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Abstract: Unikernels are specialized operating system (OS) kernels optimized for a single application
or service, offering advantages such as rapid boot times, high performance, minimal memory usage,
and enhanced security compared to general-purpose OS kernels. Unikernel applications must remain
compatible with the runtime environment of general-purpose kernels, either through binary or
source compatibility. As a result, many Unikernel projects have prioritized system call compatibility
over performance enhancements. In this paper, we explore the design principles of Unikernel file
systems and introduce a new file system tailored for Unikernels named ULFS (Ultra Lightweight File
System). ULFS provides system call services akin to those of general-purpose OS kernels but achieves
superior performance and security with significantly fewer system resources. Specifically, ULFS is
developed as a lightweight file system embracing Unikernel design principles. It streamlines system
calls, removes unnecessary locks, and omits permission checks for multiple users, utilizing a non-
hypervisor architecture. This approach significantly reduces the memory footprint of the file system
and enhances performance. Through measurement studies, we assess the performance and memory
requirements of various file systems from major Unikernel projects. Our findings demonstrate that
ULFS surpasses several existing Unikernel file systems, including Rumpvfs, Ramfs-u, Ramfs-q, 9pfs,
and Hcfs.
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1. Introduction

Unikernels represent a paradigm shift in operating system (OS) kernel design, tailored
for optimizing a single application or service [1]. Compared to general-purpose kernels,
these specialized kernels have the advantages of fast booting, high performance, mini-
mal memory footprint, and fortified security [2]. Unikernels have garnered widespread
adoption across a variety of domains, including network function virtualization [3], data
processing [4], IoT (Internet of Things) [5,6], and edge computing [7,8]. Although some ap-
plications may need to be newly built for running on the Unikernel, applications developed
for a general-purpose OS can be executed directly on the Unikernel if certain conditions are
met. Specifically, if the application binary interface (ABI) of the same executable file format
is used, or the application programming interface (API) is matched to ensure execution
through source-level build, the application can be executed as is in the Unikernel.

From an application perspective, it is important that Unikernel supports the same
system call services as a general-purpose OS kernel. In fact, Unikernels do not need to
support all system call services in general-purpose OS kernels, but system calls for some
core functions such as networking and file systems must be provided. In the case of file
systems, most Unikernel projects have primarily focused on implementing APIs just to
ensure the portability of applications. Consequently, they have either adopted a general file
system or relied on the host’s file system. Even in cases where a file system was developed
from scratch or slightly modified for Unikernels, easily implementable approaches such
as in-memory file systems are preferred. Performance optimization and security have not
been major concerns.
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When considering the design philosophy of Unikernels, performance optimization
and security issues are important for a file system with minimal system resource usage.
Specifically, setting appropriate configurations for file system I/Os is important to achieve
optimized performance for a given application with minimal resource usage.

In this paper, we design and implement a new file system for Unikernel called ULFS
(Ultra Lightweight File System), which focuses on improving performance based on design
simplification. To evaluate this claim, we compare the performance of ULFS with existing
file systems developed in various Unikernel projects through a variety of benchmarks
and analyze issues in file system design. Our measurement studies show that ULFS
outperforms several existing Unikernel file systems, including Rumpvfs, Ramfs-u, Ramfs-q,
9pfs, and Hcfs.

The remainder of this paper is organized as follows. Section 2 briefly reviews existing
research pertinent to the goals of this paper. Section 3 describes the design issues of
Unikernel file systems. Sections 4 and 5 describe the details of the ULFS proposed in
this paper and evaluate its performance through measurement studies. Finally, Section 6
presents the conclusion of this paper.

2. Related Works

File systems deployed within Unikernels typically range from straightforward, memory-
based systems to more complex arrangements that provide access to host files via virtualiza-
tion, mediated by a hypervisor. A file system tailored for Unikernels is expected to deliver
superior I/O performance while maintaining a minimal memory footprint, to align with its
foundational objectives. At the same time, it is crucial that the file system be exempt from
security vulnerabilities.

There have been efforts to adapt file systems for Unikernel environments, tailored
to meet the unique requirements of each distinct project. The Nabla project, for instance,
incorporates the Rumpkernel, a library operating system, to execute Unikernel applications
via its dedicated hypervisor, the Solo5 tender [9]. Rumpkernel basically supports an in-
memory file system called Rumpvfs as the root file system [10,11]. Based on Rumpvfs,
they develop another file system called Rump_etfs (Extra Terrestrial File System), which
provides linkage of files on the host to the Unikernel without the assistance of hypervisors.
Structurally, Rump_etfs is similar to the ULFS proposed in this paper, as it does not use
a hypervisor. However, as it is based on an in-memory file system, Rumpvfs, it does not
follow well the lightweight design principle of Unikernels.

Unikraft is one of the most active Unikernel projects currently being developed [12]. It
supports an imported 9pfs to bind files on the host to Unikernel as well as the customized
in-memory file system Ramfs [13]. Unikraft also provides an application build tool called
Kraft for easy creation and execution of Unikernel applications. Moreover, it supports
various software platforms for Unikernel applications, including hypervisors such as Qemu
and Xen, as well as public cloud platforms such as AWS and GCP. The Linuxu (Linux user-
space) platform supports Unikernels to run directly on the host OS without a hypervisor.
Although its performance is not competitive when compared with other platforms, Linuxu
is widely used in the application development phase as various developer tools (e.g.,
debugger) inside the host can be utilized. Ramfs is available on both the Linuxu and
Qemu platforms, but 9pfs only works on the Qemu platforms. In summary, Unikraft’s file
system is weaker than ULFS in terms of performance and resource usage because it either
borrows the file system for virtual machine environments (9pfs) or customizes the existing
in-memory file system Ramfs for Unikernel.

Hermitux is another Unikernel that can be executed directly on existing general-
purpose kernels without being built again, so much research has been performed on it [14].
Hermitux provides its own in-memory file system called Minifs, but its use is limited
in actual application environments as it only provides some bare-bones functions. The
main file system of Hermitux is Hcfs (Hermit Core File System), which bypasses its own
hypervisor Uhyve, and binds its files to the file system on the host at the API level. However,
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this has the same effect as a system call to the host, which accompanies the overhead of
hypercalls whenever a file system-related system call is made. Also, as Hcfs needs the
support of host file systems, it has limitations in terms of security and performance. ULFS
accesses host storage as a block device rather than making use of file system-level hypercalls
to the host. Table 1 shows a comparison between ULFS and other Unikernel file systems
under various concerns.

Table 1. Comparison of ULFS with existing Unikernel file systems.

File System Target
Project Design Style Need for

Hypervisor
Implementation
Approach Limitations

Rumpvfs Nabla
(2018)

In-memory
file system No

Imported from Rump
kernel without custom
development

· Low performance due to
adopting general purpose file
system
· No persistent storage

Ramfs Unikraft
(2021)

In-memory
file system Yes

Developed with
Unikernel in mind but
encompass too many
features

· Low performance due to
hypercalls and complex design
· High memory requirement
· No persistent storage

9pfs Unikraft
(2021)

Host-based
file system Yes

Imported from Qemu
without custom
development

· Low performance due to
frequent hypercalls
· Low security due to direct
exposure to host

Hcfs hermitux
(2019)

Host-based
file system Yes Redirect guest file system

API requests to host

· Overhead of API request
redirection
· No isolation guaranteed as all
file operations performed at
host

ULFS ULV
(2022) Hybrid file system No Developed from scratch

with streamlined design
· Unfit for large scalable
workload

In contrast to the aforementioned file systems, there exist instances where emphasis
is placed on developing file system features specifically optimized for applications such
as ETL (Extract, Transform, and Load), thereby prioritizing optimization over adherence
to Posix compliance. Fingler et al. proposed a Unikernel technology for ETL applications
instead of a containerized method, which is widely used for serverless functions [4]. They
modified the Python interpreter to support HTTP GET/POST requests tailored for ETL. By
ensuring compatibility between the higher-level API of the Unikernel and the host, they
removed unnecessary networking and storage functionalities.

3. Design Issues of Unikernel File Systems
3.1. Classification of Unikernel File Systems

Unikernel file systems can be classified into three types, as shown in Figure 1, depend-
ing on the storage interconnection method. The first is a type of in-memory file system in
which all data in the file system is managed within the Unikernel without host intervention.
File systems in this category have the advantage of providing performance comparable to
general-purpose operating systems. Also, there is a merit to security as all file system data
are hidden on the host and managed by the Unikernel. However, as in-memory file systems
do not have persistency features (i.e., their contents will not be retained when the power is
turned off), applications need to back up file system contents through additional I/O or
network operations explicitly to preserve data. Therefore, file systems in this category are
mainly used for maintaining temporary files, which are necessary only when the Unikernel
is activated. This type of file system also has the drawback of large memory consumption
for the file system, which is not desirable for Unikernels that aim at being lightweight.
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The second type is a host-based file system that maps files in the Unikernel file system
to files on the host or forwards API requests from the Unikernel file system to the host. In
this type, file system storage is entirely dependent on the host side. Unlike in-memory file
system types, applications that use these file system types can utilize the file system for
persistent data I/O. Also, the memory space consumed by this file system type is less than
that of the in-memory file system type. However, hypercall operations for this file system
type become complicated as the Unikernel’s file system needs to communicate with the
host file system for each file operation. There is also a security problem such that files used
by guests are visible to the host. Moreover, although the memory consumption of the file
system is less than that of the in-memory file system, in general, it is difficult to control the
memory usage of the host file system, possibly leading to increased memory usage.

The third type of file system makes use of a hybrid approach where the host provides
a dedicated storage device to the Unikernel, and the Unikernel performs file services by
making use of the storage on the host. Unlike the host-based file system type, a block
device-level interface is used for this type, so hypercall operations between the host and
Unikernel can be simplified. Also, it has the advantage of minimizing the vulnerability of
guest file data being exposed to the host.

3.2. Hypervisor vs. Non-Hypervisor

In traditional Unikernel environments, isolation between tenants is achieved by run-
ning a hypervisor on the host and placing virtual machines for each application on top of
it. However, even if a Unikernel application is executed as a process on the host without
a hypervisor, it can provide security similar to a virtual machine. In this non-hypervisor
environment, process isolation without a virtual machine is used, so guests can access the
host’s resources using system calls without hypercalls.

Meanwhile, the number of system calls is much greater than that of hypercalls, provid-
ing unnecessarily many functions to guests. This results in widening the attack surface in
terms of security. We can resolve this issue by limiting the range of system calls and system
arguments allowed to the guest, thereby activating only essential functions for Unikernel
guests [15]. To do so, ULFS restricts the execution of system calls to only pwrite64 and
pread64 through the Linux seccomp (secure computing) facility [15]. Moreover, although
these system calls are invoked, ULFS does not permit execution if the file descriptor of
the backend storage does not correspond to a block device. Since system calls that modify
memory segments (such as mprotect) are not allowed, malicious guest code is confined to
reading from the code segment or writing to the data segment, effectively safeguarding the
host from potential harm. As pwrite and pread maintain the same interface even when
executed as hypercalls, the attack surface is identical to that in virtualized environments.
While there is potential for security vulnerabilities in the implementation of system calls,
non-hypervisors are not likely to increase the potential security risks associated with imple-
menting system calls compared to hypervisor environments, especially when considering
the stability of the host operating system.

In hypervisor-based system architectures, file system operations impose a significant
performance burden. This is because performing file system operations through the hyper-
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visor involves hypercalls, which result in a context switch to the host kernel and a large
performance overhead. Also, as host and guest have independent memory address spaces
in hypervisor-based systems, file system I/O accompanies an explicit copy procedure.

In contrast, when hypervisor is not used, file I/O operations can be performed by
mapping process address space directly to the host memory through mmap [16], which
potentially leads to performance improvement. There is no additional cost for copying
because file I/O is performed directly to the memory space mapped to the process that
runs the Unikernel.

3.3. Approaches for Lightweitghting File System

Optimized file system design in Unikernel environments will be possible through
characterization of file access patterns, I/O size, access frequency, etc. [17], but to the best
of our knowledge, there are no specific characteristics known for file access characteristics
in Unikernels.

As Unikernel is designed to execute a single application per kernel, the memory
footprint of a single Unikernel is not expected to be large. Thus, the goal of our design
is to maximize performance while minimizing resource usage. Specifically, performance
can be improved by simplifying or eliminating unnecessary file system functions, such as
permission management for multiple users or quota restrictions for each user.

This leads to a reduction in memory footprint, improving booting and execution
performance. Moreover, if multiple hardware threads are not necessary for a Unikernel
application, file systems can also assume a single hardware thread, and non-reentrant file
systems with a single hardware thread enable a simplified and non-preemptive implemen-
tation [18]. Performance can be further accelerated by eliminating locking, which is a major
cause of performance degradation in most file system implementations.

4. Implementations of ULFS

In this section, we describe the details of the proposed non-hypervisor-based Uniker-
nel file system, which we call ULFS (Ultra Lightweight File System) [19]. Note that we
design and implement ULFS based on our open-source project ULV (Ultra Lightweight
Virtualization) [20]. ULV is designed as a non-hypervisor Unikernel, so it works directly on
a host operating system without a hypervisor. Since Unikernels are intended to run a single
application, we aim to implement ULFS under the assumption that the file I/O traffic in
a Unikernel application is not heavy and file access patterns are simple (e.g., sequential).
Based on this philosophy, ULFS is developed with a lightweight structure by removing
features unrelated to a single process that performs primitive file I/O, such as access
permission and state management. In particular, we attempted to improve performance
largely by eliminating complicated lock structures throughout the file system that are not
needed for single-thread applications.

ULFS uses a host’s file as a guest’s file system storage to perform file I/O. Since a file
on the host can be mapped to the address space of a host process through mmap, file I/O can
be performed by using memory reference interfaces. As the memory-mapped area uses the
host’s memory space in the form of a page cache, it can enhance file I/O operation latency.
This is achieved by processing subsequent I/O requests directly from the cache, thereby
eliminating the need for storage access. Also, ULFS improves file system performance since
it is designed as a lock-free file system with a single-threaded and non-re-entrant style.

ULFS manages the entire file system space in blocks of 4 KB, and blocks can be
identified with an integer block id (bid). The superblock, which is the leading block, has
a bid value of 0 and contains basic information about the file system. Currently, it only
maintains information about the maximum number of blocks. ULFS makes use of map
blocks for managing block allocation of the file system in the form of a bitmap. As shown
in Figure 2, the first map block is the block following the superblock and has bid number
1. From then on, map blocks are placed at regular intervals, as the maximum number of
blocks managed by a single map block is fixed in our design. Thus, the locations of map
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blocks can be quickly searched by tracking the number of unallocated blocks for each map
block when searching for available blocks.
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Files in ULFS are managed using traditional inode structures [21], and each inode contains
the information of a file. The inode block is a block that manages a group of inodes in a tabular
form, as shown in Figure 3. The bid number 2 is always assigned to the first inode block, and
the maximum number of inodes managed by a single inode block is fixed to 170, as determined
by the following equation: inode block size−meta data size in inode block

inode size = 4096−16
24 . If more inodes are

necessary, a new inode block is allocated. As shown in Figure 3, inode blocks are managed
as a linked list, and bid values for the preceding and following inode blocks are maintained.
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File system APIs of the POSIX standard require an inode number to identify a file.
In ULFS, inode numbers are sequentially assigned to inodes on a logical table consisting
of inode blocks. Thus, inode information of a file can be easily identified by sequentially
scanning inodes. However, as the inode block location (bid) and the inode offset within an
inode block are internally maintained, quick access to inode information is possible. That
is, the inode number can be calculated by maintaining the number of the first inode in the
block (ino_start in Figure 3). Additionally, the inode block records the count of in-use
inodes (n_used in Figure 3), in order to quickly check whether a new inode can be allocated.

Each inode maintains file type, size, and location of the block that makes up the
actual data of the file as shown in Figure 4. For indicating the locations of file blocks, two
bids are maintained in the inode; the first represents the head of data blocks, whereas the
second points to a bid block that is an index block to maintain bids of subsequent data
blocks. Actually, a bid block does not maintain all bid information of a file directly but is
structured as indirect blocks to find the sweet spot between space and performance. As
shown in Figure 4, the maximum number of blocks accommodated by a bid block is 1023.
A data block corresponding to the logical offset of a file can be quickly searched based on
this structure.

The file system hierarchy of ULFS is constructed by directories, which maintain file
names and inode locations belonging to that directory as a fixed-length data structure. The
data block of the root directory is fixed at bid number 2 and can be accessed quickly when
referencing files by absolute path.
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The proposed ULFS is similar to an early UNIX file system design [22], so it may
be inefficient in complex file access patterns, but such a simple structure has merits in
minimizing the operational demands on the file systems, especially for a single application
workload. Note that we developed a lightweight file system from scratch, so it is differenti-
ated from existing Unikernels that make use of the general-purpose kernel’s file system as
is, or simply slim down existing file systems.

Before concluding this section, we briefly discuss the trade-offs and limitations of the
ULFS design from two perspectives. Firstly, the ULFS presented in this paper represents
an optimized file system design tailored for scenarios where a single thread operates
within each Unikernel, as illustrated in Figure 5a. Therefore, in instances where multiple
threads are active within a Unikernel, as depicted in Figure 5b, ULFS may suffer from race
conditions. This limitation arises because ULFS does not implement multi-thread locking,
potentially leading to inconsistencies across different threads. Secondly, ULFS is engineered
to minimize resource consumption while enhancing I/O performance. This is achieved
by streamlining data structures to simplify the size of inodes or directory entries through
fixed-length configurations. However, this approach might not be as effective against
complex workloads. In particular, handling files larger than 4 KB requires the utilization
of an indirect indexing block, which could increase latency in data access. Additionally,
ULFS implements the POSIX APIs in a very simplified manner, and this simplicity could
necessitate a wide range of application modifications or even make integration impossible
for applications sensitive to specific file system semantics. For example, among the many
fields returned by an fstat call, ULFS only sets st_ino, st_mode, and st_size, opting to
default other fields that are typically unnecessary for most applications to ensure faster
performance. However, applications sensitive to file ownership information might require
considerable porting effort to integrate with ULFS. Thus, integrating with ULFS may pose
challenges that require careful consideration for application compatibility.
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5. Experiment Results

In this section, we evaluate the file system performance of major Unikernels, including
ULFS, through experimental runs. We compare the performance of ULFS with those of
Rumpvfs used in the Nabla project, Ramfs and 9pfs used in Unikraft, and HermitCore
fs (Hcfs) from HertmiTux. In the case of Ramfs, we consider two versions, Ramfs-u and
Ramfs-q, to compare cases executed on Unikraft’s Linuxu platform and Qemu platform,
respectively. Note that Rumpvfs and Ramfs are in-memory file systems, whereas 9pfs and
Hcfs are host-based file systems.

To evaluate the performance of a file system, it is crucial to measure how workload
execution time varies in relation to access patterns and varying data volumes. In this paper,
as we evaluate file system performance within a Unikernel environment, examining the
memory usage of the host is also important. For performance measurement, we utilize both
synthetic workloads, which simulate file access at a micro level, and real-world workloads,
representative of macro-level usage. Figures 6–12 depict experiments utilizing synthetic
workloads, whereas Figures 13 and 14 illustrate those conducted with real-world scenarios.
Each experiment aims to explore the impact of varying data volumes on performance
outcomes.

Our first experiment was conducted to compare the read-after-write performance of
each file system implementation. The read-after-write is a common microbenchmark used
to assess file I/O performance. It first splits a given set of storage data into chunks and then
randomly determines the order of these chunks for I/O operations. Following this order,
a read operation is conducted after a write operation for each chunk. Figure 6 shows the
execution time of the read-after-write operations for the six file system implementations
as the chunk size is varied. In this experiment, the total data size is set to 1MB, and the
number of I/Os decreases as the chunk size increases, ensuring that the total I/O data
remains consistent across all experiments.

As shown in the figure, ULFS provides the best performance for a wide range of chunk
sizes. This is due to the simple structure of the ULFS design and the efficiency of file system
I/O through mmap on the non-hypervisor structure. This performance gap implies that API
and some other overhead rather than pure I/O processing account for a large portion of
elapsed time in file systems other than ULFS.
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As the chunk size increases, the execution time is improved in all file system cases,
but the improvement varies depending on the details of the file system design. In the case
of Ramfs, the execution time is almost the same until the chunk size is less than 4 KB and is
improved significantly after that size. This is because memory allocation in units of 4 KB
accounts for most of the execution time in Unikraft. Thus, the execution time decreases in
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proportion to the chunk size after that size as the number of memory allocation requests
decreases accordingly. Except for the two variants of Ramfs, the execution time decreases
in proportion to the chunk size.

Figure 7 shows the execution time of read-after-write operations for the six file system
implementations as the number of files is varied. Specifically, the file size is 1 MB as in
previous experiments, but the number of files in this experiment is varied from 1 to 100,
implying that the total I/O size changes from 1 MB to 100 MB. We set a sufficiently large
chunk size of 4 MB in this experiment to minimize the overhead of API calls and see the
exact I/O overhead of each file system. As shown in the figure, the execution time increases
in proportion to the number of files, regardless of file systems. In our experiment, the
performance of Ramfs is the worst, as it behaves inefficiently by copying memory data in
byte units. In this experiment, the performance of Hcfs is similar to that of host I/O, and
there is no significant difference between Hcfs and ULFS. This is because the chunk size of
4 KB is large enough, so there is almost no API overhead in this experiment.
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Figure 8 shows the memory usage of the six file system implementations in response
to variations in the number of I/O files. In this experiment, all configurations, including
the sizes and number of files, as well as chunk sizes, are set to identical as those in the
experiment described in Figure 7. As shown in the figure, except for 9pfs and Hcfs, memory
usage also increases as the number of I/O files increases. In the case of Hcfs, as the
host memory is used for I/O processing, there is no additional memory consumed even
when the number of files increases. 9pfs is also a host-based file system like Hcfs, but a
certain additional memory space is internally used in the Unikernel during the mapping of
host files.

Unlike general-purpose operating systems, Unikernels are not expected to support
large-scale file systems, but the host may run a large number of Unikernel instances simul-
taneously. Thus, it is not desirable for a single Unikernel instance to use large memory
space. In the results shown in Figure 8, ULFS uses almost 100MB of memory space when
the number of files is 100, but we can simply limit the memory usage of a Unikernel by
making use of cgroups. Figure 9 shows the execution time of ULFS when executing the
same read-after-write workloads shown in Figure 8, with the memory usage of the Uniker-
nel limited to less than 8MB. Even though the execution time increases due to memory
constraints, ULFS performs reasonably well with small memory allocation. However, when
the memory size is 1MB, the I/O performance is degraded significantly even for a single
file. This is because the current implementation of ULFS utilizes host memory through
mmap and uses LRU (Least Recently Used) as the memory page replacement algorithm. In a
single application environment with workloads that involve simple sequential access, the
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MRU (Most Recently Used) replacement algorithm is known to perform better than LRU.
Therefore, in a Unikernel environment constrained by small memory, it would be desirable
for ULFS to directly manage the page replacement policy.
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Figure 10 shows the performance of the six file system implementations when directory
entries are sequentially searched by the file systems. This experiment is conducted by
configuring a specified number of files within a single directory and measuring the time
taken to extract information from all file entries within that directory. To solely assess the
API time, this process is carried out by simply referring to the inode numbers among the
extracted information. We set the number of files within a directory to range from 10 to 1000
and invoke the readdir system call repeatedly. We perform this experiment 1000 times to
eliminate the effect of average error in measurements. The results are presented with error
bars showing standard deviations to illustrate the variability of the data. As shown in the
figure, Rumpvfs and ULFS show reasonably good performance. Specifically, ULFS exhibits
the most competitive performances as the number of directory entries increases. This is
due to the simple and efficient implementation of ULFS for fast access to inode structures
in directory items.
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Figure 10. Performance comparison of Unikernel file systems in readdir.

Figure 11 compares the performance of the six file system implementations when
lseek operations are repeatedly performed. In this experiment, an empty file is first created,
and then the time to move the offset to the initial position of the file is measured while
the number of lseek operations is varied from 100 to 1,000,000 times. To perform the lseek
operation, we make use of the SEEK_SET option, which moves the file offset. As shown in
the figure, Ramfs-q and 9pfs behave very similarly, and they show competitive performance
along with ULFS. Although 9pfs is a host-based file system implementation, it performs file
offset operations without contacting the host, showing excellent performances. In contrast,
Hcfs forwards all lseek requests to the host, resulting in the worst performances.
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Figure 12 illustrates the experimental results for another file system operation, fstat,
for extracting file metadata. Specifically, the experiment measures the execution time of
creating a single file and then invoking fstat repeatedly, from 100 to 1,000,000 times. To
exclusively measure the API execution time, only the inode number is referenced from the
fstat results, thereby minimizing the effect of executing the user code. The best performance
is exhibited by ULFS, Rumpvfs, and Ramfs-q. However, it can be observed that as the
number of iterations increases, the performance of ULFS, which is optimized for single-
thread operations, becomes more pronounced. Specifically, we observe that ULFS performs
better than other Unikernel file systems, particularly when the execution time exceeds
around 1ms. We cannot quantify the exact reason for this, but it may be due to the ULFS’s
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lightweight design approach, which ensures that the working set fits within the CPU cache
memory. Another potential factor contributing to the significant performance improvement
of ULFS when the number of I/O requests exceeds a certain threshold is ULFS’s utilization
of the host’s buffer cache. That is, a read-ahead function is triggered when the requested
I/O size exceeds a certain threshold in ULFS, which fetches the subsequent block into the
buffer cache before actually being requested, further enhancing performance.
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Figure 13 compares the performance of the six file system implementations when
the store and fetch operations for 4-byte data are repeatedly performed on the embedded
database gdbm [23]. Specifically, the experiment sequentially inserts the designated data
using 4-byte key values, followed by sequentially fetching the data using the same key
values. Our gdbm benchmark measures the time taken to complete both insert and fetch
operations as the number of items increases from 100 to 10,000. As shown in the figure,
ULFS shows competitive performance in all cases, especially in heavy workloads where
the number of operations exceeds 1000. When the workload is not heavy (i.e., the number
of operations is less than 1000), in-memory file systems show better performance due to
the caching effect inside gdbm. However, in-memory file systems have limitations in that
they do not provide data persistence.
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Figure 14 illustrates performance results for another practical storage engine, SQLite.
Its journal mode is DELETE, known to incur substantial I/O overhead. In our experiment,
each row added to the database follows a schema consisting of (id, string, float), and the
string and float fields are filled with random values. The measured execution times are
obtained by first inserting a designated number of items and subsequently selecting all
inserted items. We measure the time taken to perform SQLite DELETE operations while
varying the number of items from 1 to 1000. As shown in Figure 14, the results indicate
a proportional increase in execution times across all file systems relative to item counts.
While in-memory file systems (i.e., Rumpvfs and Ramfs) exhibit superior performance com-
pared to host-based file systems (i.e., 9pfs and Hcfs), ULFS, benefitting from an optimized
page cache mechanism and a simplified architectural design, facilitates the most effective
execution times.
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Before concluding this section, we briefly summarize the discussion of the performance
results across different file system implementations by identifying the main reasons behind
the performance differences observed.

• In most scenarios, ULFS delivers the best performance regardless of workload charac-
teristics and I/O size, while other file systems give and take amongst each other under
specific workload conditions.

• ULFS’s superior performance can be attributed to its streamlined file system design
and efficient file I/O operations via mmap. In contrast, other file systems suffer from
significant overhead in software stacks (e.g., API calls) rather than real I/O processing.

• In all file systems, the latency required to access a given amount of data decreases as
the I/O size increases. However, for in-memory file systems, which allocate memory
in 4 KB units, this improvement becomes noticeable only for I/O sizes larger than
4 KB.

• In-memory filesystems (i.e., Ramfs-u, Ramfs-q, Rumpvfs) generally perform well, as
they bypass storage access during file system operations. However, their performance
significantly drops with frequent memory allocations, such as those required for
small-sized read-after-write operations.

• Hcfs redirects API calls to the host for file system operations, leading to substantial
overhead. Consequently, Hcfs performs well only when API calls are infrequent.

• 9pfs tends to show relatively lower performance since it is a host-based file system
requiring a hypervisor, resulting in API call overhead. However, it excels in lseek
operations where requests are managed directly by the guest and not transferred to
the host, highlighting specific operational efficiencies.
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6. Conclusions

Most existing Unikernel projects have focused on the compatibility issue of file system
related system calls rather than performance optimizations. In particular, they tried to bind
Unikernel file systems to host file systems or slightly modified in-memory file systems
for customizing Unikernel environments. Thus, existing Unikernel file systems have
limitations in performance, security, volatility, and/or resource efficiency. In this paper, we
designed and implemented a new file system for Unikernels called ULFS, which supports
system call services for Unikernel applications the same as general-purpose OS kernels and
provides superior performance and security with minimal system resources. In particular,
we developed ULFS as a lightweight file system based on the principle of Unikernel
design, simplifying system calls, eliminating unnecessary locking and permission checks
for multiple users, and applying a non-hypervisor structure. This leads to reducing the
memory footprint of file systems and improving booting and execution performances.
Measurement studies showed that ULFS outperforms various existing file systems for
Unikernels, including Rumpvfs, Ramfs-u, Ramfs-q, 9pfs, and Hcfs.

In future research, we would like to improve the ULFS design through a precise
analysis of file access patterns in Unikernel workloads and confirm the performance
improvement based on the analysis results. In particular, deep learning workloads exhibit
a repetitive access pattern across each training epoch. When these access patterns occur in
parallel across multiple Unikernels within a single machine, it leads to inefficiencies from
the perspective of the host. Consequently, the implementation of efficient caching and read-
ahead techniques is crucial. We aim to investigate a collaborative approach between hosts
and Unikernel file systems to ensure effective caching support for deep learning workloads.
Specifically, by analyzing the access patterns characteristic of Unikernel workloads, ULFS
could leverage the fadvise system call to communicate these patterns to the host system.
This would enable the host’s buffer cache to make more informed decisions about data
caching, thereby potentially avoiding unnecessary data storage and improving overall
data access efficiency. Such a collaborative caching strategy between the host system and
Unikernel file systems could significantly enhance performance by optimizing resource
utilization based on actual workload requirements. This approach not only aims to boost
the efficiency of ULFS in handling specific workloads but also sets the stage for integrating
advanced caching mechanisms tailored to the unique operational dynamics of Unikernels.
ULFS is implemented with a single-threaded, non-hypervisor structure, and single address
space, which enables stable file system execution through memory-mapped back-end
storage that is free from page-fault overhead. By utilizing these design characteristics, we
also plan to expand the application area of our file system to IoT environments that require
real-time constraints.
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