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Abstract: Precise and rapid detection of seatbelts is an essential research field for intelligent traffic
management. In order to improve the detection precision of seatbelts and speed up algorithm
inference velocity, a lightweight seatbelt detection algorithm is proposed. Firstly, by adding the G-
ELAN module designed in this paper to the YOLOv7-tiny network, the optimization of construction
and reduction of parameters are accomplished, and the ResNet is compressed with the channel
pruning approach to decrease computational overheads. Then, the Mish activation function is
utilized to replace the Leaky Relu in the neck to enhance the non-linear competence of the network.
Finally, the triplet attention module is integrated into the model after pruning to make up for the
underlying performance reduction caused by the previous stage and upgrade overall detection
precision. The experimental results based on the self-built seatbelt dataset showed that, compared to
the initial network, the Mean Average Precision (mAP) achieved by the proposed GM-YOLOv7 was
improved by 3.8%, while the volume and the computation amount were lowered by 20% and 24.6%,
respectively. Compared with YOLOv3, YOLOX, and YOLOv5, the mAP of GM-YOLOv7 increased by
22.4%, 4.6%, and 4.2%, respectively, and the number of computational operations decreased by 25%,
63%, and 38%, respectively. In addition, the accuracy of the improved RST-Net increased to 98.25%,
while the parameter value was reduced by 48% compared to the basic model, effectively improving
the detection performance and realizing a lightweight structure.

Keywords: seatbelt detection; YOLOv7; activation function; attention mechanism; channel pruning;
lightweight structure

1. Introduction

In recent times, the number of motor vehicles has increased worldwide, accompanied
by an increasing probability of traffic accidents, which are the major cause of accidental
fatalities [1]. However, the proper utilization of seatbelts could validly lower the incidence
of casualties [2]. Although buckling up seatbelts properly is a mandatory traffic regulation,
a considerable portion of individuals exhibit insufficient awareness about traffic security.
Consequently, it is imperative for the relevant departments to regulate and monitor the ob-
servance of seatbelt usage. At the contemporary stage, the detection of seatbelts is primarily
accomplished by manual recognition, which is time-consuming and labor-intensive.

With the popularization of graphic processing technology, automatic seatbelt detection
algorithms have received considerable attention. These algorithms can be categorized into
diverse classes: one is the traditional image detection approach. Zhang [3] employed a
linear recognition method to locate the region of the seatbelt of a driver by extracting and
analyzing relevant features between the vehicle’s and the driver’s areas. The other is the
deep-learning-based algorithm. Chen et al. [4] located the windshield area and identified
the seatbelt region by utilizing both Support Vector Machines (SVMs) and Convolution
Neural Networks (CNNs). Hosam et al. [5] developed an AlexNet-based adaptive weather
condition seatbelt detection approach.
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Research in recent years has been gradually moving towards optimizing the number
of model parameters and improving network performance, making the network more suit-
able for real-time monitoring systems. Luo et al. [6] combined the Squeeze-and-Excitation
(SE) [7] module with the DenseNet [8] to extract seatbelt features and improve detection
performance. Hosseini et al. [9] replaced the adaptive average pooling in the Residual Net-
work (ResNet) [10] with Spatial Pyramid Pooling (SPP) and Power Mean Transformation
(PMT) to minimize feature loss and improve precision. Both methods initially employed the
YOLO series models to detect the windshield area and then utilized the improved CNNs
for driver’s seatbelt detection. Moreover, Yang et al. [11] employed Faster R-CNN [12] to
detect the driver’s region accurately, followed by the introduction of AlexNet to identify
the seatbelt.

Despite the optimizations of these algorithms being helpful to enhance network
detection performance, there are still a number of shortcomings: The DenseNet with
SE struggles to effectively extract crucial features when the input picture is vague. The
construction of ResNet is redundant and the utilization of PMT raises the inference memory
overhead and computational complexity. Additionally, Faster R-CNN possesses an intricate
structure, consumes considerable computational resources, and is impractical to run on
portable or mobile facilities. Therefore, there is still ample scope for advancement in the
above networks.

This paper aims to tackle the challenges existing in the current seatbelt detection
algorithms by proposing an automatic approach (GM-YOLOv7 and RST-Net). Due to
the dearth of public driver’s seatbelt datasets, this paper constructs a dataset that covers
various automobile categories and locations. The major contributions of this paper include
the following three aspects:

1. A lightweight Ghost module [13] is introduced to the YOLOv7-tiny [14] for efficient
feature extraction while improving the Efficient Layer Aggregation Network (ELAN)
in the backbone to decrease the number of model parameters, computing operations,
and overall size. Moreover, the Mish [15] activation function is applied to substitute
the Leaky Relu in the neck for feature aggregation, upgrading the network’s non-linear
capability and detection performance.

2. The lightweight deep learning algorithm is proposed to detect seatbelts by employing
the channel pruning technique on the basis of ResNet, which effectively reduces the
network’s size and minimizes the run-time memory footprint. Moreover, a novel atten-
tion mechanism, Triplet Attention (TA) [16], is employed to improve the importance of
the seatbelt feature and restrain irrelevant information. The TA module realizes more
detailed attention to feature information in a cross-latitude, interactive way, improving
network robustness.

3. Finally, a considerable number of experiments verify the validity of the proposed
algorithm. The RST-Net has better detection behavior when compared to the well-
known approaches. In addition, the Parameters (Params) and Giga Floating-Point
Operations (GFLOPs) of GM-YOLOv7 and RST-Net are substantially lower compared
to the baseline and other improved networks.

The rest of this paper is arranged as follows: Section 2 introduces the related work.
Section 3 provides a detailed elaboration of the approaches proposed in this paper. The
experimental setup, results and analyses are depicted in Section 4. Finally, the conclusions
and future work are summarized in Section 5.

2. Related Studies
2.1. Object Detection Algorithm

Before the proposal of R-CNN [17], classical object detection methods struggled to
effectively deal with various situations by applying sliding windows on images for clas-
sification. By combining selective techniques and CNNs, R-CNN achieved a remarkable
enhancement in detection accuracy. Since then, object detection algorithms have gained the
interest of lots of researchers, leading to the emergency of numerous prevalent networks.
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At present, the algorithm of object detection can be categorized into two classes—two-
stage and single-stage—depending on whether extra region proposal modules are necessary.
The former is to generate regional recommendations, such as Fast R-CNN [18] and Mask R-
CNN [19]. These algorithms produce numerous candidate regions that potentially include
targets of interest at the first stage, followed by regressing the terminal boundary anchor
box at the second stage. Although two-stage networks obtain excellent detection accuracy,
their inference demands substantial computing operations and expenses, resulting in a
relatively slower detection speed.

In single-stage networks, representative ones include RetinaNet [20]; the YOLO series,
ranging from YOLOv1 [21] to YOLOv7; and the Single Shot MultiBox Detector (SSD) [22],
and they treat target detection as a regression issue. The core theory of single-stage
detection networks is to transport the input into the algorithm and immediately return to
the objective’s boundary, anchor box position, and classification. Single-stage networks
often possess faster running speeds and shorter inference times than two-stage networks
due to their plain constructions. Among them, the YOLO series algorithms have been
widely utilized in practical applications.

2.2. Lightweight Technology

Recently, CNNs have demonstrated extraordinary capabilities in various missions,
including image recognition, target detection, voice synthesis, and semantic segmentation.
However, competitive performance is chiefly achieved at the expense of deepening the
convolutional layers, increasing the number of Floating-Point Operations (FLOPs) and
model size. For instance, a standard VGG16 has more than 130 million parameters and
requires more than 10 GFLOPs. How to deploy networks more efficiently and conveniently
without substantially corrupting performance has become a current research hotspot.

In recent years, a variety of approaches have been proposed to address the above-
mentioned challenges, such as model pruning [23], neural architecture design [24], and
model quantization [25].

Model pruning is used to remove insignificant connections or channels within pre-
trained neural networks in the light of a variety of evaluation standards to lower the net-
work’s volume and computing operations without decreasing algorithm performance [26].
Several strategies delete entire neurons or channels to better utilize hardware devices, such
as Graphics Processing Units (GPUs). Ref. [27] proposed a Structured Sparsity Learning
(SSL) approach to improve the construction of CNNs. The other technique primarily focuses
on pruning single neuron parameters, generating a sparse and irregular network. Although
the parameters are relatively small, such techniques can merely obtain an acceleration of
inference under customized matrix libraries. Ref. [28] proposed a technique for eliminating
redundant weights by leveraging the second derivative matrix, necessitating software
libraries tailored to support the pruned network.

Neural architecture design primarily centers around designing compact computing
modules for CNNs to reduce network computation without compromising performance.
The Xception [29] architecture employs separable convolution operation to improve the
usage of model parameters efficiently. MobileNet [30], on the other hand, designs a
lightweight deep neural module by splitting a vanilla convolution into a deepwise con-
volution and a pointwise convolution. This approach preserves the network’s original
feature representation capability while significantly lowering its computational complexity.
ShuffleNet [31] addresses the problem of feature information interaction between channel
groups by utilizing channel shuffle operations, enabling input and output channels to
be correlated.

Model quantization refers to representing weights or activations in CNNs with discrete
values to lower memory overheads and achieve faster computation. The process of quanti-
zation transforms parameters from high-precision floating-point numbers to low-precision
fixed-point numbers, such as 16 bit, 8 bit, and 4 bit. Binary and ternary techniques [32,33]
considerably accelerate the speed of models by quantifying real-valued weights into bi-
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nary or ternary weights. Tensor decomposition methods [34] compress the model size
or improve computation through utilizing redundancy and low-rank characteristics of
the weights.

2.3. Attention Mechanism

The attention mechanism possesses the capability to autonomously shift attention to
the most crucial regions within an image, neglect inconsequent components, and strengthen
the network’s discriminatory performance. The attention mechanism predominantly com-
prises channel attention, spatial attention, and a hybrid combined category: channel and
spatial attention.

Channel attention emphasizes salient feature maps from the channel dimensionality
through allocating diverse weights. Hu et al. [7] proposed the SE module, which gathers
global information and captures non-linear characteristics between channels to enhance
their representation capacity. Moreover, the spatial attention captures spatial feature maps
by offering a recalibration function, which assigns different weights to various positions
to acquire distinguished feature information within a spatial dimension. However, these
mechanisms, such as Gather-Excite (GE) [35], require substantial computational overheads
and are challenging to deploy in mobile devices.

The Convolutional Block Attention Module (CBAM) [36], a representative hybrid
attention, is proposed by Woo et al. and utilizes feature maps from both channel and
spatial domains to suppress irrelevant information and upgrade the capability of feature
extraction. Yang et al. [37] proposed a Simple Attention Module (SimAM), which empha-
sized the magnitude of adjusting attention weights that change during the learning process.
Hou et al. [38] proposed the Coordinate Attention (CA) mechanism by incorporating posi-
tional features into channel dimensions. This allows the improved model to concentrate on
substantial significant areas with less computing overheads.

3. Methodologies

The objective of this study is to develop a deep Convolution Neural Network with
fewer parameters and computing operations while maintaining outstanding anti-interference
capability and superior robustness to realize rapid and precise identification. In this section,
we outline our approach and provide a comprehensive description of each portion of the
proposed model.

3.1. Method Overview

The flowchart of the proposed algorithm is shown in Figure 1. The algorithm begins
with the precise positioning and cropping of the driver region from the input image using
the GM-YOLOv7 network. Subsequently, the algorithm conducts the classification of the
driver’s seatbelt by employing RST-Net.
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Figure 1. Flowchart of the proposed algorithm. Figure 1. Flowchart of the proposed algorithm.

3.2. GM-YOLOv7 Algorithm Model

The GM-YOLOv7 network, as shown in Figure 2, consists of the following three
portions: Backbone, Neck, and Head. Several lightweight G-ELAN modules, which extract
the feature information of various scales from the input image through a series of cheap
operations, exist in the Backbone. The Neck is built upon the SPPCSPC the module made



Appl. Sci. 2024, 14, 3346 5 of 18

from the aggregation and fusion of the contextual feature information from diverse scales of
the former section and improves the ELAN block by introducing more powerful activation
functions. The Head is comprised of three detection heads. Such detection heads collect
feature information of diverse dimensions from the Neck section, respectively, eventually
generating the position, class, and degree of confidence of various objectives.
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3.2.1. Slim Backbone Network Based on the Ghost Module

The Ghost module, as shown in Figure 3a, is a lightweight convolutional neural
network proposed by Huawei Technology in 2020 that offers significant optimizations in
terms of parameter and computational complexity. This module transforms traditional
convolution into two distinct steps. In the initial phase, the minority vanilla convolutions
are employed to generate intrinsic feature maps. The subsequent phase utilizes a variety of
inexpensive linear operations to produce more Ghost features. Eventually, the output of
the Ghost module, a new and enriched feature representation, is formed by concatenating
the intrinsic features and Ghost features.
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During the standard convolutional process, the needed quantity of FLOPs can be
formulated as follows:

FLOPsC = c × k2 × n × h′ × w′ (1)
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where c is the quantity of input channels, k is the kernel size of convolution, n is the quantity
of channels for output, and h′ and w′ are the height and width of output data. On the other
hand, the FLOPs of the Ghost module are depicted in Equation (2):

FLOPsG = c × k2 × n/s × h′ × w′ + n/s × d2 × (s − 1)× h′ × w′ (2)

where d is the kernel size of the linear transformation and s is the quantity of similar
information produced by linear transformation of m(m ≤ n) original feature maps. By
comparing Equations (1) and (2), it can be clearly seen that the collective quantity of FLOPs
and computing overheads in the Ghost module were greatly reduced without varying the
dimension of the output.

In this study, the Ghost module is employed to swap out the vanilla convolution in
the Backbone, reducing model volume and computational overheads while maximizing
the effectiveness of feature extraction. In addition, as shown in Figure 3b, this paper
introduces a novel G-ELAN, including the hierarchical residual connections and substantial
Ghost modules. The architecture of G-ELAN can extract abundant feature information
through diverse levels and scales, thus improving inference velocity. Consequently, the
utilization of the Ghost modules and G-ELAN blocks substantially lowers the quantity of
traditional 3 × 3 convolutional layers that exist in the initial YOLOv7-tiny, resulting in an
improvement in the overall efficiency and effectiveness.

3.2.2. Improved Activation Function

The activation function is a crucial mathematical segment in convolutional neural
networks that can introduce non-linearity to neurons and enable the network to model
complex and non-linear relationships, thereby enhancing robustness. Leaky ReLu utilized
in the YOLOv7-tiny network solves the problem of neurons being unable to learn when
negative values are present. The equation for it is shown below.

Leaky ReLU =

{
x, x ≥ 0
αx, otherwise

(3)

where α is the angle that directs the negative slope (used for negative input values), with a
default value of 0.01. However, the non-linearity of Leaky ReLu is not great and it is unable
to offer constant prediction under several circumstances.

The Mish activation function was proposed by Misra et al., which possesses the
characteristics of smoothness and non-monotonicity. The function’s expression is shown in
Equation (4):

Mish = x × tanh(ln(1 + ex)) (4)

The curves of Mish, ReLu, and Leaky Relu are shown in Figure 4. It can be seen that the
Mish holds the lower bound but has no upper bound. When both the left and right limits
approach the extreme values, the gradient of the Mish approaches 1, which can effectively
avoid the slow convergence problem generated by a zero gradient during network training.
Compared to Leaky Relu and Relu, the Mish activation function has a better degree of non-
linearity, which can significantly upgrade the generalization and precision of the network.
Hence, the Mish function is introduced in the Neck of the G-YOLOv7 network in order to
enhance the competence of non-linear information extraction.
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3.3. Seatbelt Classification Based on RST-Net

With the popularity and advancement of deep learning techniques, numerous CNNs
with prominent performances have been proposed. It is noteworthy that the residual
network proposed in 2016 by He et al. has served as a foundation for further investigations
and improvements by many researchers, resulting in a considerable number of variants
with better performance. Although the improved algorithms based on the residual network
can effectively test whether a driver wears a seatbelt, they have substantial model sizes
and massive computational overhead, constraining their practicality in resource-limited
scenarios. Moreover, due to various factors, such as complex road surroundings, lighting,
weather, and car window reflection, CNNs’ ability to extract target features is influenced,
resulting in a decline in detection accuracy.

Considering the matters of the above algorithms, this paper comprises research and
innovation that strengthen the performance and efficiency of Res-Net.

3.3.1. Lightweight Residual Network

The overall idea utilized in this paper is to utilize the scaling coefficient in the Batch
Normalization (BN) as a criterion for channel selection, evaluating the importance of
channels without demanding tailored hardware. The scaling coefficient and network
weights are first trained concurrently, and L1 regularization is subsequently introduced
to penalize the scaling coefficient. Finally, the convolution channel with a small scaling
coefficient is pruned. This pruning process helps obtain a lightweight network by removing
redundant or less important channels. In particular, the training objective of our approach
is presented by Equation (5):

L = ∑
(x,y)

l( f (x, w), y) + λ ∑
γ∈Γ

g(γ) (5)

where (x, y) represent the input and objective, respectively; W represents the trainable
values; the former item corresponds to regular training loss; g(γ) = |γ| denotes L1-norm;
and λ represents the penalty coefficient that regulates the value of the loss function.

Batch normalization [39] is a classical improvement approach in most contemporary
CNNs, typically being added after each convolution in Res-Net. Specifically, the purpose of
BN is to facilitate aggregation and enhance the capacity of generalization and robustness,
as formulated by Equation (6):

ẑ =
zin − µB√

σ2
B + ϵ

; zout = γẑ + β (6)
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where µB and σ2
B denote the average and regular variance of input features, respectively; γ

and β represent the trainable scale coefficient and bias, respectively; and the utilization of ϵ
is to avoid situations where the regular variance is zero.

After the preliminary training of the model, a global threshold r̂ is introduced to exam-
ine whether feature channels will be pruned. Figure 5 displays the procedure of the channel
pruning technique. Eventually, we acquire a narrower RS-Net with fewer parameters
compared to the original Res-Net through utilizing the channel pruning approach, which
can be directly used for recognition missions based on CNNs, making it more accessible
and practical for applications.
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3.3.2. Triplet Attention

After the above-mentioned channel pruning approach, the performance of RS-Net and
the competence of feature extraction usually suffer due to the variations in construction
compared to initial Res-Net. To address this issue, the common method is to introduce a
fine-tuning operation, where the parameters of the pruned model are retrained to make
up for the supplemental reduction in performance. Although this method can assist in
the restoration of the network, it may not fully realize the demand of seatbelt recogni-
tion in complicated environments. Hence, a novel and prevalent attention mechanism is
introduced to recover and strengthen the capacity of the slight residual network.

Triplet attention proposed by Misra et al. [16] establishes relationships among various
domains of feature information through exploiting inter-dimensional feature maps under a
marginal computing cost, which is illustrated in Figure 6. Unlike the traditional attention
module, triplet attention places emphasis on the significance of encoding cross-dimension
information mutually rather than calculating irrespectively.
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In particular, the input χ ∈ RC×H×W first feeds into three various branches, which
separately execute interaction operations of features from diverse dimensions, i.e., (C, H), (C,
W), and (W, H), where W, H, and C denote the width, height, and the quantity of channels
of the input, respectively. For the (C, H) branch, χ is rotated 90◦ counterclockwise along
the H axis. The rotated tensor denoted as X1 is of the dimension (W, H, C). Subsequently,
the Z-pool block is utilized to produce a tensor of shape (2, H, C). The Z-pool operation
performs max pooling and average pooling at the first dimensionality and eventually
concatenates the values, as shown in Equation (7).

Z−pool(χ) =
[
MaxPool0d(χ), AvgPool0d(χ)

]
(7)

where 0d represents the 0th dimension that performs max pooling and average pooling
operations, and [ ] denotes the concatenation conduct.

Subsequently, the output of Z-pool is transmitted through a conventional convolution
layer with kernel shape k × k and a BN layer to obtain a tensor of dimension (1, H, C). The
expected weights are generated through delivering the tensor to a sigmoid function and
then applied to X1. Ultimately, the acquired tensor is rotated 90◦ clockwise along the H
axis to preserve the initial dimension of χ.

For the (C, W) and (W, H) branches, the processing operations are akin to a former
bypass. The unique distinction is that the (C, W) bypass rotates along the W axis, while
a rotation operation does not exist in the (W, H) branch. These operations capture inter-
channel and spatial feature maps, allowing the network to exploit interactions between
various domains of feature maps effectively.

Eventually, the final refined attention map y can be depicted in Equation (8):

y =
1
3
(θ1XCH + θ2XCW + θ3XWH) (8)

where θ1, θ2, and θ3 are the three inter-domain attention weights; XCH , XCW , and XWH
denote the tensor generated by the various branches.

Figure 7 represents the complete improvement procedure. In this study, Res-Net is first
pruned using the channel pruning technique. The channel pruning approach can utilize
the scaling coefficients in BN and sort them according to their values, eventually filtering
out the insignificant feature channels to lower the number of computational operations and
accomplish an inference speedup without compromising precision. In addition, the triplet
attention module is inserted into the lightweight network and RST-Net can finally be obtain
with efficient operation, high robustness, and high overall performance through capturing
the feature information between various domains and adjusting the level of attention to
diverse positions.
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4. Experimental Result

In this section, many experiments are conducted to illustrate the efficacy of the pro-
posed networks. We first introduce the characteristics of the datasets for seatbelt detection
scenarios and diverse evaluation indicators in Section 4.1; in Section 4.2, the experimental
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settings and implementation configuration are presented. In Section 4.3, we carry out
various ablative experiments to demonstrate the rationality of every element. Finally, the
improved models are compared with the prevalent networks.

4.1. Dataset and Evaluation Metrics

A dataset is a principal condition for implementing experiments and evaluating the
performance of algorithms in seatbelt detection tasks. Hence, this paper gathered pictures
from a traffic department. The pictures were taken by cameras positioned in different parts
of a road, encompassing various lighting conditions. The dataset contains various types
of motor vehicles. The quantity of samples utilized in various instances is illustrated in
Table 1. Specifically, the training and validation experiments for windshield positioning
involve 4000 and 363 samples, with 366 samples employed for the test. Moreover, 3333,
400, and 250 images were utilized in the training, validation, and test steps of the seatbelt
classification algorithm, respectively. Additionally, Figure 8 showcases several samples
used in the experiment.

Table 1. The quantity of examples for various instances.

Different Scenarios Training Set Validation Set Validation Set

Windshield 4000 363 366
Seatbelt 3333 400 250
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To quantitatively judge the behavior of different approaches and ensure the fairness of
the comparative experiment, the evaluation metrics, such as Accuracy, Precision, Recall, F1
score, and Mean Average Precision (mAP), were introduced.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1score =
2TP

2TP + FP + FN
(12)

where TP indicates a true positive, TN represents a true negative, FP denotes a false
positive, and FN is a false negative.

AP =

1∫
0

PRdr (13)
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mAP =
1
N

n

∑
i=0

APi (14)

where P indicates Precision, R represents Recall, N denotes the total amount of detection
categories, and APi is the average accuracy of class i. By calculating the area below the P-R
curve for each category, the corresponding AP can be determined, and then the mAP can
be determined by averaging the AP values for each category.

Moreover, Params, GFLOPs, and Size are opted to judge the computational complexity
of model. Params stands for the quantity of parameters within a model and the spatial
complexity is denoted in millions (M). GFLOPs refer to a network with a billion floating-
point operations per second, indicating the temporary complexity in Gigabytes (G).

4.2. Experimental Configurations

The training of diverse networks was carried out utilizing the programming language
Python with NVIDIA GeForce RTX 3060. Table 2 represents the detailed experimental
configurations.

Table 2. Experimental platform of this paper.

Item Edition

CPU Intel i5-12500H
GPU NVIDIA GeForce RTX 3060
OS Windows 11

CUDA 11.7.1
Pytorch 1.13.1
Python 3.8

For windshield detection networks, batch size 8 and initial learning rate 0.0001 were
used. The input pictures were reshaped to 640 × 640, and weight decay was set to 0.0005.
The input images for the seatbelt detection stage had the dimension of 256 × 256 and the
batch size was 8. The original learning rate was 0.00001, and weight decay was 0.1. The
loss function employed was Cross Entropy [40], and the training process encompassed a
total of 50 epochs. Furthermore, Adam was utilized as the optimizer.

4.3. Ablation Studies and Analysis

In the windshield detection phase, the influences of different advancements on the
network are investigated. Specifically, the improved ELAN based on the Ghost module and
Mish activation function is sequentially applied to initial YOLOv7-tiny to verify rationality
and performance. Table 3 represents the obtained experimental results.

Table 3. Results of ablation experiments for diverse modules of the GM-YOLOv7 network.

Model mAP@0.5/% mAP@0.5:0.95/% Params/M GFLOPs Size/MB

YOLOv7 99.5 81.1 6.0 13 12.3
G-YOLOv7 98.8 79.7 4.8 9.8 9.9
M-YOLOv7 99.5 81.5 6.0 13 12.3

GM-YOLOv7 99.3 84.2 4.8 9.8 9.9

Comparing the original network with G-YOLOv7 in Table 3, the conclusion that
can be drawn is that when utilizing the lightweight technique in the experiments, the
mAP of G-YOLOv7 slightly decreases, but the number of parameters and computational
operations is considerably diminished. However, it can be found that the mAP of M-
YOLOv7 is improved, while there is no significant change in Params, confirming the
effectiveness of introducing the Mish activation function. Furthermore, when comparing
the initial model with GM-YOLOv7, the mAP@0.5:0.95 improved by 3.1%, while the
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network’s parameters and computational operations significantly decreased by 20% and
24.6%, respectively, implying the predominance of the improvements employed in this
paper. This is because the improved ELAN has the advantages of optimizing network
structure and lowering parameters and computation overheads. Simultaneously, the Mish
activation function possesses a stronger non-linear representation, thereby improving the
network’s performance.

Moreover, the detection performance of the GM-YOLOv7 and YOLOv7-tiny networks
is compared and presented in Figure 9. By comparing two separate sets of images, it can be
observed that the object detection probability of the GM-YOLOv7 network has effectively
improved. In summary, the GM-YOLOv7 network not only slims down the structure of
network but also upgrades performance, creating an excellent balance between detection
accuracy and being lightweight.
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In the seatbelt detection phase, the ablation results based on ResNet are represented in
Table 4. The results pointed out that the ResNet baseline model achieved scores of 94% for
accuracy, 94.07 for the F1 score, 25.5 M in Params, and 4.1 in GFLOPs.
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Table 4. Results of ablation experiments for each improvement of RST-Net.

Model TA
Pruning Ratio

Accuracy/% F1 Score/% Params/M GFLOPs
25% 50%

ResNet

94 94.07 25.5 4.1
✓ 96.75 97.76 25.6 5.4
✓ ✓ 98.25 98.25 13.2 3.1
✓ ✓ 94.25 94.18 9.9 2.3

For the analysis of Table 4, when the TA is merely inserted into ResNet, the improved
network can automatically adjust the weight values of various channels and positions on
feature maps, enabling better focus on the feature information of various types of seatbelts
in the complicated traffic background. As a result, the accuracy and F1 score improved
by 2.75% and 3.69%, respectively. However, the model embedded with TA increased the
number of computational operations by about 24.4% compared to ResNet, requiring vast
scale matrix operations and increasing inference time.

In order to alleviate the problem of network feature redundancy and lower the model’s
volume and computing overhead, channel pruning approaches with various pruning ratios
were introduced. When setting the pruning rate to 25%, the accuracy and F1 score increased
by 4.25% and 4.18%, respectively, compared with baseline. This is principally because the
channel pruning method reduces several redundant parameters that may interfere with
the model’s learning. Additionally, it mitigates overfitting to a certain extent, enhances
the generalization capability, and lowers the quantity of parameters by 48% compared
to baseline. Furthermore, when the pruning ratio was increased to 50%, the Params and
GFLOPs significantly decreased by 60% and 44%, respectively, while the accuracy and F1
score merely increased by 0.25% and 0.11% compared to the baseline model. The accuracy
and F1 score of the model with a 25% pruning ratio were 4% and 4.07% higher, respectively,
than the model with a 50% pruning ratio at the expense of a 25% increase in Params and
GFLOPs. By comparing the experimental results of a 25% and 50% pruning ratio, the
conclusion that a network with a lower pruning factor is more likely to improve precision
and performance than a radical one could be drawn. Therefore, the 25% pruning ratio
was eventually selected to obtain RST-Net due to the salient differences in the quantity of
parameters and network performance.

Furthermore, to validate the rationality of triplet attention, a variety of prevalent
attention mechanisms commonly used in computer visual scenarios were selected for
comparative experiments, including SE, CBAM, CA, Efficient Channel Attention (ECA) [41],
and Shuffle Attention (SA) [42]. Table 5 exhibits the experimental results.

Table 5. Comparative experiments based on diverse attention mechanisms.

Model Attention Module Accuracy/% Precision/% Recall/%

ResNet

SE 97 97.47 95.5
SA 95.75 96.45 95

ECA 96 95.54 96.5
CBAM 96.75 96.98 96.5

CA 97.25 98.96 95.5
TA 98.25 98.49 98

For the observation of Table 5, it is obvious that the model embedded with TA out-
performs the existing prevalent attention modules. The argument that TA can provide
better behavior is discussed as follows. The classical channel attention mechanisms such as
SE and ECA merely model the interaction among various channels without focusing on
the spatial information, leading to inadequate feature extraction and suboptimal perfor-
mance. Moreover, although CBAM and SA calculate both channel and spatial attention,
inter-channel and spatial information failed to be completely utilized. In contrast to these
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attention mechanisms, TA leverages inter-dimensional information, leading to improved
feature representation and enhanced performance.

4.4. Model Comparations

For the windshield detection scenario, single-stage detection models such as YOLOv3 [43],
YOLOX [44], and YOLOv5 were utilized to train model weights under an identical environ-
ment and dataset. The comparison between these models and the GM-YOLOv7 network
primarily focused on mAP@0.5:0.95, Params, and GFLOPs, which are crucial comparison
indicators. Table 6 displays the comparison results of diverse detectors.

Table 6. Comparison of windshield detection results of various networks.

Network mAP@0.5/% mAP@0.5:0.95/% Params/M GFLOPs Size/MB

YOLOv3-tiny 98.4 61.8 8.7 13.0 16.6
YOLOX-s 99.0 79.6 8.8 26.5 68.0
YOLOv5-s 99.2 80.0 7.0 15.8 14.4

YOLOv7-tiny 99.5 81.1 6.0 13.0 12.3
GM-YOLOv7 99.3 84.2 4.8 9.8 9.9

From Table 6, by comparing the mAP@0.5:0.95, the proposed lightweight network
outperforms YOLOv3-tiny, YOLOx-s, and YOLOv5-s by 22.4%, 4.6%, and 4.2%, respectively.
This reveals that the GM-YOLOv7 network effectively utilizes the feature extraction of
the improved ELAN at the expense of minimal computation overhead. The proposed
network achieves the greatest detection performance in terms of mAP@0.5:0.95 while pre-
serving the minimum Params and GFLOPs. Compared to the widely used YOLOv5-s,
GM-YOLOv7 demonstrates improved performance while considerably decreasing the
Params and GFLOPs by 31% and 38%, respectively, enabling the algorithm to be more
appropriate for deployment in mobile devices. Through contrasting the above principal
evaluation indexes, GM-YOLOv7 exhibits significant advantages over other popular net-
works in the light of detection precision, Params, and GFLOPs, making it a reliable and
effective choice for windshield detection tasks.

For the seatbelt detection scenario, experimental comparisons between the proposed
network and multiple CNNs, including AlexNet, DenseNet, EfficientNet [45], ResNeXt [46],
and Wide ResNet [47], were conducted. Table 7 displays the results of these experiments.

Table 7. Comparison of seatbelt detection results of multiple models.

Model Accuracy/% Precision/% Recall/% F1 Score/% Params/M GFLPOs

AlexNet 86.74 82.67 93 87.53 61.1 0.93
DenseNet 97.75 97.99 97.50 97.74 20.0 5.7

EfficientNet 97.50 97.98 97 97.49 12.2 1.3
ResNeXt 96.75 96.06 97.50 96.77 25.0 5.6

Wide ResNet 97.25 95.22 99.5 97.21 68.9 15.0
RST-Net 98.25 98.49 98 98.25 13.2 3.1

From Table 7, it is beyond dispute that RST-Net is more efficient than several prominent
algorithms, providing powerful support for practical applications. Although the Recall of
RST-Net was lower than Wide ResNet by a small amount, its Params and GFLOPs were
merely 0.19 times and 0.2 times that of Wide ResNet, respectively. Additionally, RST-Net
achieves an F1 score that is 10.72% higher than AlexNet, 1.48% higher than ResNeXt,
and 1.04% higher than Wide ResNet, while its Params and GFLOPs were considerably
smaller than the above models. Furthermore, when contrasting the major performance
indexes comprehensively, RST-Net demonstrates preferable performance, especially in the
light of the Params, further substantiating the efficiency of the improvements proposed in
this study.



Appl. Sci. 2024, 14, 3346 15 of 18

Additionally, to verify the merit of RST-Net for seatbelt detection, Gradient-weighted
Class Activation Mapping (Grad-CAM) [48] was employed to depict visualization results
of various models employed in this chapter. Figure 10 displays visualization results.
The first three rows show a driver that wore a seatbelt, and the last three rows exhibit a
situation where a driver did not use a seatbelt. Obviously, RST-Net has the capability to
concentrate more attention on the salient feature information of the seatbelt, even in darker
and low-contrast images. Additionally, RST-Net not only distinguishes whether the driver
is wearing the seatbelt through focusing on the relevant regions where seatbelt features
may be present, but also screens out the irrelevant areas located in an image’s background,
thereby improving detection accuracy. On the contrary, the other models either do not
work well or lack generalization.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 18 
 

indexes comprehensively, RST-Net demonstrates preferable performance, especially in 
the light of the Params, further substantiating the efficiency of the improvements pro-
posed in this study. 

Additionally, to verify the merit of RST-Net for seatbelt detection, Gradient-weighted 
Class Activation Mapping (Grad-CAM) [48] was employed to depict visualization results 
of various models employed in this chapter. Figure 10 displays visualization results. The 
first three rows show a driver that wore a seatbelt, and the last three rows exhibit a situa-
tion where a driver did not use a seatbelt. Obviously, RST-Net has the capability to con-
centrate more attention on the salient feature information of the seatbelt, even in darker 
and low-contrast images. Additionally, RST-Net not only distinguishes whether the driver 
is wearing the seatbelt through focusing on the relevant regions where seatbelt features 
may be present, but also screens out the irrelevant areas located in an image’s background, 
thereby improving detection accuracy. On the contrary, the other models either do not 
work well or lack generalization. 

       

       

       

       

       

       
(a) (b) (c) (d) (e) (f) (g) 

Figure 10. Visualization of feature maps produced by various models. (a) Original image; (b) 
AlexNet; (c) DenseNet; (d) EfficientNet; (e) ResNeXt; (f) Wide ResNet; (g) RST-Net. 

5. Conclusions 
The detection network of seatbelt usage with high precision and compact structure 

is a prominent and formidable investigation issue in the field of intelligent traffic systems. 
This paper proposes a high-precision and lightweight seatbelt detection algorithms, GM-
YOLOv7 and RST-Net, to address the problems of low detection accuracy and large model 

Figure 10. Visualization of feature maps produced by various models. (a) Original image; (b) AlexNet;
(c) DenseNet; (d) EfficientNet; (e) ResNeXt; (f) Wide ResNet; (g) RST-Net.

5. Conclusions

The detection network of seatbelt usage with high precision and compact structure is
a prominent and formidable investigation issue in the field of intelligent traffic systems.
This paper proposes a high-precision and lightweight seatbelt detection algorithms, GM-
YOLOv7 and RST-Net, to address the problems of low detection accuracy and large model
parameters in the current work. Firstly, based on the YOLOv7 network, the G-ELAN
module and the Mish activation model are added to alleviate the redundant issues of
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parameters and address the problem of insufficient non-linear representation capability.
Secondly, channel pruning is applied to the ResNet model at a 25% ratio to optimize the
architecture and speed up the inference time without decreasing the model’s accuracy.
Finally, incorporating the TA mechanism into network weakens the interference of the
background on seatbelt features and enhances the capability of feature learning.

The experimental results reveal that, compared with YOLOX and YOLOv5, the pro-
posed GM-YOLOv7 network could effectively improve target detection and reduce the
number of parameters and computational overheads, achieving a mAP of 84.2% and mini-
mum GFLOPs. Meanwhile, the lightweight RST-Net obtained a precision of 98.49% and
an F1 score of 98.25%, outperforming the other improved models. Compared with several
large-scale networks, the proposed models achieved the best detection performance with
the fewest amounts of parameters and computations. Therefore, the experimental analyses
verify the rationality and effectiveness of the proposed networks.

In our future research study, we will pay more attention to image collection for seatbelt
detection to further expand the dataset and upgrade the generalization ability of the model.
Additionally, although this paper makes a significant contribution by making this algorithm
lightweight, the edges or mobile devices and embedded systems maintain a poor real-time
performance due to insufficient arithmetic power. Therefore, the focus of future research
should be to investigate various techniques, such as knowledge distillation, and the impact
of hardware devices on this model’s performance to further optimize its structure and
upgrade its real-time detection capabilities.
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