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Abstract: Underwater acoustic sensor networks (UASNs) are vital for applications like marine
environmental monitoring, disaster prediction, and national defense security. Due to the prolonged
exposure of underwater sensor nodes in unattended and potentially hostile environments, the
application of UASNs is confronted with numerous security threats. Trust models are an important
means to detect anomalous nodes in UASNs and ensure security. However, when confronted with
intricate underwater surroundings, the assessment of trust is prone to disruption, and current
trust models lack a flexible mechanism for updating trust. Consequently, this study introduces a
dynamic evaluation trust model (DRFTM) for underwater acoustic sensor networks that integrate
deep reinforcement learning and the random forest algorithm. First, the DRFTM comprehensively
considers indicators including communication, data, energy, and environment to provide reliable
trust evidence for the next evaluation; second, under the conditions of node mobility and dynamic
updating of network topology, we propose a predictive model for assessing the trust status of
sensor nodes based on random forest training; last, the utilization of deep reinforcement learning is
instrumental in determining the most effective trust update strategy, leading to improved detection
accuracy of the trust model. The simulation results demonstrate the effectiveness of the DRFTM
in detecting malicious nodes, reducing false positives, and accurately assessing trust, achieving a
remarkable 99% accuracy in identifying malicious nodes.

Keywords: random forests; deep reinforcement learning; trust evaluation model; trust update
mechanism; underwater acoustic sensor networks (UASNs)

1. Introduction

Underwater acoustic sensor networks (UASNs) find extensive applications in marine
environmental monitoring, marine resource exploration and utilization, geological disaster
prediction, as well as marine national defense and security [1–3]. UASNs consist of tens or
hundreds of battery-powered underwater sensor nodes, which are typically distributed
in unsupervised, or even hostile, environments and are highly vulnerable to malicious
attacks and threats [4]. The unique attributes of underwater acoustic channels, including
substantial transmission delays, constrained bandwidth, Doppler frequency shifts, node
mobility, and pronounced multipath effects, present a formidable challenge to the security
of underwater acoustic sensor networks. Ensuring the dependability and security of
underwater data transmission stands as a pressing issue demanding attention [5,6].

Traditional techniques for maintaining network security, such as identity authentica-
tion and key management, are effective in resisting attacks from external malicious nodes,
but they cannot effectively eliminate internal attacks and require significant computational
overhead [7], these challenges render them ill-suited for resource-constrained underwater
environments. Trust models have emerged as a potent solution to tackle these issues and
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have increasingly become a primary approach for detecting abnormal nodes and bolstering
security in underwater acoustic sensor networks (UASNs) in recent years. It is worth noting
that the propagation of underwater acoustic channels is influenced by factors like ocean
depth, temperature, and salinity, among others [8]. Traditional wireless sensor network
security mechanisms and mature research results based on land cannot be directly applied
to UASN special environments.

The environment and conditions of an underwater acoustic sensor network can change
over time and with external changes, which can lead to communication disruptions between
sensor nodes, data corruption, or node failures, which in turn affect the reliability and
accuracy of the entire network [9]. The network must promptly detect and distinguish
abnormal behaviors while also dynamically adapting its trust evaluation. Domestic and
international research on trust models for UASNs has achieved certain results, and some
trust update mechanisms have also been proposed. Nonetheless, a unified trust model for
evaluating trust in underwater acoustic sensor networks is notably absent. Many research
efforts have focused on enhancing traditional network trust models, but these adaptations
often fall short of fully addressing the unique environment and requirements of underwater
acoustic sensor networks. In addition, in terms of trust updating, few studies have been
devoted to the problem of adaptive trust updating. Existing studies consider trust updating
with a time decay factor, which only considers the time factor and ignores the dynamics
of events. The results of trust updating depend heavily on the choice of the time decay
factor. In proposals that involve weighting and amalgamating historical and current trust
evidence, the challenge lies in determining the optimal size of the time window. This
factor can significantly impact the calculation and refreshment of trust values. As a result,
real-time trust updates within underwater acoustic sensor networks are imperative to adapt
to environmental fluctuations, node failures, and security risks. Such real-time updates
play a pivotal role in enhancing the network’s reliability, precision, and security.

To address the aforementioned challenges, this paper presents a novel dynamic trust
model for underwater acoustic sensor networks (DRFTM) that leverages the power of
random forest and reinforcement learning. The DRFTM operates on the principles of com-
munication trust, data trust, energy trust, and environment trust to assess trustworthiness.
It employs random forest for trust determination, benefiting from its ability to mitigate
the impact of noisy data generated by underwater acoustic channels and reduce the risk
of overfitting by combining multiple decision trees for classification or regression. Deep
reinforcement learning is harnessed to make adaptive decisions, a versatile technique with
broad applications in cyber security [10]. In our proposed approach, we harness deep
reinforcement learning to formulate an optimal trust update policy.

The primary contributions can be outlined as follows:

• To enhance the precision of the assessment, the influences that underwater sensor
nodes are susceptible to when judging trust are extensively analyzed, and the environ-
mental trust indicators are refined to provide reliable trust evidence for the next step
of trust evaluation. Simultaneously, we account for the impact of the underwater envi-
ronment on node mobility and dynamically update the network topology, rendering
the simulation scenario more akin to real-world underwater conditions.

• We propose a novel dynamic trust evaluation model for underwater acoustic sensor
networks (DRFTM), which fuses deep reinforcement learning and random forest al-
gorithms to assess the trustworthiness of sensor nodes within UASNs. The DRFTM
exhibits excellent trust determination capability and detection accuracy when sub-
jected to single and hybrid attacks.

• Regarding trust updates, this paper introduces a trust update mechanism rooted in
deep reinforcement learning. Leveraging the training and learning capabilities of
deep reinforcement learning algorithms, this adaptive trust update strategy excels
in identifying and excluding potentially malicious nodes. It ensures the timely and
precise representation of trust relationships between nodes, concurrently enhancing
the trust model to bolster detection accuracy.
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The rest of this paper is organized as follows: In Section 2, related work on trust
models is analyzed. Section 3 describes the network architecture, the attack model, and the
assumptions on which this research is based. Section 4 details the design of the DRFTM
model. Section 5 performs experimental simulation and performance analysis of the
DRFTM. Section 6 draws conclusions and provides an outlook on future research directions.

2. Related Work

Over the recent years, numerous academics have put forward trust models designed
for use in underwater acoustic sensor networks (UASNs). Broadly speaking, these trust
models comprise three primary elements: the accumulation of trust evidence, the evaluation
of trust, and the update of trust. This section specifically delves into the existing methods
for trust evaluation and the mechanisms for trust updating.

2.1. Trust Evaluation

In [4], Han et al. introduced the Attack-Resistant Trust Model for underwater acoustic
sensor networks (ARTMM). This model relies on a multidimensional trust metric to assess
the trustworthiness of the network. The ARTMM specifically examines the challenges
posed by unreliable underwater acoustic channels. It gathers trust-related data across
various dimensions, encompassing link trust, data trust, and node trust, while also taking
into account the influence of the underwater environment on trust evaluation. Nevertheless,
it is worth noting that the trust evidence generation process in the ARTMM does not fully
consider the potential impact of malicious attacks at each layer of the network. Furthermore,
the application of fuzzy logic within the ARTMM may not adequately capture the nuances
associated with uncertain trust relationships. In [11], Jiang et al. introduced a trust model
tailored for underwater acoustic sensor networks, known as the trust model based on cloud
theory (TMC). This model leverages the cloud theory, which is capable of accommodating
factors such as randomness, fuzziness, and uncertainty inherent in trust evaluation. The
TMC employs a systematic approach by conducting layer-by-layer packet loss analysis.
This method helps mitigate the influence of unreliable acoustic channels and the dynamic
nature of network topology on trust evaluation, ultimately enhancing the precision of
detecting malicious nodes. However, it is worth mentioning that the TMC does not account
for the impact of multiple malicious attacks on the trust evaluation process. In [12], Du et al.
introduced an anomaly-resilient trust model centered around the isolated forest algorithm.
By incorporating this algorithm, they enhanced the accuracy of detecting faulty nodes,
while also introducing the concept of environmental trust, and used sub-sampling methods
to reduce the probability of misclassification in trust evaluation. However, defining the
metric of environmental trust as a linear model of the total noise PSD is incomplete.

In [13], Shaikh et al. introduced a trust model known as the Group-based Trust
Management System (GTMS). This model involves the clustering of sensor nodes into
groups for trust evaluation. Within the GTMS framework, trust evaluation occurs at
multiple levels: node level, cluster head level, and base station level, achieved through the
observation of communication behaviors among neighboring nodes. Node trust values
are computed individually by each cluster member, with cluster heads responsible for
gathering and maintaining the trust status of their respective cluster members, thus forming
a global trust value for nodes within the group. However, it is important to note that the
increased overhead associated with packet transmission and data storage tends to reduce
the cluster head’s operational lifespan compared to that of a typical node. Additionally,
the potential delay arising from the transmission of node-to-node trust values was not
addressed in the GTMS model. In [14], He et al. introduced the SVM-based Collaborative
Trust Model (STMS) designed for application in underwater acoustic sensor networks.
This model incorporates a clustering network structure and introduces a dual cluster head
mechanism. Notably, the slave cluster head’s role is to oversee and monitor the master
cluster head, enhancing the overall system’s security. The STMS effectively tackles the
challenge of limited evidence in sparsely deployed underwater environments. Nonetheless,
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it is worth noting that the STMS model does not take into account the potential influence
of complex underwater environmental factors on the precision of trust prediction. In [15],
Su et al. proposed a trust management mechanism for underwater acoustic sensor networks
with redeemable SVM-DS fusion. The SDFTM takes into account the challenges posed
by intricate underwater environments on node assessment. It addresses the issue of
misclassifying node distrust by considering both historical performance and environmental
impact factors. This approach helps prevent the erroneous classification of normal nodes
as malicious ones and enhances the precision of malicious node detection.

2.2. Trust Update Mechanism

The trust update process involves fine-tuning and revising the trust evaluations
of nodes to align with the evolving network environment and node behavior. In [16],
Jiang et al. put forth an efficient distributed trust model tailored for wireless sensor net-
works. This model employs a sliding time window concept to facilitate trust value up-
dates. This time window is composed of multiple time slots, each representing a cy-
cle time. Additionally, aging factors β: β = eti−ti+1 are introduced with weight values
wi = β, wi+1 = 1 − β to account for the decay in trust values. Trust update methodolo-
gies founded on the sliding time window mechanism find widespread application in the
literature [4,10,12]. These approaches hinge on both real-time and historical windows to
execute the update process.

From a sociological point of view, trust is a generalization and summary of historical
experience, and from a statistical point of view, trust has the property of decaying over time.
In [17], Peng et al. introduced a dynamic trust renewal model characterized by multiple
constraints. This model incorporates a time aging factor to signify the gradual decay of
trust over time. Additionally, it employs a reward and punishment factor to distinguish
between the consequences of successful interactions and failed interactions. Several factors
are introduced to ensure that trust develops gradually while declining swiftly, mirroring
the trust-building process observed in human societies.

In [18], Jiang et al. introduced a trust evaluation update mechanism known as TEUC,
which relies on the C4.5 decision tree, that pointed out the problems in the sliding time
window mechanism and time forgetting factor for trust updating, designed two trust
updating mechanisms based on event triggering and time triggering and defined a reward
and punishment factor, activated when a specific quantity of trust evidence shifts from its
predefined fuzzy trust level, prompting a trust update. Furthermore, if the time window
exceeds its limit, trust updating is triggered, irrespective of whether there is a significant
change in node trust evidence. Nonetheless, it is important to clarify that TEUC does
not consolidate trust evidence, and it is limited to executing updates for individual trust
evidence instances, not accommodating multiple sources simultaneously.

In [19], He et al. introduced the Trust Update Mechanism based on Reinforcement
Learning (TUMRL), designed specifically for UASNs. They employ the concept of criticality
to assess node importance, enabling customized trust update strategies. By integrating
reinforcement learning into the environmental model along with criticality, trust updates
are made more efficient and adaptive to changing attack patterns. However, when using
reinforcement learning, the weights of the states in the trust update process are limited,
and the weights cannot be adjusted adaptively.

Building upon the diverse trust updating schemes discussed earlier, this paper sug-
gests the development of a deep reinforcement learning-based trust updating model capable
of dynamically selecting appropriate trust update strategies.

3. System Architecture and Assumptions

In this section, we provide an overview of the network architecture, attack model, and
reasonable assumptions employed in the DRFTM methodology under study.
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3.1. Network Architecture

As shown in Figure 1, this paper considers UASNs that are constructed based on a
cluster-based network. The sensor nodes in the network are assigned unique IDs. Further-
more, all underwater nodes possess identical initial energy levels, and their communication,
computational, and storage capabilities are uniform and finite. It is assumed that the po-
sitional information of sensor nodes can be obtained through established localization
algorithms [20]. Where the Sink node is deployed on the surface of the water, sensor nodes
are randomly dispersed underwater, malicious nodes are hidden in the network, and the
AUV cruises through the waters following a predefined path. The sensor nodes are divided
into clusters based on a spectral clustering algorithm [21], and each cluster consists of a
primary cluster head (CH), a supervisory cluster head (SCH), and several ordinary sensor
nodes (SNs). The sensor nodes (SNs) are responsible for sensing environmental data in the
marine surroundings and transmitting the data to the cluster head (CH) through either
single-hop or multi-hop communication. The cluster head (CH) then consolidates the
gathered data and transmits them to the nearby AUV, which transmits them to the Sink
nodes, and data transmission between the Sink node and the Base Station is facilitated
through satellite communication. In this setup, the supervisory cluster head (SCH) assumes
the role of overseeing the actions of the cluster head (CH), with its conduct subject to
monitoring by the ordinary sensor nodes (SNs).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 21 
 

Building upon the diverse trust updating schemes discussed earlier, this paper sug-
gests the development of a deep reinforcement learning-based trust updating model ca-
pable of dynamically selecting appropriate trust update strategies. 

3. System Architecture and Assumptions 
In this section, we provide an overview of the network architecture, attack model, 

and reasonable assumptions employed in the DRFTM methodology under study. 

3.1. Network architecture 
As shown in Figure 1, this paper considers UASNs that are constructed based on a 

cluster-based network. The sensor nodes in the network are assigned unique IDs. Further-
more, all underwater nodes possess identical initial energy levels, and their communica-
tion, computational, and storage capabilities are uniform and finite. It is assumed that the 
positional information of sensor nodes can be obtained through established localization 
algorithms [20]. Where the Sink node is deployed on the surface of the water, sensor nodes 
are randomly dispersed underwater, malicious nodes are hidden in the network, and the 
AUV cruises through the waters following a predefined path. The sensor nodes are di-
vided into clusters based on a spectral clustering algorithm [21], and each cluster consists 
of a primary cluster head (CH), a supervisory cluster head (SCH), and several ordinary 
sensor nodes (SNs). The sensor nodes (SNs) are responsible for sensing environmental 
data in the marine surroundings and transmitting the data to the cluster head (CH) 
through either single-hop or multi-hop communication. The cluster head (CH) then con-
solidates the gathered data and transmits them to the nearby AUV, which transmits them 
to the Sink nodes, and data transmission between the Sink node and the Base Station is 
facilitated through satellite communication. In this setup, the supervisory cluster head 
(SCH) assumes the role of overseeing the actions of the cluster head (CH), with its conduct 
subject to monitoring by the ordinary sensor nodes (SNs). 

 
Figure 1. Network architecture. 

In the actual underwater environment, the position of sensor nodes is not static but 
moves with the currents. Changes in node locations affect the network links and the net-
work topology, so it is necessary to introduce an ocean current model to simulate the re-
alistic underwater environment. In this paper, the meandering current flow (MCM) model 
is introduced as an ocean current model [22]. In a shallow marine environment, the cur-
rents move mainly horizontally, and the vertical motion is negligible. The trajectory of a 
sensor node under complex ocean current motion is represented by the flow function φ . 

Figure 1. Network architecture.

In the actual underwater environment, the position of sensor nodes is not static but
moves with the currents. Changes in node locations affect the network links and the
network topology, so it is necessary to introduce an ocean current model to simulate the
realistic underwater environment. In this paper, the meandering current flow (MCM)
model is introduced as an ocean current model [22]. In a shallow marine environment, the
currents move mainly horizontally, and the vertical motion is negligible. The trajectory of a
sensor node under complex ocean current motion is represented by the flow function ϕ.
When the sensor node’s initial position is (x, y), the node’s distance traveled at moment t is
calculated as follows [23]:

x = −∂ϕ(x, y, t)
∂y

, y =
∂ϕ(x, y, t)

∂x
, (1)

where x, y denote the latitudinal and radial vectors of the moment t velocity field, with the
unit of km.
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3.2. Attack Model

UASNs are susceptible to a variety of malicious threat attacks. The capabilities of the
malicious nodes discussed in this paper align with the Dolev–Yao model [24] and can be
modeled as the following attack models (malicious nodes that only perform eavesdropping
attacks are not considered in this paper, as the attacker performs eavesdropping attacks
without active attack behavior and cannot be easily monitored) [25]:

• DDoS attack: Distributed denial of service attack. During operation, the malicious
node continuously sends meaningless data traffic to neighboring nodes, preventing
them from properly functioning. Malicious node b keeps sending virtual packets to
neighboring nodes, as shown in Figure 2a.

• Selective forwarding attack: The malicious node selectively forward packets that pass
through it, dropping some of them. As shown in Figure 2b, malicious node b drops
packets received from neighboring node c.

• Data pollution attack: The malicious node can carry out data pollution attacks by
means such as tampering with data packets, injecting false information, or corrupting
data. As shown in Figure 2c, malicious node c transmits altered fake packets to node b,
which transmits the packets to cluster head a as it should, and cluster head a receives
the altered fake packets from node b.

• On–off attack: The attackers continuously toggle between normal and malicious
behaviors to obfuscate and evade detection. The malicious node takes measures to
conceal its malicious activities to avoid detection by other nodes within the network.
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4. Design of the DRFTM

The DRFTM trust model comprises three primary components: (1) trust evidence
acquisition, (2) trust evaluation based on random forests, and (3) dynamic trust update
based on deep reinforcement learning. The system architecture of the model is depicted in
Figure 3. Trust evidence acquisition involves collecting relevant information from various
nodes and sources. Random forests are utilized for node trust level evaluation, while deep
reinforcement learning is employed for the dynamic update of node trust values to adapt to
node mobility and network fluctuations. This comprehensive model contributes to enhanc-
ing network security and reliability, ensuring efficient trust management among nodes.
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4.1. Access to Evidence of Trust
4.1.1. Communication Trust

To a certain extent, the communication success rate between adjacent nodes reflects the
credibility of their neighbor nodes to some extent. Therefore, the communication success
rate is usually an important indicator to evaluate the communication trust degree between
adjacent nodes. Assuming node ni and its m neighboring nodes

(
n1, n2, . . . , nj, . . . , nm

)
,

this paper incorporates the beta distribution to simulate the behavior of an individual
node [26]. The beta distribution is a density function that acts as a conjugate prior distribu-
tion to the Bernoulli or binomial distribution and is suitable for modeling trust distributions
and is expressed in terms of the function Γ as [27]:

P(x) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − x)b−1, ∀0 ≤ x ≤ 1, (2)

where a ≥ 0, b ≥ 0. For communication trust, a represents normal behavior, i.e., the ability
to successfully transmit between nodes ni and nj, b represents abnormal behavior, i.e., the
failure of transmission between nodes ni and nj, and the total interaction count between
nodes ni and nj is equal to the sum of the normal transmission count and the abnormal
transmission count, which is represented as (a + b).

When forecasting the behavior of node ni, node ni’s conduct is denoted by σ and
follows a uniform distribution: P(σ) = Beta(1, 1) in the absence of a priori knowl-
edge. The posterior probabilities obey a Beta distribution with the following parameters:
P(σ) = Beta(a + 1, b + 1). Based on this beta distribution, node nj computes the communi-
cation trust value for node ni as

Tcom
i = E(Beta(a + 1, b + 1)) =

a + 1
a + b + 2

. (3)

4.1.2. Data Trust

Data trust is an assessment of the credibility and reliability of data, typically encom-
passing considerations of data fault tolerance and consistency. In a certain period, data
detected by adjacent nodes have temporal and spatial correlations, and the trustworthiness
of node ni is judged by the difference between the data transmitted by node ni and the
data perceived by neighboring node nj. Suppose data collected by various sensor nodes
over a defined time period are denoted as {d1, d2, . . . , dm, . . . , dn}, we introduce a normal
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distribution to model the probability density of data items detected by adjacent nodes
as [28,29]:

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (4)

where µ represents the mean of this set of data and σ represents the variance of this set
of data.

The mean value of data obtained from a normal distribution is primarily influenced
by the majority of data points, making it considered the most representative value that
effectively reflects the similarity of data values. Consequently, it is regarded as having the
highest trustworthiness. Trustworthiness evidence based on the received data values is
calculated as

Tdata
i =


2

(
0.5 −

dm∫
µ

f (x)dx

)
= 2

∞∫
dm

f (x)dx, dm ≥ µ

2

(
0.5 −

µ∫
dm

f (x)dx

)
= 2

dm∫
−∞

f (x)dx, dm < µ

. (5)

4.1.3. Energy Trust

Due to the limited energy resources of sensor nodes in underwater environments,
when the energy levels of these nodes drop too low, it can disrupt the normal operation of
the entire sensor network. Malicious nodes execute distributed denial of service attacks
or selective forwarding attacks, and the node energy consumption rate will be abnormal.
Under stable conditions, the rate of energy consumption by nodes should remain relatively
constant. Given that underwater sensor nodes rely on batteries, the amount of remaining en-
ergy serves as an indicator of the node’s capacity to sustain its operations. The computation
of trust evidence based on energy levels is performed in the following manner:

Tenergy
i =

{
Eres

Einit , Eres ≥ θ

0, otherwise
, (6)

where Eres represents the remaining energy of the node, Einit represents the node’s initial
energy, and θ signifies the minimum energy required for the node to accomplish its tasks.

4.1.4. Environment Trust

It is inaccurate to judge the trustworthiness of nodes by considering only the interac-
tion behavior between them, and communication between two nodes in an underwater
environment is also affected by unreliable underwater acoustic channels. Marine ambient
noise is a major factor affecting underwater acoustic propagation, and turbulence, shipping,
waves, and thermal noise are the most common sources of marine ambient noise. The
empirical equation below gives the continuous power spectral density of the four noise
components [30], with a unit of dB re 1 µPa2/Hz, and it varies with the frequency f of the
sound waves:

10 log Nt( f ) = 17 − 30 log f , (7)

10 log Ns( f ) = 40 + 20(s − 0.5) + 26 log f − 60 log( f + 0.03), (8)

10 log Nw( f ) = 50 + 7.5
√

w + 20 log f − 40 log( f + 0.4), (9)

10 log Nth( f ) = −15 + 20 log f , (10)

N( f ) = Nt( f ) + Ns( f ) + Nw( f ) + Nth( f ), (11)

where Nt stands for turbulence noise, Ns represents shipping noise, Nw refers to sea surface
noise, Nth is thermal noise, and N( f ) represents the summation of various environmental
noises mentioned above. Considering the application scenario, the transmission frequency
of UASNs is significantly influenced by shipping noise and sea surface noise.
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The propagation loss in underwater acoustic channels is typically influenced by
the distance due to the attenuation of sound waves when propagating through water.
In general, the propagation loss of sound waves can be described using the following
formula [31]:

A(d, f ) = dka( f )d, (12)

whereas the variable d represents the Euclidean distance, and k is the propagation geo-
metric shape expansion factor. Different values of k reflect the geometric characteristics of
sound waves when propagating in water, specifically whether they exhibit a cylindrical or
spherical shape. a( f ) denotes the rate at which energy is lost due to absorption during the
propagation of sound waves in seawater, expressed as

10 log a( f ) =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2 +
2.75 f 2

104 + 0.003. (13)

By utilizing the ocean environment noise and accounting for underwater acoustic
propagation losses, one can derive the signal-to-noise ratio (SNR) at a distance d of the
receiving node:

SNR(d, f ) =
Eb

N( f )A(d, f )
, (14)

where Eb represents the amount of energy used to transmit data per unit bit.
In the physical layer of acoustic modems, the widely employed modulation technique

is binary phase shift keying (BPSK) [32]. Under specific conditions characterized by a
distance of d and a frequency of f , the error probability of BPSK modulation can be
expressed as

pe(d, f ) =
1
2

(
1 −

√
SNR(d, f )

1 + SNR(d, f )

)
, (15)

The ambient trust (transmission success rate of a packet of received length l) based on
the effect of noise is expressed as

Tenv
i = p(d, f ) = (1 − pe(d, f ))l . (16)

4.1.5. Recommendation Trust

In UASNs, due to the sparse deployment and constant movement of nodes, the trust
evidence obtained through direct interactions between nodes may not be sufficient to
support the judgment of node trust, which requires the introduction of recommendation
trust. In [33], Zhang et al. made a careful study of recommendation trust and distinguished
between unreliable suggestions and dishonest nodes in the network. Here, we adopt
the same computational method and do not elaborate on the specific process, and the
recommendation trust is expressed as Trec

i .

4.2. Trust Evaluation Based on Random Forest

In the current context of trust evaluation, different techniques such as Bayesian distri-
bution, subjective logic, fuzzy logic, cloud theory, SVM classification, and various machine
learning methods are used [17]. However, this paper proposes a new approach named
DRFTM, which utilizes random forest to predict and assess the trustworthiness of sensor
nodes. Random forest is a technique introduced by Leo Breiman that relies on aggregating
multiple decision trees [34]. Compared with a single decision tree, random forest can better
process high-dimensional features and large-scale data sets and has strong anti-noise ability.
For complex underwater environments where decision trees do not work well, random
forest can reduce the impact of noise data generated by underwater acoustic channels on
trust evaluation and limit overfitting without significantly reducing prediction accuracy.
At the same time, the random forest can automatically select important features and can
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effectively process missing data. In addition, random forest can also assess the importance
of features to provide a more comprehensive reference for trust determination.

Trust evaluation using the random forest algorithm involves three key steps: (1) prepro-
cessing collected trust evidence data, (2) selecting an appropriate decision tree generation
method, and (3) using the random forest algorithm to generate the optimal classification
result through a majority vote of multiple decision trees, thereby determining the trust
status of each node.

4.2.1. Data Preprocessing

The trust evidence collected may be affected by noise in the underwater acoustic
channel, and the calculations for different trust evidence have varying standards. Therefore,
it is not possible to directly input these trust evidence data into the model. To address this
issue, all collected trust evidence needs to be normalized, meaning it is scaled to fall within
the range of [0, 1].

4.2.2. Generation of Decision Trees

A decision tree is a basic method for classification and regression tasks. It forms
a tree-like structure, where data points in a specified feature space are progressively
allocated from the root node to child nodes and ultimately reach a leaf node, which
represents the data point’s classification. Depending on the choice of the best attribute
selection method, decision trees are generally categorized into three main methods, in-
cluding ID3, C4.5, and CART [17]. In this paper, C4.5 is chosen as the decision tree
generation algorithm. For the five types of trust evidence obtained through the method in
Section 4.1, the trust evidence obtained within a time window can be expressed as sam-
ple D, i.e.,

{(
Tc

1 , Td
1 , Ten

1 , Tenv
1 , Trec

1

)
,
(

Tc
2 , Td

2 , Ten
2 , Tenv

2 , Trec
2 ) , . . . ,

(
Tc

n, Td
n , Ten

n , Tenv
n , Trec

n

)}
.

The primary focus in decision tree learning is discovering the best attribute for group-
ing data. The C4.5 algorithm selects attributes by calculating the information gain ratio
and prioritizes the attributes with higher information gain: it is assumed that there are
V(1, 2, . . . v, . . . , V) possible values of {a1, a2, . . . , av, . . . , aV} for discrete attribute a, where
all the samples of attribute a in sample D with value av are denoted as Dv. k denotes
the classification result of the sample, and Dvk denotes the sample classified as k. The
corresponding information entropy is as follows:

H(Dv) = − ∑
k∈N

p(k|v ) log p(k|v ) = − ∑
k∈N

|Dvk|
|Dv|

log
|Dvk|
|Dv|

, (17)

Each value contains a different number of samples, and we assign weights |Dv|/|D| to
the likelihood of each value. Consequently, we can calculate the information gain obtained
when attribute a is used to partition the sample set D:

Gain(D, a) = H(D)−
v

∑
v=1

|Dv|
|D| H(|Dv|) = H(D)− H(D, a) = I(D, a). (18)

The information gain criterion tends to favor attributes with a larger number of values.
To mitigate this preference, the C4.5 decision tree algorithm uses the information gain ratio
to select the optimal splitting attribute. The information gain rate is defined as follows:

Gainratio(D, a) =
Gain(D, a)

IV(a)
, (19)

where IV(a) = −
V
∑

v=1

|Dv |
|D| log |Dv |

|D| = H(a).
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4.2.3. Trust Status Determination of Nodes

This study utilizes the random forest algorithm to categorize trust levels for trust eval-
uation. The determination of a node’s trust status directly corresponds to the classification
outcome produced by the random forest algorithm. The trust level of nodes is represented
by {C1, C2, C3}, which corresponds to {high trust, ordinary trust, low trust}, respectively.
Every decision tree is a classifier. For the trust evidence set obtained in Section 4.1, it is
assumed that it contains K decision trees {H1, H2, . . . , HK}, and K trees will have K kinds
of trust judgment results. The random forest algorithm combines all trust evaluation results
and determines the final trust status of a node by majority voting, selecting the result with
the highest number of votes. The implementation steps of the random forest algorithm are
presented as follows:

Input: given training sample data and test sample data.

1. The original training set contains N samples. Each time a tree is constructed, n samples
are randomly chosen from it to form the training set for that tree. This process is
repeated K times, resulting in the creation of K training sample sets. Finally, these
sample sets are used to build K classification trees.

2. The feature dimension of the samples is M, and we need to choose a constant m < M,
and m features are randomly selected from the M features.

3. Each tree is prepruned according to pruning strategies during growth.
4. Multiple classification trees are assembled into a random forest. This random forest

classifier is then used to evaluate and classify new data. The final classification result
is determined by the voting consensus of the individual decision tree classifiers.

Voting strategy: The decision tree Hi will predict a final result from the set of category
labels {C1, C2, C3}. The predicted output of Hi on the training set x is expressed as a three-
dimensional vector

(
H1

i (x), H2
i (x), H3

i (x)
)
, where H j

i (x) is the output of Hi on the category
marker Cj. The absolute majority voting method is used to determine the final classification
result, meaning that if a label receives more than half of the votes, it is predicted as that
label; otherwise, it is labeled as ordinary trust:

H(x) =

 Cj, if
K
∑

i=1
H j

i (x) > 0.5
N
∑

n=1

K
∑

i=1
Hn

i (x)

Ordinary trust, otherwise
. (20)

4.3. Trust Update Based on Deep Reinforcement Learning

A timely update of the trust status helps the node know the current status of the
neighbor so that it can perform the next action. In the face of changing environment and
noise conditions, nodes need to constantly improve their trust update mode according to
new data and experience. Hence, the adoption of an adaptive trust update strategy enables
nodes to dynamically modify the update frequency and weight allocation in response
to evolving conditions. The incorporation of deep reinforcement learning represents an
innovative approach within the trust update process, allowing for adaptive learning based
on environmental cues and feedback. The deep reinforcement learning model determines
the optimal strategy based on the evaluated node’s state and acquired trust evidence. It
selects an action At to maximize rewards Rt according to the current state St, and as a result
of action At execution, the environment undergoes changes, accompanied by feedback
in the form of rewards Rt. This iterative process continues until the optimal strategy is
identified, leading to the achievement of optimal trust updates.

4.3.1. Update Rule

In this paper, the exponential smoothing function is used for node trust update [35]:

Trustt = ϕTrustt−1 + (1 − ϕ)Ft, (21)
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where Trustt−1 is the trust value at time t − 1 and ϕ ∈ (0, 1) represents the smoothing factor.
When a node exhibits high trust, Ft is set to 1, and for low trust, Ft is set to 0. The selection
of ϕ parameter values involves finding a trade-off between low and high values, where a
lower ϕ value indicates that the current behavior carries a higher weight in trust updates,
and the trust value of a node will rise or fall rapidly, which is a powerful trust update
strategy. A strong trust update strategy will help nodes rapidly increase or decrease their
trust value. Conversely, when ϕ has a higher value, it indicates that past trust values hold
greater influence in trust updates, and the trust value of the node will slowly rise or fall.
Therefore, the accurate trust value can be obtained only by determining the appropriate
parameter ϕ. This paper utilizes deep reinforcement learning to find the best strategy for
updating trust.

4.3.2. Deep Reinforcement Learning

Q-learning is a classical reinforcement learning algorithm employed to acquire the
optimal action-value function. However, in the MDP process, When the state and action
spaces are extensive, and it demands a substantial number of samples to explore the entire
state space, Q-learning-based schemes may encounter difficulties. This limitation is mainly
related to Q-table storage and updating. When the state space is large, you need to use a
huge Q-table to store the value corresponding to each state-action, which takes up a lot of
memory. Also, the speed of updating the Q-table is affected because each iteration step
needs to traverse the entire Q-table. In the scenario of underwater acoustic sensor networks,
deep reinforcement learning, particularly through the use of Deep Q-Networks (DQNs),
offers a strong solution to this problem.

4.3.3. Process of Deep Reinforcement Learning

In this paper, the sliding time window is used to store the trust characteristics of sensor
nodes, and the trust state of nodes is determined by random forest. Additionally, the deep
reinforcement learning model can record the update strategy of previous trust updates,
determine the best trust update strategy according to the update strategy of previous trust
updates, the trust evidence score of sensor nodes, and the trust state of nodes, and choose
action At to maximize the reward Rt according to the optimal strategy. The following
details the deep reinforcement learning parameters used in the DRFTM:

• State: the deep reinforcement learning model predicts the state of the environment at
the time point based on the random forest algorithm. States are defined as

St =
{

ϕt−1; Tc, Td, Ten, Tenv, Trec; CP

}
, (22)

where ϕt−1 is the smoothing factor of the previous trust update strategy,
{

Tc, Td,
Ten, Tenv, Trec} is the trust evidence score of the sensor node, and CP is the node trust
state determined by the random forest according to the result of the last round of trust
update combined with the current trust evidence.

• Action: the action of deep reinforcement learning is to select the smoothing factor ϕ,
that is, the trust update strategy, and it is expressed as

At = (ϕ1, ϕ2, . . . , ϕm), (23)

where (ϕ1, ϕ2, . . . , ϕm) is the m smoothing factor of trust renewal strategy.
• Reward: reward is defined as the detection accuracy of the trust state of the node

determined by the trust model at a given time, which is defined as

Rt =
mt

Mt
, (24)

where mt is the number of malicious nodes detected by the trust model and Mt is the
actual total number of malicious nodes.
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When the Sink node collects a new round of trust evidence, that is, a new state St
appears in the network, a trust update strategy, represented as an action At, is chosen
based on the new trust evidence and the trust state of the node determined by the trust
evidence. Given the state, the action At is determined by the optimal trust update policy π.
This action At is then executed, resulting in a reward Rt obtained from the environment.
The environment operates according to a Markov decision process (MDP) and transitions
to a new state St+1, in accordance with the MDP rules. The goal of reinforcement learn-
ing is to maximize the expected long-term discounted rewards by identifying the best
policy. Q-values can be utilized to find the optimal policy and can be updated using the
following formula:

Qt+1(st, at) = (1 − α)Qt(st, at) + α[R + γmaxQt(st+1, at+1)], (25)

where α is the learning rate. The best strategy can be expressed as

π∗ = argmax
a∈A

Q∗(s, a). (26)

DQN uses neural network Q(s, a; w) to approximate Q∗(s, a), takes state as input, and
outputs Q value estimation for each action. Relating inputs are approximated to relating
outputs using weight or coefficients. The objective is to minimize the error by adjusting
the network’s weights through gradient descent. First, the weights of the deep Q network
coefficients are randomly initialized. Over time, the deep Q-network updates its weights
based on the difference between the expected reward and the true reward. In each iteration
of the deep Q-network, the objective is to minimize the loss function as follows:

L(w) = ∑
(st ,at)

(yt − Q(st, at; w))
2, (27)

where Q(st, at; w) is the predicted value and yt is the estimated value of the actual value,
which can be expressed as

yt = Rt + γmax
at∈A

Q(st, at; w), (28)

where Rt is the corresponding reward and γ is the discount factor.

5. Simulation Results and Analysis
5.1. Simulation Settings

This paper presents a comparative analysis of the DRFTM model and four existing
models, namely the ARTMM [4], STMS [12], TEUC [17], and TUMRL [18]. The ARTMM
is renowned as the pioneer trust model implemented in underwater environments. On
the other hand, the STMS is a notable trust model specifically designed for layer-clustered
networks. The TEUC stands out by utilizing a decision tree algorithm for trust evaluation,
incorporating both event and time-based updating mechanisms. Lastly, the TUMRL is
constructed on reinforcement learning principles for trust update. To evaluate the per-
formance of these trust models, MATLAB 2021 simulation is employed. Specifically, the
simulation incorporates sensor nodes that are uniformly distributed within a network space
of dimensions 500 m × 500 m × 500 m. The default simulation parameters can be found
in Table 1.

The performance evaluation indicators are described as follows:

• Detection accuracy (%): reflects the overall predictive accuracy of the model for
all samples.

• Error rate (%): measures the model’s ability to incorrectly predict negative samples
as positive.

• Trust value: a visual reflection of the evaluation result of node trust.
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Table 1. Simulation parameters.

Parameters Default Value

Network size 500 m × 500 m × 500 m
Number of nodes 100
Node placement Randomly deployed

Maximum communication radius 200 m
Node initial energy 65 J

Packet length 2048 bits
Proportion of malicious nodes 30%

Phase velocity c 0.12
Average width of ocean currents 1.2

5.2. Validation Effectiveness of the DRFTM
5.2.1. Discussion of Tree Number Parameters

The initial performance of a single decision tree in a random forest model tends to be
relatively poor due to the risk of overfitting. The introduction of attribute perturbation in
random forests can further increase model variance, resulting in decreased performance.
Additionally, using numerous decision trees in random forests can make the algorithm
slow, which requires finding a balance between efficiency and detection capability in
trust evaluation models. A commonly used metric for evaluating classification models is
area under the curve (AUC). AUC reflects the area under the ROC curve and measures
the classification performance, specifically the ability to detect malicious nodes in a trust
evaluation model. It provides a numerical value that helps determine the better classifier.

In Figure 4, we observe the interplay between the number of decision trees, AUC,
and runtime. As illustrated in Figure 4a, there is a rapid increase in AUC as the number
of decision trees rises. Beyond a certain threshold, the AUC stabilizes at a relatively high
value, showing only marginal improvement with further increases in the number of trees.
Figure 4b demonstrates a linear correlation between runtime and the number of decision
trees. While, theoretically, a higher number of decision trees may lead to more accurate
trust evaluation, our experiments indicate that an optimal detection accuracy is achieved at
around 25 decision trees. Given the consideration of runtime impact, we set the number of
decision trees to 25 in this study.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 21 
 

trees. While, theoretically, a higher number of decision trees may lead to more accurate 
trust evaluation, our experiments indicate that an optimal detection accuracy is achieved 
at around 25 decision trees. Given the consideration of runtime impact, we set the number 
of decision trees to 25 in this study. 

  
(a) (b) 

Figure 4. Impact of the number of trees on the DRFTM performance: (a) AUC vs. tree number; (b) 
running time vs. tree number. 

5.2.2. Comparison of Random Forest and C4.5 Decision Trees 
This paper employs the random forest algorithm and conducts a comparative analy-

sis with another classification method, namely the C4.5 decision tree algorithm, as de-
picted in Figure 5. Random forest exhibits better detection accuracy and a lower error rate 
than C4.5 for different malicious node rates. This is due to the fact that in the random 
forest algorithm, multiple decision trees are used for classification. Finally, the final clas-
sification result is arrived at by voting or averaging, etc. In comparison, the C4.5 decision 
tree algorithm uses only a single decision tree for classification. Therefore, the random 
forest algorithm is able to classify more accurately, whereas the C4.5 algorithm is relatively 
weaker. 

  
(a) (b) 

Figure 5. Comparison between random forest and C4.5: (a) detection accuracy over time; (b) error 
rate over time. 

5.2.3. Validation of the Trust Update Mechanism 
In this context, node trustworthiness is represented by a trust value on a scale from 0 

to 1, where 0 signifies a complete lack of trustworthiness and 1 represents absolute trust-
worthiness. Initially, during the network’s inception, all nodes are assumed to possess a 

Figure 4. Impact of the number of trees on the DRFTM performance: (a) AUC vs. tree number;
(b) running time vs. tree number.

5.2.2. Comparison of Random Forest and C4.5 Decision Trees

This paper employs the random forest algorithm and conducts a comparative analysis
with another classification method, namely the C4.5 decision tree algorithm, as depicted in
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Figure 5. Random forest exhibits better detection accuracy and a lower error rate than C4.5
for different malicious node rates. This is due to the fact that in the random forest algorithm,
multiple decision trees are used for classification. Finally, the final classification result is
arrived at by voting or averaging, etc. In comparison, the C4.5 decision tree algorithm uses
only a single decision tree for classification. Therefore, the random forest algorithm is able
to classify more accurately, whereas the C4.5 algorithm is relatively weaker.
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5.2.3. Validation of the Trust Update Mechanism

In this context, node trustworthiness is represented by a trust value on a scale from
0 to 1, where 0 signifies a complete lack of trustworthiness and 1 represents absolute
trustworthiness. Initially, during the network’s inception, all nodes are assumed to possess
a trust value of 1. To evaluate the effectiveness of the DRFTM in discerning between
normal and malicious nodes, we monitor the evolution of trust values over time. For this
experimental configuration, we introduce an initial 30% of malicious nodes to initiate a
hybrid attack (Section 3.2). As depicted in Figure 6, normal nodes consistently maintain a
high trust value, whereas malicious nodes undergo a swift decrease in trust, eventually
stabilizing at a low trust value of 0.1. This finding highlights the DRFTM’s proficiency in
effectively distinguishing between normal and malicious nodes.
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5.3. Comparison of the DRFTM Performance in Different Attack Modes

To validate the performance of the DRFTM model under single-mode and hybrid
attacks, we compare the DRFTM with three established trust models (ARTMM, STMS,
and TUMRL). In a single-mode attack, only one mode of attack occurs at the same time,
i.e., DDoS attack, selective forwarding attack, data contamination attack, and on–off attack.
A hybrid attack occurs when all four attack modes occur at the same time.

5.3.1. Detection Accuracy under Hybrid Attack

This paper evaluates the detection accuracy of four models with respect to time,
different percentages of malicious nodes, and different numbers of nodes and calculates
the detection accuracy of several models over a period of 20 cycles. Among them, the
DRFTM model proposed in this paper fuses deep reinforcement learning with a random
forest algorithm and is compared with the weighted fusion computation method of the
ARTMM, the SVM classification algorithm of the STMS model, and the reinforcement
learning method of the TUMRL model.

First, the detection accuracy of different models is tested with time variation. The
malicious nodes initiate hybrid attacks right from the start of network operation, with the
malicious node percentage set at 30%. As illustrated in Figure 7a, the detection accuracy of
the DRFTM exhibits a swift initial increase, eventually stabilizing at a level exceeding 98%
after several iteration cycles. At the beginning of the simulation, the detection accuracies of
the ARTMM, STMS, and TUMRL are relatively low, and as more and more trust evidence is
obtained from the neighboring nodes, the detection accuracies are continuously improved.
The STMS requires the training of a trust evidence set for predicting sensor node trust.
Initially, during the simulation’s outset, there is a shortage of trust evidence, resulting in
low detection accuracies. However, by the 10th training cycle, the STMS achieves higher
detection accuracies compared to the ARTMM. The detection accuracy of the TUMRL is
better than the ARTMM and STMS but always lower than the detection accuracy of the
DRFTM. The DRFTM relies on the random forest algorithm to assess the trust status of
nodes. It employs a voting mechanism based on decision tree classifications to derive
optimal classification results. Additionally, it integrates deep reinforcement learning for
adaptive strategy selection during updates. This synergy results in an accelerated increase
in the accuracy of the DRFTM. It can be seen that the DRFTM model outperforms the
ARTMM, STMS, and TUMRL in terms of detection accuracy.
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At a fixed network size, the fluctuation in node count indicates the level of node
deployment sparsity (the communication range is appropriately adjusted with the spar-
sity). As shown in Figure 7b, the impact of node count variation on detection accuracy is
observed at the 10th cycle of simulation, with a 30% proportion of malicious nodes. The



Appl. Sci. 2024, 14, 3374 17 of 21

experiments demonstrate that the DRFTM exhibits strong performance even in underwater
environments characterized by sparse sensor node deployment.

As depicted in Figure 7c, it illustrates the detection accuracy of malicious nodes at
the 10th simulation cycle for various proportions of malicious nodes. With an increase
in the proportion of malicious nodes, all four models experience a decline in detection
accuracy. The ARTMM exhibits the most rapid decrease, followed by the STMS. In contrast,
the DRFTM demonstrates the smallest decrease and maintains a robust detection accuracy
of 90% even when the proportion of malicious nodes reaches 30%. This resilience can
be credited to the robustness of the random forest algorithm, which adeptly manages
noise while integrating environmental trust factors to ensure steady detection of normal
nodes. In contrast, other algorithms overlook the dynamics of the underwater environment.
The DRFTM, through learning from historical interactions and trust evidence, discerns
the characteristics of malicious nodes, thus sustaining high detection accuracy even in
scenarios with limited trust evidence.

5.3.2. Error Rate under Hybrid Attack

To further assess the performance of the DRFTM trust model, we compare the false
detection rates of the four trust models under various parameters, maintaining the same
experimental setup as detailed in Section 5.3.1. As illustrated in Figure 8a, the DRFTM
consistently maintains an error rate below 0.1 after stabilization. In contrast, the ARTMM
and STMS exhibit initially high error rates that gradually decrease over time. Figure 8b
demonstrates that a lower node count corresponds to higher error rates. Reduced node
numbers result in limited trust evidence, which can negatively impact the model’s trust
determination. With an increasing node count, the DRFTM’s error rate steadily decreases,
establishing a stable pattern of low error rates. Regarding different ratios of malicious
nodes, Figure 8c reveals that when the ratio remains below 15%, all four trust models
maintain an error rate below 0.1. However, as the proportion of malicious nodes increases,
the ARTMM and STMS experience a rapid escalation in error rates. This is attributed to
the growing ratio of malicious nodes introducing false information into the trust evidence.
The ARTMM, employing a weighted fusion method for trust calculation, exhibits limited
ability to discern false trust, resulting in high error rates. In contrast, the STMS employs an
unsupervised method for label assignment in the first stage, and errors in this initial phase
have cascading negative effects on the subsequent anomaly identification process in the
second stage. The DRFTM and TUMRL perform better with a slower increasing trend in
the error rate, which stabilizes at an error rate of less than 0.15.
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5.3.3. Performance of the DRFTM under Single Mode Attack

To provide a conclusive comparison, we assessed the performance of the four models
exclusively in single-mode attack scenarios. In these experiments, we initiated each test
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with an initial percentage of 30% anomalous nodes, focusing on a single type of attack. No
attack occurs in the first five iterations, and after five iterations, 30% of the nodes switch
to anomalous behavior state (experimental verification confirms that altering anomalous
behavior after a specific number of iterations results in a consistent trend in trust value
changes. The figure illustrates this trust value variation of malicious nodes when switching
anomalous behavior within five iterations as an illustrative example), launching a DDoS
attack, a selective forwarding attack, a data contamination attack, and an on–off attack,
respectively (Section 3.2). We compared the average trust levels of malicious nodes across
the four trust models.

As shown in Figure 9, during the initial five iterations when the malicious node
refrains from launching an attack, all four models consistently estimate high average trust
values for the nodes. However, when the malicious node initiates an attack, the DRFTM
rapidly detects and reflects this change by observing a sharp drop in the average trust
value assigned to the malicious node. While trust values exhibit slight fluctuations under
various attack scenarios, the overall trend remains consistent. This is because the DRFTM
model uses a deep reinforcement learning adaptive trust update strategy, which is able to
react quickly to outliers in the trust evidence and determine the node as low trust during
trust evaluation, assigning it a very low trust value. The other three models also respond
to the actions of the malicious node, albeit with a slower reaction time, resulting in a
gradual decline in the trust value assigned to the malicious node. Figure 9d shows that
while the malicious node launches a DDoS attack, selective forwarding attack, and data
contamination attack, the malicious node performs an on–off attack. Because the switch
attack is launched intermittently, the trust values estimated for the malicious node by the
four models exhibit varying degrees of fluctuation, but the fluctuation magnitude of the
DRFTM is small and the trust state is stable. This is because the DRFTM model not only
considers the current trust state but also combines the node’s historical behavior when
updating the trust. The malicious node executes the on–off attack, and even when the node
occasionally performs well, the node’s trust value will not be restored to the normal node’s
trust state, and the overall trend shows a fast decline and a slow rise. Taken together, the
above results show that malicious nodes can be quickly identified by their trust values,
which indicates the reliability of the DRFTM model to detect malicious nodes and their
resistance to face multiple attacks.
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6. Conclusions

This paper addresses the challenge of detecting malicious nodes within complex un-
derwater acoustic sensor networks, accommodating various attack behaviors of malicious
nodes. It introduces a dynamic trust evaluation model that combines deep reinforcement
learning and the random forest algorithm. In this framework, behavioral characteristics
of malicious nodes are leveraged to select three types of trust evidence: communication
trust, data trust, and energy trust. The model also accounts for the influence of intricate
underwater environments on node trust determination, enhancing trust indicators based
on environmental factors. A trust evaluation model, based on the random forest algorithm,
is trained to assess the trust status of sensor nodes. Real-world scenarios, where ocean
currents induce dynamic movement of underwater sensor nodes, are considered. This
paper analyzes and simulates node mobility, accounting for the dynamic evolution of
network topology. Nodes are adaptively updated using a trust update mechanism rooted
in deep reinforcement learning. This mechanism facilitates timely and precise reflection of
trust relationships between nodes, thereby enhancing the trust model’s detection accuracy.
Experimental analyses demonstrate that DRFTM excels in promptly detecting malicious
behaviors, outperforming existing approaches, and maintaining robust performance even
in sparsely deployed underwater environments.

However, this research also has its limitations. The attack model simulated in this
study excludes scenarios where malicious nodes engage solely in eavesdropping attacks.
Nevertheless, eavesdropping attacks pose a significant threat to the confidentiality, integrity,
and overall security of UASNs. These attacks can jeopardize confidentiality, manipulate
data, and operate covertly, presenting challenges in detection and mitigation. In future
studies, we will focus on enhancing security through secure routing protocols, develop-
ing strategies to resist eavesdropping attacks, and exploring more practical trust models
for UASNs.
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