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Abstract: The Internet of Things (IoT) reflects the internetworking of numerous devices with limited
computational capabilities. Given the ad-hoc network formation and the dynamic nature of node
membership, secure device authentication mechanisms are critical. This paper proposes a novel two-
factor authentication protocol for IoT devices. The protocol integrates physical unclonable functions
(PUFs) and radio frequency fingerprints (RFFs), providing a unique identification method for each
device. Compared with existing PUF-based schemes, the proposed protocol facilitates the mutual
authentication of two devices without the need for a trusted third party. Our design is resilient to the
intrinsic noise associated with PUFs and RFFs, ensuring reliable authentication, even under various
operational conditions. Furthermore, we have implemented an obfuscation technique to secure shared
authentication data against eavesdropping attempts aimed at modeling the security primitive, i.e.,
the PUF, through machine learning algorithms. We have validated the performance of our protocol
and demonstrated its efficacy against various security threats, including impersonation, message
replay, and PUF modeling attacks. Notably, the validation results indicate that predicting any given
PUF response bit’s accuracy does not exceed 56%, making it as unpredictable as a random guess.

Keywords: Internet of Things; physical unclonable function; RF fingerprint; authentication protocol

1. Introduction

The Internet of Things (IoT) conceptually refers to the internetworking of a large
number of heterogeneous nodes in an ad-hoc manner [1]. An IoT is defined as a network of
interconnected computers, sensors and electronic devices, and actuators that have unique
identifiers and the ability to exchange data over a network without manual or human-in-
loop management. IoT constitutes a global revolution that profoundly impacts the lives of
millions of individuals. Its overarching ambition is to establish machine-to-machine (M2M)
communication, thereby enabling the autonomous operation of devices. The fundamental
objective of IoT has always been to connect objects anywhere, anytime, and for any purpose,
using any intelligent network [2].

In light of the IoT characteristics, decentralized management is a preferred approach in
order to ensure effective management of the system. The implementation of decentralized
management can offer a strategic advantage by ensuring the continuity of operations, even
when access to a central server is disrupted. This approach can effectively eliminate the
potential risks and challenges that may arise due to central server unavailability. Hence,
it is advisable to adopt decentralized management as a means of ensuring operational
stability and continuity.

The widespread adoption of IoT networks has brought to the forefront significant
security concerns. The openness and pervasiveness of these networks make them inherently
vulnerable to infiltration, emphasizing the need for robust device authentication systems.
Additionally, the connectivity of IoT devices renders them susceptible to unauthorized
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access by adversaries from remote locations. Such an attack may use actuators to take
harmful actions against the system or even endanger the user’s safety. They can attack
a device to obtain sensitive data such as location, health, and financial information [3–5].
Thus, device authentication is crucial to prevent infiltration of the IoT network. In essence,
impersonating a legitimate device can be an effective way for an attacker to violate privacy
and inject false data. Many lightweight protocols have been developed to establish mutual
trust among nodes [6]. However, traditional methods of authentication that rely on key-
based communication are susceptible to hacking, and can result in information leakage
through side channel analysis and hardware Trojan insertion. These methods also result in
significant power and area overheads [6].

To address the aforementioned challenges, quite a few security solutions have been
proposed in the literature [7,8]. Given the limited computation and communication re-
sources of IoT devices, employing lightweight hardware-based security primitives, such as
PUFs, has become an attractive design option [9]. The PUF concept is based on the inherent
variations in the physical characteristics of a device, which can be exploited to generate a
unique and device-dependent identity that is practically hard to replicate [10]. This unique
identity can be used for authentication purposes to verify the trustworthiness of an entity
based on its own physical characteristics rather than the content it exchanges. From a
cryptographic perspective, PUFs are also deemed an attractive option for key generation,
as they do not require a secure initial key to be exchanged between the communicating
parties. Instead, cryptographic keys are generated using the unique PUF identity of the
communicating devices, thereby ensuring a high level of security [11]. While quite a few
PUF-based protocols can be found in the literature, mutual authentication of a pair of nodes
requires the involvement of a trusted third party, e.g., a secure server [12]. Such a server
needs to retain a number of challenge–response pairs (CRPs) for each of the network nodes.
However, such an approach does not suit IoT frameworks where distributed network
management is favored, if not required [13].

Analogous to the hardware-based PUFs, communication medium impairments along
with the physical characteristics’ variation of transceivers have been exploited as a means
for identifying transmitters [14,15]. Such a concept is often referred to as RF fingerprinting
(RFF), where the transient features of a transmitter in both the time and frequency domains
are used to identify the packet sender [16]. These transient features are random and
almost constant, and hence can be captured and used to effectively differentiate among the
various network nodes with high accuracy [17–19]. However, environmental conditions
introduce noise that can significantly impact the RF fingerprint accuracy, which can lead
to misclassification, especially when the computational complexity of the classifier is a
concern, as is the case in IoT [20]. Such a limitation can degrade the authentication process
and thus compromise the security of the system [21].

Given the inherent characteristics of IoT devices and their management structure,
the authentication process should be decentralized and avoid the involvement of trusted
third parties. To ensure efficiency and expediency, it should also not require complex
computations or the exchange of numerous messages. This paper opts to fulfill such a need
by developing an authentication protocol that leverages two effective techniques, namely
PUFs and RF fingerprinting, that suit IoT applications while considering the noise effect.
By exploiting the inherent manufacturing variations in IoT devices, the combination of
RF fingerprinting and PUF enables the unique identification of each node in the network.
Such a unique combination obviates the need for traditional identification methods that
rely on key storage for authentication. Since both the PUF and the RF fingerprint are based
on unintended variations caused by manufacturing, we aim to increase robustness and
mitigate the potential effect of noise by applying the fuzzy extractor. We call the proposed
protocol Fuzzy-extractor-based RF and Hardware fingerprinting two-Factor Authentication
(FeRHA). FeRHA is validated using data collected from a 64-bit PUF implemented on an
FPGA and is shown to achieve high robustness to cyberattacks.
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The rest of the paper is organized as follows. The next section sets FeRHA apart from
competing schemes in the literature. Section 3 provides some background information on
PUFs, RFF, and fuzzy extractors. Section 4 states the made assumptions and provides an
overview of the FeRHA. The detailed protocol design can be found in Section 5. Section 6
describes the validation setup and reports performance results. Finally, the paper is
concluded in Section 7.

2. Related Work

Numerous authentication methodologies and security provisions have been employed
for the protection of wireless networks [22]. Nevertheless, these techniques are not suitable
for IoT networks, characterized by low-cost and resource-limited devices that operate
in an unsupervised environment. The storage of a device’s identity in the memory, as
practiced in several authentication techniques, might not be deemed entirely secure. In this
regard, PUF-based schemes have been developed to overcome this issue by exploiting the
unclonability and uniqueness of PUFs to generate a device signature [23–25]. Some work
combines a PUF and a cryptosystem to protect the exchange CRP from eavesdroppers. For
example, Chatterjee et al. [26] have developed an authentication protocol that utilizes PUFs
in conjunction with identity-based encryption and a keyed hash function. Yilmaz et al. [27]
have addressed the issue of counterfeit products by developing a tripartite authentication
protocol and anti-counterfeit tag design based on Rabin public-key encryption and PUFs.
The goal of this protocol is to ensure that no counterfeit products are produced and that only
legitimate products are available to end users. PUF-IPA [28] is a cryptographic solution
designed to safeguard the confidentiality of CRPs. This approach involves an advanced
encryption standard (AES)-128-based encryption mechanism to avoid exposure of partial
or complete CRPs. Yet, these approaches add complexity by encrypting the exchanged
CRPs within IoT nodes. In addition, a third-party server is still required to manage the
storage of CRPs and produce secret keys. In a similar vein, Patil et al. [29] leveraged
blockchain smart contracts for authenticating IoT devices with miners in the blockchain
network. Nonetheless, this protocol uses the computationally intensive Diffie–Hellman key
exchange protocol, which could trigger performance difficulties. Fakroon et al. [30] pursued
a multi-factor authentication protocol that combines PUFs with user passwords. Alladi and
Chamola [31] used PUF for authentication and key generation for healthcare IoT devices.
However, the CRPs are recorded in a database, which may pose a risk of vulnerability
to PUF modeling attacks. Nimmy et al. [32] developed an authentication scheme by
integrating geometric threshold secret sharing with PUFs. Such a solution is designed to
prevent storing CRPs in the verifier’s database. Yet, the verifier is still obligated to retain
both the sub-challenge bit-string and the response’s hash. In summary, the aforementioned
solutions utilize hashing or encryption, which are resource demanding and could be a
limiting factor, particularly in the context of small devices. FeRHA, on the other hand,
offers a superior solution by leveraging a combination of PUFs and RF fingerprinting for
two-factor authentication. Additionally, our protocol capitalizes on the utilized hardware
primitive to obscure the exchanged CRPs without applying any cryptography technique.
Table 1 presents a comparison of the various authentication techniques used in the context
of IoT.

Despite the inherent unclonability, a PUF is still vulnerable to modeling attacks.
An attacker could eavesdrop on a prover node with the intent of capturing transmitted
authentication packets to other nodes, i.e., verifiers. Using the intercepted CRPs, the
attacker may formulate a machine learning model, which mimics the prover’s PUF. This
enables the attacker to predict the mapping of responses to unobserved challenges. To
mitigate such vulnerability, a number of techniques have been pursued. For example,
Majzoobi et al. [33] transmitted a restricted number of response bits to the verifier rather
than the complete bits. The selected response bits are defined by executing a synchronized
random number generator between the prover and the verifier. An alternative strategy is
to conceal the challenge bit-string using encryption [34]. Nozaki et al. [35] introduced a
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PUF-based authentication method using secret sharing schemes. This method utilizes the
distributed values generated during the process of authentication instead of communicating
PUF responses directly. Using this method, the vulnerability of raw PUF responses being
exposed is minimized. However, the proposed protocol is still susceptible to impersonation
attacks and the disclosure of CRPs. P-MAP [13] enables mutual authentication while
guarding against PUF modeling attacks by using two challenges and a unique bit-wise
binary function specific to the devices involved. However, the challenge bits are vulnerable
to unauthorized access by adversaries. Moreover, the security of the protocol heavily
depends on keeping the binary function secured. Additionally, Jiang et al. [36] have
proposed a three-factor authentication protocol for vehicular networks, which combines
passwords, biometrics, and PUFs to authenticate vehicles and generate encryption. This
protocol ensures secure communication by eliminating the need to store IDs in vehicle
sensors. Mahalat et al. [37] have conducted a study that integrates Shamir’s secret sharing
and Pedersen’s verifiable secret sharing with the PUF. However, these approaches bring
a significant computational overhead and necessitate the involvement of a trusted third
party (server) for mutual authentication. We posit that such involvement could have
an adverse impact on performance, as the server may become a bottleneck and require
continuous availability.

Meanwhile, RF fingerprinting utilizes the unique characteristics of wireless signals to
identify and authenticate IoT devices. Unlike traditional authentication methods, which
rely on passwords or digital certificates, RF fingerprinting does not require any pre-shared
secrets or complex cryptographic algorithms. Instead, it leverages the inherent variability
of wireless signals to generate a unique fingerprint for each device, which can be used
to verify its identity. Various studies have investigated the application of RF fingerprint-
ing in IoT authentication. Nouichi et al. [38] delved into the use of RF fingerprinting to
authenticate IoT devices. They emphasized the efficacy of this method in achieving high
identification accuracy without the need for additional hardware or complex cryptographic
mechanisms. The authors demonstrated how RF fingerprinting can successfully differenti-
ate between legitimate IoT devices and unauthorized entities. Recently, Zhang et al. [39]
have presented a thorough analysis of RF fingerprinting techniques applied to IoT au-
thentication. The study placed special emphasis on the integration of RF characteristics,
such as signal strength, phase, and frequency response, as a means to identify devices.
However, addressing the noise mitigation in the authentication process using RFF was
not considered in their approach. Furthermore, Li et al. [40] investigated the potential of
utilizing machine learning algorithms in combination with RF fingerprinting to enhance the
authentication of IoT devices. By employing supervised learning techniques, the authors
were able to demonstrate notable improvements in the accuracy and reliability of IoT
device authentication. However, relying on RF fingerprinting as the primary authentication
factor raises security concerns. Peng et al. [41] have investigated the susceptibility of RF
fingerprinting systems to adversarial attacks, highlighting the potential for misclassification
and unauthorized access. In particular, they demonstrate that adversarial perturbations
can be deliberately crafted using machine learning algorithms to deceive RF fingerprinting
classifiers. FeRHA mitigates such vulnerability by incorporating RF fingerprinting as a
secondary factor. Our approach capitalizes on the unique characteristics of RF fingerprints
to obscure the transmitted CRPs, while avoiding reliance solely on RF fingerprinting to
authenticate network devices.

Few studies have considered PUFs and RF fingerprints as factors for authenticating
IoT nodes. In instance, Ashtari et al. [21] introduced a framework that leverages the
combination of RF-PUF and random forest classification for authenticating IoT nodes.
Furthermore, Chatterjee et al. [42] presented a deep neural network-based framework for
real-time authentication of wireless nodes using PUFs and RF fingerprinting. The frame-
work detects process variation-induced effects on RF properties of wireless transmitters
using in situ machine learning at the receiver end. Also, Bari et al. [43] introduced a secure
authentication method that utilizes the RF-PUF for both static and quasi-static channels.
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The proposed method aims to ensure reliable and efficient authentication by exploiting the
inherent randomness of the RF-PUF. The aforementioned approaches have shown to be
effective in accurately identifying IoT nodes. However, these approaches are susceptible to
modeling attacks and do not account for the impact of noise on biometric data, which can
cause authentication failure. Addressing the issue of noise in biometric data is critical to
enhancing the security of authentication systems.

Table 1. Comparison of the existing PUF- or RFF-based mutual authentication techniques for IoT.

Ref. Key Feature Advantage Disadvantage

[25] PUF-based authentication Enables mutual authentication
between IoT devices

Relies on an intermediary server to
store CRPs and generate secure tokens

[26] PUF-based authentication No stored explicit CRPs in the
verifier database

Introduces additional complexity due
to encrypted CRPs

[27] PUF-based authentication Develops a security solution to
address counterfeit products Utilizes Rabin public-key encryption

[28] PUF-based authentication No partial/full CRPs are stored Incorporates AES-128-based encryption
and require an intermediary server

[29] Authentication using PUFs
and blockchain

Utilizes blockchain smart con-
tracts

Computationally heavy due to the use
of Diffie–Hellman protocol

[30] Multifactor authentication
using PUFs

Suitable for telehealth system for
mobile and IoT edge devices

Relies on user passwords during the
authentication

[31] PUF-based authentication
and key generation

Use simple cryptographic primi-
tives Vulnerable to machine learning attacks.

[32] PUF-based authentication No explicit CRP storage in the
verifier database

Overhead of cryptographic operations
(geometric threshold secret sharing)

[33] PUF-based authentication Applies challenge obfuscation
and uses a subset of response bits

Susceptible to impersonation attacks
due to CRP disclosure

[34] PUF-based authentication Obfuscates challenge bit-strings
to counter modeling attacks

Use of hash functions introduces a sig-
nificant computational overhead

[35] PUF-based authentication
Relies on secret sharing to min-
imize exposure of raw PUF re-
sponses

Susceptible to impersonation attacks
due to increased CRP disclosure

[13] PUF-based mutual authen-
tication

Mitigates modeling attacks using
unique binary operations

Attacker can access challenge bits; de-
pendant on secrecy of binary operations

[36] Three-factor authentication
Combines passwords, biomet-
rics, and PUFs without storing
node IDs

Introduces a significant computational
overhead and requires the involvement
of a server for mutual authentication

[37] PUF-based authentication Integrates secret sharing with
PUF for authentication

Introduces computational overhead
and requires the involvement of a
server for mutual authentication

[38–40] IoT authentication using RF
fingerprinting

Utilizes unique characteristics of
wireless signals and avoids com-
plex cryptography

Vulnerable to adversarial attacks

[21,42,43] Two-factor authentication Leverages RFFs and PUF for au-
thenticating wireless nodes

Susceptible to modeling attacks; no mit-
igation of the noise impact on biometric
data
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3. Preliminaries

This section provides some background information that is needed for explaining the
design of FeRHA.

3.1. Physical Unclonable Functions

A PUF refers to a digital circuit that maps an input, referred to as a challenge, to an
output (a response) in an implementation-dependent manner [44,45]. The fundamental
basis behind the PUF design lies in the existence of minor discrepancies in microelectronic
circuits that arise due to manufacturing imperfections [10]. These imperfections are deemed
insignificant and do not impact the operation and characteristics of integrated circuits. PUF
circuits are constructed to leverage these variations to produce a unique hardware-driven
fingerprint, thus creating a distinct mapping from an input bit-string challenge to an output
bit PUF response [10].

These features have made the use of PUFs a viable means for generating a unique signa-
ture that provides an additional layer of security and authenticity in various applications.

To illustrate, Figure 1 shows the design of an arbiter-PUF, a notable PUF design that
leverages the variation in propagation delays. Due to the non-uniformity in delays among
integrated circuits, the latched value for the same challenge bits will differ, even with
the same circuit implementation. This variation reflects a random effect during device
manufacturing, making physical cloning of a PUF infeasible, even with knowledge of
all implementation parameters [46]. In fact, the CRPs of a PUF cannot be predicted or
controlled by the manufacturer. An invasive attack on a device would result in changes in
the signal delays, rendering PUFs tamper-resistant and one-way mapped. In summary, the
responses received from different ICs for the same PUF are unique, serving as a fingerprint
for individual ICs. A PUF can be defined mathematically as follows [47]:

f : C → R. (1)

f (C) : r(c ∈ C, r ∈ R). (2)

where the output or response generated by a PUF is denoted by R, while the PUF challenge
is represented by C.

Figure 1. An n-bit arbiter-PUF features a structure where signals propagate through different paths
within each cell based on the setting of an active switch (multiplexer). The configuration of the
cells is defined by the challenge bits, which in turn determine a unique path and propagation delay.
Consequently, the response generated by the arbiter-PUF is based on the faster path of the two signals
when the challenge bits are fed in.

3.2. Radio Frequency Fingerprinting

RF fingerprinting is a promising paradigm for identifying wireless devices by extract-
ing the unique features embedded within the electromagnetic waves emitted by transmit-
ters. The presence of analog components (such as digital-to-analog converters, band-pass
filters, frequency mixers, and power amplifiers) in the radio transmission chain and inher-
ent randomness in the manufacturing process are the primary causes of these distinctive
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features [48]. A number of wireless devices using various standards, such as CRN, UMTS,
Wi-Fi, push-to-talk transmitters, Bluetooth, and radio-frequency identification (RFID), have
been evaluated for RF fingerprinting. It has been shown that every transmitter has a distinct
RF fingerprint, and it is also demonstrated how unlikely it is for two transmitters to share
the same RF features. Accordingly, such a unique RF fingerprint can be used to authenticate
the identity of a particular wireless transmitter and guarantee the confidentiality of the
messages that are sent [48,49].

3.3. Fuzzy Extractor

Biometric data are inherently noisy and have limitations in terms of achieving high pre-
cision. To overcome these limitations, fuzzy extractors are pursued in security applications
to enable stable matching. Fuzzy extractors transform biometric data into random strings,
while secure sketches (SS) are used to build fuzzy extractors [50]. The secure sketches
generate public helper data strings that correct input errors with minimal information
leakage. If the Hamming distance between the input to the fuzzy extractor and the observed
one, înput, is less than T during the reproduction process, înput can be corrected, even if
there are T bit errors [51–53].

Fuzzy extractors have been widely utilized in hardware-based security primitives,
such as PUFs and RF fingerprinting. Specifically, these extractors can rectify the erroneous
bits present in the PUF response caused by environmental noise. Additionally, they can
also be employed in RF fingerprinting to alleviate the impact of noise during radio signal
generation, which can potentially affect the identification of the transmitter (node ID).
For instance, in narrow-band systems, the oscillator imperfections of carrier frequency
offset (CFO) and phase noise, mixer imperfections of in-phase (I) and quadrature (Q)
imbalance, power amplifier (PA) non-linearity, and antenna patterns constitute the RF
impairments [54]. These impairments can distort the signal emitted by a device, and a
receiver captures the physical waveform to extract these impairments to determine the
sender’s identity. By utilizing a fuzzy extractor, the noise affecting the physical waveform
can be mitigated, thereby enhancing the accuracy in identifying device IDs [55]. Thus,
the integration of fuzzy extractors in hardware-based security primitives offers a robust
solution to the issues of environmental noise and RF impairments.

Figure 2 shows the architecture of the adapted fuzzy extractor in this paper, where
M refers to the original data. As shown in the figure, the generation procedure takes the
original template, M, as input and returns a public helper string, S. The reproduction
procedure takes noisy data, M’, and public helper string, S, as input, and outputs K if
M and M’ are close, s.t. Hamming distance (M,M’) ≤ T [51,56]. In the context of PUFs,
consider a response with 63 bits (N = 63). Assuming a key size of 36 bits (K = 36), the
generation process involves feeding the K bit into the BCH encoder, resulting in a 63-bit
value. This value is then subjected to an XOR operation with the original (i.e., non-noisy)
63-bit response. The (N − K) bit of the resulting value, which is 27 bits in this instance,
constitutes a helper string, S. In the presence of noisy data, M’, the helper string, S, is
XORed with the noisy 63-bit response, M’, as illustrated in Figure 2. The resulting value is
then subjected to BCH decoding, yielding the noise-mitigated version of the PUF response,
represented as M’.

When implementing a fuzzy extractor scheme, it is imperative to take into account two
critical factors: information reconciliation and privacy amplification. The former guarantees
the removal of noise from the collected noisy data, while the latter ensures the uniform
distribution of derived key bits. Recent works have utilized a cryptography function,
such as SHA-256, and BCH code to satisfy these fundamental requirements [57,58]. Our
proposed protocol employs a fuzzy extractor proposed by Hyunho et al. [56]. This approach
incorporates a Bose–Chaudhuri–Hocquenghem (BCH) in the secure sketch to address the
issue of compensating noise in biometrics while ensuring an information-theoretic security
of K, where K refers to the key size [59]. The data perturbation refers to either PUF response
bits or RF fingerprinting signals.
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Figure 2. The fuzzy extractor diagram based on the syndrome (N = 63 bits).

4. System Model and Approach Overview

In this section, we state the assumptions about the underlying network operation,
and highlight the security threat, and provide an overview on how FeRHA mitigates such
a threat.

4.1. System and Attack Models

FeRHA operates under the assumption that all IoT devices participating in the au-
thentication process have embedded PUFs, as well as a fuzzy extractor. The authentication
process necessitates the use of a strong PUF. The latter involves the generation of a large
number of CRPs to render it infeasible for an adversary to try all possible challenge bit-
strings, i.e., brute force. The paper’s presentation is based on the use of an arbiter-PUF, as
discussed in Section 3.1. However, the proposed authentication protocol can be applied to
other strong PUF designs. Due to the high noise that affects PUFs and RFF, a fuzzy extractor
is utilized to mitigate the effect of such noises on the authentication tokens. In other words,
fuzzy extractors are proposed to enable stable matching. Our proposed protocol leverages
the non-cryptographic fuzzy extractor, as elaborated in Section 3.3 [56].

Given the random and uncontrollable variations among the manufacturing processes,
a PUF cannot be physically cloned. However, the PUF operation can be mimicked, some-
thing that is often referred to as a modeling attack. Basically, an adversary may eavesdrop
on the network to intercept the prover’s response to the various verifiers. The captured
CRPs are then used to train a machine learning model of the PUF’s behavior. Upon cap-
turing a sufficiently large subset of CRPs, the accuracy of the model grows high enough
to predict the PUF response to any challenge bit-string. Considering the major role that
mutual authentication of IoT plays, an attacker would target one of the legitimate nodes
to model its PUF and impersonate such a node to become part of the network. Quite a
few machine learning techniques have been shown to be effective for such a purpose [60].
Nonetheless, in validating FeRHA, we assume that the adversary applies powerful tech-
niques, namely, convolutional neural networks (CNNs) and extreme gradient boosting
(XGBoost), in order to show FeRHA’s resilience to modeling attacks. In addition to PUF
modeling attempts, an eavesdropper may replay the intercepted authentication messages
to impersonate legitimate IoT nodes. As explained in the balance of the paper, FeRHA
thwarts the aforementioned impersonation threat by obfuscating the PUF response of node
δx, known as the prover, and each other IoT device, which acts as a verifier, δy, while
factoring in the RFF of the communicating nodes.

4.2. Approach Overview

Our proposed protocol supports mutual authentication for IoT nodes. Two hardware
primitives, namely, RFF and PUFs, are employed in the authentication process. Recall that
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the biometric data are subjected to high noise levels, which subsequently could result in the
corruption of the authentication token and rejecting connection requests from legitimate
nodes. Therefore, we consider mitigating the noise in the utilized biometric to enhance the
authentication efficiency by using the fuzzy extractor. Mainly, FeRHA aims to achieve the
following design objectives:

1. Develop a novel lightweight PUF-based mechanism for authenticating IoT devices.
Rather than applying encryption, our mechanism pursues two-factor authentication
by combining the benefits of PUFs and RF fingerprinting.

2. Given the dynamic nature of IoT systems, intermediaries should be avoided, and
authentication should be conducted in a decentralized manner.

3. The system should resist attempts by adversaries to eavesdrop and gain knowledge
of many CRPs of the embedded PUF to model it using machine learning techniques.

4. To ensure accurate authentication, it is essential to mitigate the noise in biometric data.

The involvement of PUFs enables the concealment of device secrets and mitigates the
threat of device hacking. To satisfy the above design goals, FeRHA adopts a distributed
authentication strategy in which the network operation is not dependent on a trusted
server. Only device enrollment could benefit from engaging a server. In contrast to existing
PUF-based solutions, FeRHA does not retain CRPs of a node during the enrollment phase,
nor does it incorporate a cryptosystem [26,61]. To elaborate, during the enrollment phase,
an IoT node obtains a number of challenge bit-strings and their associated authentication
tokens for every other node in the network. Specifically, a node, δy, will obtain a set,
γx→y,∀x ̸= y, of challenges and tokens for each node, δx, as shown in Figure 3. Thus, in
the event that γx→y is compromised by an eavesdropper, any attempts to replicate the PUF
of δx would fail. Additionally, the verifier, δy, will factor in the physical layer features of
the δx’s transmitter. In this regard, IQ is considered as the fundamental attribute for RFF
extraction, although the selection of any other feature can be made, based on the network
environment. Then, the prover, δx, will utilize the fuzzy extractor to generate the helper
string, H, for PUFs and RFF, s.t. Π(Rx

i ) = HRx
i
, ∀i ∈ γi→j, and Π(RFFx) = HRFFx ; where

Π(.) denotes the fuzzy extractor function, and HRx
i

and HRFFx are the helper strings for Rx
i

and RFFx, respectively. The FeRHA protocol is discussed in detail in the next section.

Figure 3. Illustrative diagram of FeRHA during the enrollment phase.
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5. Combined PUF- and RFF-Based Authentication

Mainly, FeRHA has two phases: enrollment and operation. The enrollment phase
deals with the information that nodes need to provide when joining the network. On the
other hand, the operation phase focuses on how the nodes interact with various IoT devices
while participating in different applications. The two phases are explained below.

5.1. Enrollment Phase

IoT has a vast conceptual coverage, encompassing both spatial and temporal dimen-
sions. However, in practical terms, the interaction between devices is more localized. As a
result, a node, δy, does not need to authenticate numerous IoT devices. The practicality of
FeRHA is evident in its ability to facilitate mutual authentication between nodes without
the need for an intermediary trusted server. However, it is important to note that a server
is indispensable during the device enrollment process to effectively manage the sharing of
token list γ. During the enrollment of a device, it is necessary to establish connectivity with
a local server that maintains an index of active IoT devices. For instance, in the domain
of IoV (Internet of Vehicles), the department of motor vehicles is a viable candidate for
serving as the server. In an IoV setting, if a vehicle intends to participate in peer-to-peer
data sharing on the road, it should retrieve some CRPs for other affiliated vehicles.

Throughout the enrollment process, each IoT node is required to provide specific
information in order to be integrated into the network. We assume that the enrollment
phase is conducted through a secure channel. In our proposed protocol, the CRP list of a
node will not be explicitly stored at any other IoT node. This feature is designed to enhance
the security of the protocol by preventing an eavesdropper from capturing the CRPs of
a node and model its PUF. Upon enrollment, an IoT device, δx, will send to the server a
CRP list, Γx, which reflects a small subset of all possible challenge–response combinations.
Recall that FeRHA assumes that strong PUFs are employed. For each CRP in Γx, node δx
generates helper data and stores them in its memory. We note that this does not introduce
any notable vulnerability since it is impossible to infer the response of a challenge using the
corresponding helper data. In addition, the size of Γx is limited and would not constitute
much of a burden for the IoT node. For example, storing helper data of 8 bits for 1024 CRPs
would take only 8K bits.

The server assigns each potential verifier (i.e., IoT nodes other than δx) a distinct
subset of Γx. To clarify, let us assume that the network consists of four IoT nodes, namely
δx, δy, δz, and δw. As shown in the example in Figure 4, each node will obtain a subset of
Γx, such that γx→z ̸= γx→w, and γx→z∪ γx→w ̸= Γx, ∀z ̸= w. For each of these subsets, the
response of the challenge is obfuscated in a manner that depends on the verifier. In essence,
the obfuscated response becomes an authentication Token. Using the case of δx and δy as an
example, the associated token, Tokeny

x,i, in γx→y is formed as follows:

Tokeny
x,i = Φ(Lxy, Rx,i, RFFx), ∀(Cx,i, Rx,i) ∈ γx→y (3)

where Rx,i is the corresponding response of Cx,i using PUFx, while RFFx is the RF finger-
print for δx. Φ(.) is a function to obfuscate the PUF response, Rx,i, using RFFx; yet such
obfuscation is made to depend on the verifier, δy, by factoring in Lxy. For example, Φ(.)
could be a Boolean function where Lxy is used as an operator, or could be a bit-shuffling
(rotate) function that uses Lxy to determine the shuffling pattern or rotation count. The
principal objective of performing this operation is to enable the receiver node to deduce the
response bit-string since the actual response is not included in the authentication packet.
Therefore, an interceptor of authentication packets will be prevented from knowing the
response. FeRHA leverages the embedded PUF to introduce the verifier-dependent obfus-
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cation by setting Lxy = PUFx(HRFFx ,HRFFy), where HRFFx andHRFFy are the helper strings
for RFFx and RFFy, and created by the fuzzy extractor as follows:

HRFFx = Π(RFFx) (4)

HRFFy = Π(RFFy) (5)

Finally, one of the tokens will be defaulted to serve as a key. This could simply implicit
across the network, where each verifier, δy, assumes the first token, or generally the jth in
γx→y to be used as a key, and the corresponding challenge should not be included in an
authentication request. The use of such a key will be explained in the next subsection.

Figure 4. An illustrative example for constructing γx.

5.2. Operation Phase

After enrollment, a node can apply the FeRHA protocol to authenticate other IoT
devices in the system. For such authentication, FeRHA utilizes a two-factor approach,
which leverages the unique characteristics of the transmitted waveform to identify the
device. This identification mechanism enables FeRHA to obfuscate the PUF response,
circumventing the need for the incorporation of cryptographic primitives. Assume that
δx (prover) and δy (verifier) need to authenticate each other. The main steps of FeRHA are
covered in Algorithm 1. The verifier, δy, will extract the RFF, R̂FFx, of the prover, δx, and
send it along with of the challenges, Cx,i, that is included in γx→y. Therefore, the received
signal of node δx can be written as:

Ωδx (t) = [Wδxδy(t) ∗ D(A)]Cx,i + n(t) (6)

where W(t) is the wireless channel and ∗ denotes the conventional operation. D(.) is the
overall effect of hardware distortion on the transmitted analog signal, A, and n(t) is the
noise. By extracting Cx,i, δx will input Cx,i to its PUF, PUFx, to generate the corresponding
response bit-string as follows:

R̂x,i = PUFx(Cx,i) (7)

where R̂x,i is the noise-affected response. FeRHA mitigates the noise in the generated
biometric, RFF, and the PUF response, R, as discussed in Sections 3 and 4. Hence, δx will
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apply the fuzzy extractor to the generated response bit-string R̂x,i and R̂FFx while utilizing
the helper string extracted during the enrollment phase, as follows:

Rx,i = Π(R̂x,i,HRx,i ) (8)

RFFx = Π(R̂FFx,HRFFx ) (9)

where HRx,i and HRFFx are the helper bit-strings generated during the enrollment process

for Rx,i and RFFx, respectively. Rx,i and RFFx denote the noise-mitigated versions of R̂y
x,i

and R̂FFx, respectively.
In the context of FeRHA, the storage of the actual list of CRPs is not required. Instead,

FeRHA has introduced a token list, γ, which comprises a series of challenge bits that are
associated with an authentication token, Token, as illustrated in Figure 3. The use of a
token list, γ, in FeRHA provides a secure mechanism for verifying the authenticity of a
device while eliminating the exposure of the actual CRPs list. Thus, in the event of an
eavesdropper gaining access to the token list, the ability to model δx’s PUF will be hindered.
This is because the eavesdropper will erroneously associate C with the authentication Token,
rather than with the PUF response, R, ultimately leading to a flawed model of PUFx. The
authentication token corresponding to Cx,i, denoted as Tokeny

x,i, is specific for verifier δy
and is in essence a bit-string that is mapped based on RFFx and Rx. This mapping process is
performed by utilizing an obfuscation function, represented by Φ, as shown in Algorithm 1.
In order for node δx to construct Tokeny

x,i, it will generate a factor, Lxy, that is dependant on
the communication link with δy using its PUF, as follows:

Lxy = PUFx(HRFFx ,HRFFy) (10)

where HRFFx andHRFFy are the helper strings for RFFx and RFFy, respectively, which are
generated using the fuzzy extractor during the enrollment phase. Thereafter, δx will

need to form the authentication token, T̂oken
y
x,i, as illustrated in Figure 5, by applying the

obfuscation function, Φ, as follows:

T̂oken
y
x,i = Φ(Lxy, Rx,i, RFFx) (11)

The FeRHA protocol incorporates an obfuscated counter, denoted as count, into the
sending packet to provide protection against replay attacks. This mechanism restricts
access to count and prevents unauthorized interception of the transmitted packets between

δx and δy, as detailed in the following subsection. Additionally, T̂oken
y
x,i is masked using a

pre-selected key, designated as Key, which is chosen from γx→y. It is important to note that
this token and its accompanying challenge cannot be utilized for authentication and are
assigned solely as a key. Therefore, the transmitted packet can be constructed as follows:

{Key ⊕ count, Key ⊕ T̂oken
y
x,i} (12)

Then, δx will send the above packet to δy. The mapping of the authentication token,
Token, is not uniform across different nodes. This lack of uniformity means that an attacker
attempting to eavesdrop on communication between node δx and various verifiers, δy, δz,
and δw, will not succeed in discovering Token. This is because the mapping is not exact, and
Φ does not yield an identical mapping across different verifiers. Therefore, such an attempt
is futile. Lastly, δy will compare Tokeny

x,i that is received during the enrollment phase,

with T̂oken
y
x,i. If T̂oken

y
x,i matches Tokeny

x,i, then the authentication succeeds; otherwise, the
received authentication token, Tokeny

x,i, will be rejected.
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Algorithm 1 FeRHA(δx,δy)

Require: Let γx→y be the token list of δx that shared with δy. Φ is the response obfuscation
function, where HRFF and HRx ,1 are the helper string for RFF and Rx,1, respectively.

1: δy extracts R̂FFx

2: δy sends (Cx,i, R̂FFx) to δx, where (Cx,i, Tokeny
x,i) ∈ γx→y

3: δx applies Cx,i to its PUF, i.e., PUFx(Cx,i) = R̂x,i

4: δx applies FE to R̂x,i and R̂FFx, s.t. Rx,i = Π(R̂x,i,HRx,i ), and RFFx = Π(R̂FFx,HRFFx )

5: δx determines Lxy using its PUF, where Lxy = PUFx(HRFFx ,HRFFy)

6: δx calculate T̂okeny
x,i = Φ(Lxy, Rx,i, RFFx)

7: δx masks T̂okeny
x,i as {Key ⊕ count, Key ⊕ T̂okeny

x,i} and send it to δy

8: Using Key, δy extracts count and T̂okeny
x,i, and performs count value check.

9: if count is new then
10: continue.
11: else
12: disconnect.
13: end if
14: δy compare T̂okeny

x,i and Tokeny
x,i; If equals, δx is authenticated, otherwise δx is rejected

5.3. Replay Attack Mitigation

Replay attacks pose a significant threat to communication protocols, particularly in
situations where message integrity and authenticity are paramount. Such an attack occurs
when an adversary captures a legitimate packet and re-transmits it, potentially resulting in
misleading a receiver into accepting a previously valid but now outdated or redundant
message. To effectively mitigate replay attacks, FeRHA employs a novel counter-based
mechanism that relies upon the unique collaboration between the prover and the verifier.
To elaborate, we initialize a counter value count to be intimately linked to the verifier’s
state. The mechanism is represented in the following steps:

• Initializing the counter: the initialization value of count is established through the
application of PUFx to the helper string HRFFy . The mathematical representation of
this initialization process is count = PUFx(HRFFy). This method assures that the initial
state of the counter is unpredictable and associated with the hardware characteristics
of the involved devices, providing a robust foundation for the counter’s integrity.

• Counter obfuscation: to mitigate the risk of interception or exploitation of count, we
factor in the token that is shared between the prover and verifier. To obscure the
counter value, an XOR operation is employed to mask count with the Key, resulting
in (counter ⊕ Key), as shown in Figure 5. The Key value is chosen from the token
list γx→y through a pre-agreement between the prover, δx, and the verifier, δy; such a
pre-agreement could be simply determined by the server by setting a default entry in
the pairwise challenge-token lists for the entire IoT network, as noted in Section 5.1.
It should be noted that Key will not be used as an authentication token, but rather
assigned and selected to be the Key. This mechanism is dependent on the verifier side,
thereby rendering an adversary who attempts to eavesdrop over multiple links to
target δx unsuccessful, since γx→y ̸= γx→z, as illustrated in Figure 4. This operation is
instrumental in ensuring that the actual counter value transmitted over the network
remains indiscernible and cannot be directly leveraged by an adversary.

• Verification operation: upon receiving a packet, the Key is used to perform an XOR
operation, enabling the recovery of the original counter value, count. Thereafter, the
verifier performs a counter value check, ensuring that it is new and has not been
previously utilized during the session.
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Figure 5. A sequence diagram to illustrate the message exchange between δx and δy during the
operation phase.

6. Results and Performance Analysis

In this section, we provide a detailed account of the implementation settings that were
used to validate FeRHA, and highlight important aspects of the authentication process.

6.1. FeRHA Implementation

To validate the effectiveness of FeRHA, we used a CRP dataset collected using the
arbiter-PUF, explained in Section 3.1, implemented on a Xilinx ARTIX-7 FPGA. The PUF
is used to map 64-bit challenge bit-strings to 64-bit responses. The RFF is picked based
on a dataset of Wi-Fi transmissions based on the IEEE 802.11a/g standard. Such a dataset
was obtained through the DARPA RFMLS program and published by ORACLE [62]. The
data were collected using an experimental setup of a USRP software-defined radio (SDR),
wherein the fixed USRP B210 designated as the receiver. The data frames were emitted
from bit-similar USRP X310 radios that conformed to the IEEE 802.11a standard. The
data frames were generated utilizing the MATLAB WLAN system toolbox and contained
random payloads with shared address fields. Subsequently, the data frames were streamed
to the designated SDR for over-the-air wireless transmission. The receiver SDR samples
the incoming signals at a sampling rate of 5 MS/s and a center frequency of 2.45 GHz for
Wi-Fi. This paper investigates the potential use of machine learning techniques as part
of a PUF modeling attack against FeRHA. Specifically, we employ CNN and XGBoost as
representative models that an adversary might utilize to perform the attack.

The successful execution of a cyberattack, including impersonation, data forgery,
and man-in-the-middle attacks, is dependent upon the exposure of the underlying device
secrets. In the specific context of PUFs, this requires the attacker to accurately model the
challenge–response mapping, achieved through machine learning (ML) techniques. It is
imperative to note that a key advantage of PUF design is its tamper-resistant nature, and
the device secrets (i.e., CRPs) are not stored in the memory. Therefore, our investigative
analysis has been focused on thwarting modeling attacks. In our initial attempt to model
the arbiter-PUF, we employed CNN and XGBoost without the utilization of our approach.
We conducted experiments using varying dataset sizes. The results are depicted in Figure 6.
XGBoost achieved a prediction accuracy rate of 99% when using 5000 CRPs, as reported
in Figure 6b. To further validate our approach, we carried out another set of experiments
using CNN. The CNN architecture comprised an input layer with 32 nodes, along with
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two hidden layers that contained 64 and 128 neurons, respectively. An output layer was
integrated with a sigmoid activation function [63]. The first three layers utilized a rectified
linear activation function (Relu) to achieve optimal performance. The Adam optimizer [64]
was utilized to update the weights, while binary cross entropy served as the loss function
with a learning rate of 0.0001. The model was trained for 150 epochs, with a batch size
of 64. Our results indicated that the NN successfully modeled the PUF, with a prediction
accuracy rate ranging from 92% to 99%, as depicted in Figure 6a. FeRHA thwarts the threat
of ML-based modeling vulnerability, as demonstrated next.

(a) CNN (b) XGBoost

Figure 6. Accuracy of modeling 64-bit arbiter-PUF using NN and XGBoost for various training set
sizes (CRP count).

6.2. Performance Results

During the operation phase, an eavesdropper may attempt to intercept communication
between entities, e.g., δx and δy, to obtain a significant number of CRPs. These data can then
be used to mimic the PUF and impersonate the legitimate node δx. In order to prevent such
an attack, FeRHA pursues a two-factor authentication protocol that effectively obfuscates
exchanged response bits “R”. To evaluate the efficacy of FeRHA, we conducted two distinct
attack scenarios based on the attack model discussed earlier in Section 4. These scenarios
were designed to model the behavior of PUFx and impersonate δx. In the first scenario,
an attacker intercepts the transmission of a single communication link between a verifier,
δy, and a prover, δx, with the goal of modeling the PUF of δx. In the second scenario, an
attacker eavesdrops on links between a prover, δx, and multiple verifiers, and uses the
intercepted packets, i.e., the exchanged CRPs to model the PUF of δx. The results for these
attack scenarios are discussed in detail below.

• Single-link attack: in this scenario, we focus on the authentication of a prover, δx,
by a verifier, δy, where an adversary may intercept transmissions between them. It
is important to note that the adversary’s primary objective is to capture as many
CRPs as possible for PUFx during the operation phase of FeRHA. Specifically, the
adversary aims to obtain the maximum number of CRPs for the prover’s PUFx. Recall,
FeRHA utilizes two primitives, PUFs and RFF, to generate an authentication token.
Notably, the PUF response, R, is not included in the verifier’s request. Instead, the
obfuscation function, Φ, is applied to produce an authentication token, Tokeny

x,i, for
every challenge bit-string, Cx,i, where Φ factors in the pairwise link between δx and
δy. Thus, an adversary will record the exchanged Tokeny

x,i as the PUF response and,
consequently, will use these tokens as input to the machine learning model, with
the aim of mapping the challenge bits to the corresponding token. The results of the
modeling attack under FeRHA are depicted in Figure 7. We performed the modeling
attack using the ML models applied earlier in Figure 6 to model the PUF with the
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application of FeRHA. As demonstrated by the results, an adversary cannot achieve an
accuracy of more than 53% and 56% using CNN and XGBoost, respectively. Such an
accuracy is equivalent to a random guess, given the binary nature of the PUF response.
The effectiveness of FeRHA in preventing modeling attacks is clearly evident from the
comparison of the results in Figure 7 with those in Figure 6.

• Multi-link attack: in this scenario, we assume that an adversary is actively eavesdrop-
ping on all links that the prover, δx, has with other nodes. The adversary’s primary
objective is to collect as many CRPs of PUFx as possible, with the ultimate goal of mod-
eling PUFx and impersonating δx. It is worth noting that, in contrast to the single-link
scenario, the adversary will intercept the exchanged packets between δx and multiple
verifiers, such as δy, δz, δw, and so on. Hence, the applied function, Φ, will be varied
among the intercepted packet (since Lxy ̸= Lxz ̸= Lxw). Despite the adversary’s
ability to capture more data, the semantic of such data is not coherent since the tokens
are derived from the PUF response differently for the various verifiers. The results
depicted in Figure 8 illustrate the outcomes of utilizing CNN and XGBoost models in
conjunction with a 64-bit PUF integrated into δx. It is important to note that the CNN
and XGBoost models have demonstrated the ability to model the 64-bit arbiter-PUF
with an accuracy of over 90% (see Figure 6). However, Figure 8 indicates that neither
CNN nor XGBoost was successful in defeating FeRHA. The results reflect the accuracy
of the modeling attack when applying intercepted packets over connections containing
varying numbers of verifiers. The results of such a modeling attack confidently indi-
cate that the adversary cannot gain any advantages from eavesdropping on additional
links, as the accuracy remains unchanged compared with that of a single link.

6.3. Formal Security Analysis

This section presents a formal security assessment of our protocol’s efficacy by utilizing
the automated validation of internet security protocols and applications (AVISPA) tool [65].
The modular and expressive formal language of the AVISPA tool is widely recognized for
providing the specification of protocols and their security attributes. AVISPA also integrates
the on-the-fly model checker (OFMC) that leverages state-of-the-art automatic analysis
techniques to validate the robustness of security protocols; such a property is referred
to as “Safety” in AVISPA. We have created sessions for interactions among provers and
verifiers using FeRHA. The security goals for the AVISPA simulation are the authentication
of a prover and the secrecy of its PUF response. The tool classifies whether the protocol is
SAFE or UNSAFE, or INCONCLUSIVE. Our protocol’s formal security verification results
are shown in Figure 9. As indicated by the results, FeRHA is deemed SAFE, implying
robustness against man-in-the-middle, replay, and impersonation attacks.

(a) CNN (b) XGBoost

Figure 7. The PUF modeling accuracy when PUFx is under a single-link attack while applying FeRHA.
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Figure 8. The PUF modeling accuracy when FeRHA is is subjected to a multi-link attack.

Figure 9. The result of the analysis of FeRHA using OFMC.

6.4. Fuzzy Extractor Performance

To evaluate the reliability of our implementation, we conducted tests using the fuzzy
extractor in combination with the generated PUF responses and RFF. The implementation
diagram of the fuzzy extractor utilizing the BCH code and syndrome concept (N = 63) is
illustrated in Figure 2. Our assessment of the proposed fuzzy extractor’s performance is
based on Table 2. This table showcases all conceivable combinations of message length L for
BCH code, where the code-word length is fixed to 63 bits. Notably, the variable t signifies
the maximum number of bits that the fuzzy extractor can correct for the corresponding
key size. Given that FeRHA aims to mitigate the impact of noise, we have evaluated
the performance when the fuzzy extractor is employed in conjunction with the PUF by
considering three temperature settings: 70 ◦C, 30 ◦C, and 15 ◦C. To clarify, the PUF is used
to map 64-bit challenge bit-strings to 64-bit responses at a baseline temperature of 30 ◦C. To
factor in the effect of noise, the same challenge bit-strings were applied to generate 64-bit
responses at a lower temperature of 15 ◦C and at a higher temperature of 70 ◦C.
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Table 2. Number of correctable errors in the BCH code for N = 63.

Index N L t

1 63 57 1
2 63 51 2
3 63 45 3
4 63 39 4
5 63 36 5
6 63 30 6
7 63 24 7
8 63 18 8
9 63 16 9

10 63 10 10
11 63 7 11

The notion of PUF reliability refers to how consistent its response is to a given challenge
under varying operating conditions, e.g., fluctuations in temperature or voltage supply.
The reliability of a PUF can be calculated using (13) and (14) below. By applying these
equations, the fuzzy extractor effectively could mitigate the temperature noise in the PUF,
leading to a reliability of 99.88% when the temperature is 70 ◦C and 99.8% for 15 ◦C. The
key size considered in this experiment is 45.

HDINTRA =
1
m

m

∑
j=1

HD(Rj(n), Rj(n))
n

× 100% (13)

From (13), the PUF reliability can be written as:

Reliability = 100% − HDINTRA (14)

where HD is the hamming distance, m denotes the number of calculated samples/chips,
and n is the number of bits.

We have repeated the same experiment using RFF data. According to ORACLE’s
published dataset [62], the noise is modeled as a Gaussian variable. We note that noise can
cause alterations in the demodulated IQ sample pattern, resulting in a slightly different
pattern from the original noise-free IQ sample pattern. To address this issue, we leveraged
a fuzzy extractor to minimize the noise to below −13 dB. This action ensures that the
Earth Mover’s Distance (EMD) between the original and altered patterns remains below
the defined ORACLE threshold of 0.1. EMD was computed using the formula expressed
in Equation (15). EMD is a widely used metric for measuring similarities between two
multi-dimensional distributions. To clarify, consider two sets of points in a two-dimensional
metric space, denoted by M2. Let I and J be two subsets of M2, each of equal size, denoted
by |I| = |J|. Let F be the set of all possible bijections, which are one-to-one and onto
mappings from I to J. The EMD between I and J can be calculated using this set F
as follows:

EMD(I, J) = min
f∈F

∑
i∈I

||i − f (i)||. (15)

In other words, EMD is calculated by identifying the smallest possible sum of Euclidean
distances between points in two given sets (I and J), while considering all valid bijections
between them ( f : A → J). EMD provides a reliable metric for measuring similarity
accurately. A smaller EMD value indicates a greater level of similarity between the two
patterns, and vice versa. In our experiments, EMD has consistently stayed below 0.1,
reflecting a highly reliable RFF, which demonstrates the effectiveness of the employed
fuzzy extractor in mitigating the noise. Overall, the reliability values discussed above
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demonstrate that the fuzzy extractor has successfully mitigated the noise, reducing the
impact of the noise.

7. Conclusions and Future Work

This paper has presented FeRHA, a novel two-factor authentication protocol that is
specifically designed for IoT devices. The protocol addresses the critical need for secure
device authentication and achieves this by integrating PUFs and RFF. One of the key contri-
butions of our protocol is its ability to facilitate mutual authentication between two devices
without relying on a trusted third party. This enhances the overall security of IoT networks
by minimizing potential vulnerabilities and performance bottlenecks that are associated
with centralized authentication mechanisms. Additionally, our design achieves resilience to
the inherent noise present in PUFs and RFFs, ensuring reliable authentication performance
under various operational conditions. This resilience is further enhanced by the implemen-
tation of obfuscation techniques that safeguard shared authentication data against potential
eavesdropping and modeling attacks aimed at compromising the security primitives. Our
validation and testing demonstrate the efficacy of our protocol in mitigating PUF modeling
attacks, launched by applying prominent machine learning techniques. When XGBoost and
CNN were applied, FeRHA could diminish the PUF response prediction accuracy to below
57%, which is a major drop from the 95% plus accuracy when FeRHA is not employed. In
the future, we plan to test our protocol’s performance by using a prototype IoT network.
We also aim to explore the feasibility of implementing FeRHA in emerging fields such
as the Internet of Vehicles (IoV). Secure communication and authentication in vehicular
networks can be challenging due to their high mobility and dynamic nature. Therefore,
applying FeRHA in the IoV context could provide reliable and resilient authentication
mechanisms for connected vehicles and roadside infrastructure.
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