.; Cheung, H. Localization techniques in indoor navigation system for visually impaired people. In
Proceedings of the IEEE International Symposium on Communications and Information Technologies, Cairns, QLD, Australia,
25–27 September 2017; pp. 1–6.

58. Jafri, R.; Khan, M. User-centered design of a depth data based obstacle detection and avoidance system for the visually impaired.
Hum.-Centric Comput. Inf. Sci. 2018, 8, 1–30. [CrossRef]

59. Kelemen, M.; Virgala, I.; Kelemenová, T.; Miková, L.; Frankovský, P.; Lipták, T.; Lörinc, M. Distance Measurement via Using of
Ultrasonic Sensor. J. Autom. Control 2015, 3, 11–74.

60. Long, Z.; He, R.; He, Y.; Chen, H.; Li, Z. Feature Extraction and Mapping Construction for Mobile Robot via Ultrasonic MDP and
Fuzzy Model. Sensors 2018, 18, 3673. [CrossRef] [PubMed]

61. Mahmood, T.; Ullah, K.; Khan, Q.; Jan, N. An approach toward decision-making and medical diagnosis problems using the
concept of spherical fuzzy sets. Neural Comput. Appl. 2019, 31, 7041–7053. [CrossRef]

62. Ullah, K. Picture fuzzy McLaurin symmetric mean operators and their applications in solving multi-attribute decision-making
problems. Math. Probl. Eng. 2021, 2021, 1098631. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/JSEN.2018.2890423
http://doi.org/10.1007/s00371-013-0886-1
http://doi.org/10.3390/e22090941
http://doi.org/10.1007/s11042-019-08279-5
http://doi.org/10.1109/ACCESS.2022.3192414
http://doi.org/10.1177/1475090220925733
http://doi.org/10.1016/j.eswa.2018.12.014
http://doi.org/10.3390/s120608236
http://www.ncbi.nlm.nih.gov/pubmed/22969398
http://doi.org/10.3390/s151229912
http://doi.org/10.1007/s11042-015-3204-2
http://doi.org/10.1186/s13673-018-0134-9
http://doi.org/10.3390/s18113673
http://www.ncbi.nlm.nih.gov/pubmed/30380638
http://doi.org/10.1007/s00521-018-3521-2
http://doi.org/10.1155/2021/1098631

	Introduction 
	Motivation 
	Contribution 

	Related Work 
	Methodology 
	Obstacle Detection Using Ultrasonic Sensor 
	Feature Extraction Using Wavelet Transform 
	Neutrosophic Classifier 

	Evaluation and Discussion 
	Conclusions 
	References

