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Abstract: High–speed, high–power photodiodes play a key role in wireless communication systems
for the generation of millimeter wave (MMW) and terahertz (THz) waves based on photonics–based
techniques. Uni–traveling–photodiode (UTC–PD) is an excellent candidate, not only meeting the
above–mentioned requirements of broadband (3 GHz~1 THz) and high–frequency operation, but
also exhibiting the high output power over mW–level at the 300 GHz band. This paper reviews the
fundamentals of high–speed, high–power photodiodes, mirror–reflected photodiodes, microstructure
photodiodes, photodiode–integrated devices, the related equivalent circuits, and design considera-
tions. Those characteristics of photodiodes and the related photonic–based devices are analyzed and
reviewed with comparisons in detail, which provides a new path for these devices with applications
in short–range wireless communications in 6G and beyond.

Keywords: high–speed photodiodes; high–power photodiodes; millimeter–wave; terahertz wave;
photodiode–integrated devices; wireless communication

1. Introduction

High data rate and high–quality transmission, large–capacity data storage, wireless
short–range links, sensing, and imaging bring new challenges for current communication
systems. Parts of the of microwave (MW), millimeter wave (MMW), and terahertz (THz)
bands, which cover the frequency from 20 GHz to 3 THz, as shown in Figure 1, provide
an appropriate choice for the above–mentioned challenges [1–4]. The exciting MMW and
THz bands (20 GHz~1 THz), which are located between the radio waves and light waves,
combine both their qualities and advantages, including large available bandwidth, high
information capacity, transparent for some kinds of materials, high–spatial resolution,
smaller beam scattering than infrared and visible light, and greater safety for the human
body than x–rays and gamma rays [5–7]. Based on the above–mentioned advantages of the
frequency band, it would bring about many potential applications [7], such as high–capacity
wireless links, short–range wireless communication systems, and inspection system, high–
resolution imaging transmission, spectroscopy, remote gas sensing and detection, security
system and astronomical radio telescope system. More–over, this frequency band would
support 6G technology for a high data rate (100~100 Gbit/s), helping towards a fully
connected world in the future.

However, the large atmospheric attenuation (Figure 1) [8,9] in wireless communi-
cation systems needs to be considered (i.e., the attenuation caused by the rain and fog,
free–space propagation loss (FSPL), gas loss, and signal loss from fiber to chip [8–11]) with
the exception of focusing on the two key figures, i.e., the data rates or information capacity
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and transmission distance. To compensate for the FSPL limitation, high–gain and high–
output power antennas or phased array antennas for beam forming/beam steering [12,13]
should be considered for both transmitter and receiver systems. For the transmitter in
communication systems, using large–scale photonic integrated circuit (PIC) techniques has
an unparalleled impact on the continually reducing footprint, coupling loss, low power
consumption and cost, while gradually increasing stability, reliability, and functionality [14].
Photonics–based technology is not only used for the development of MMW to THz com-
munication techniques in systems with lower loss in optical fibers, large bandwidth, and
miniaturized device/system [6–9,15–25] but it can also reduce some drawbacks which are
brought forth by electronics–based technology, including high propagation loss in coaxial
cables, narrow bandwidth, incompatibility with system operations at high–frequency bands
and bulky feeding methods [26–29].
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Figure 1. Features of microwave, millimeter–wave, and terahertz spectrum [8–11].

In this scheme, photonic–based techniques are derived from optical to RF signal con-
versions utilizing the photomixing method [30]. Since there is an output power limitation
using a single photomixer, the InP–based semiconductor devices have been employed
and led by a uni–traveling–carrier photodetector (UTC–PD) [31,32], operating at a long
fiber–optics communication band (1.31~1.55 µm), which can be used to further enhance
the output power up to a mW level around 300 GHz [9]. However, the new requirements
of high data rate transmission in future 6G poses another challenge for THz systems. In
addition, due to the lack of appropriate power amplifiers in the THz system transmitting
terminally along with the difficulty of miniaturizing the monolithically integrated system
employing Si–lens, the combination of high–speed, high–power UTC–PD (or UTC–PD
array) and high–gain, high–output power antenna and/or arrays would be a better choice
to tackle the power limitation problem. Furthermore, the optical–to–electrical (O/E) con-
version efficiency and heat dissipation at a high bias voltage also needs to be considered.
We could use resonant cavity enhanced (RCE) structure [33] employing distributed Bragg
reflector (DBR) [34], subwavelength grating (SWG) mirrors [35] as bottom reflectors and
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dielectric layers as top reflectors to increase O/E conversion efficiency, while using high
conductivity AlN [36,37], diamond [38] or SiC [39] substrates to reduce heat dissipation.
Moreover, the slow light effect resulting from Bragg grating structures [40,41] with a re-
markably low group velocity might offer a possible and promising solution to successfully
compress optical signals and enhance light–matter interactions, and the enhanced O/E
conversion efficiency in PDs could be possible while the joule heat problem at a higher bias
voltage, device footprint reduction, and low power consumption could also be solved in
the future.

This review work is structured as follows. Section 2 presents the overall design
considerations for photodiodes (PDs), including the principles of PIN–PD and UTC–PD,
3–dB bandwidth analysis and discussion, equivalent circuit models, and saturation current
and RF output power. Section 3 shows the solutions of bandwidth–responsivity trade–off,
which are integrated or quasi–integrated with high–reflected mirrors for III–V and group–IV
photodiodes, and microstructure photodiodes with microholes for enhancing light–matter
interactions. Section 4 narrates the photodiode photonic–integrated applications, which
relate to the photodiodes integrated with short stubs for output power improvement as
well as the integrations with planar antennas for transmitters/emitters from MMW to THz
bands. The discussion and conclusions are given in Sections 5 and 6.

2. Overall Design Considerations for Photodiodes
2.1. Principles of PIN–PD and UTC–PD

The band diagrams for PIN–PD [42,43] and UTC–PD [5,31,32,44,45] are shown in
Figure 2. PIN–PD has a simple three–layer structure, i.e., wide–bandgap P– and N–layers,
and a depleted absorber. Both holes and electrons in the depleted absorber of PIN–PD
contribute to the response, but the output response mainly depends on the low–velocity
carrier holes, whose transport velocity is an order of magnitude lower than that of electrons,
which limits the photoresponse to some extent.
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The UTC–PD band structure, by dividing the PIN–PD absorber into two layers, is com-
posed of a p–type neutral absorber and a wide–bandgap (depleted) carrier collector [31,32].
By employing a bandgap grading or/and doping grading in the absorber, the quasi–field is
formed to reduce the electron traveling time effectively. In the meantime, the photogenerated
majority holes in the InGaAs absorber respond quickly within several picoseconds due
to the high concentration of electrons, leading to a negligible effect on the photoresponse;
therefore, the high–velocity electrons dominate the photoresponse of UTC–PDs. Further-
more, the velocity of electrons (3 ∼ 5 × 107 cm/s) is usually 6~10 bigger than that of holes
(5 × 106 cm/s) [5], together with the quasi–ballistic transport (overshoot velocity) [46] in
the InP collector, which leads to a quite short total delay time in the whole UTC–PD. For
PIN–PD and UTC–PD with the same absorber (Wa), the UTC–PD (Wa ∼= Wc) represents a
superior frequency response with a shorter traveling time in the collector due to the large
difference in carrier velocities, though the carriers in UTC–PD travels ~three times the
average distance than that in PIN–PD [44].
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During high optical input, the charge intensity increases together with the increasing
photocurrent in the depletion, producing a space charge effect due to the charge accumula-
tion, while the field and potential profiles are modulated resulting in output saturation and
a nonlinear response. For PIN–PD, as shown in Figure 2a, the charge storage happens at
high injection conditions, resulting in the band bending and field screening, which finally
causes output current saturation. However, in UTC–PD, shown in Figure 2b, only electrons
participate in the space charge effect, whose velocity overshoot, even facing the decreased
electrical field. Finally, the saturation occurs because of the current blocking produced from
the heterojunction interface between the absorber and collector; while this state will be
slower than that in PIN–PD, it is because UTC–PD can withstand a charge density an order
of magnitude higher than PIN–PD [5,44]. In addition, the space charge in UTC–PD can not
only be compensated by doping the spacer layer at the absorber/collector (InGaAs/InP)
heterojunction interface but also can be reduced by employing a heavily n–doped InP charge
(cliff) layer to increase the electrical field of the spacer layer [47]. Therefore, UTC–PD is a
typical representative of high–speed response and high–output current.

In a typical UTC–PD structure, the bandgap discontinuity (the abrupt conduction
band barrier) at the InGaAs absorber and InP collector interface causes the current block-
ing effect, thus leading to the device output current saturation. To smooth this discon-
tinuity and suppress the blocking effect, the compositional graded quaternary system
material In1−xGaxAsyP1−y (for spacer layers) is usually employed to improve device per-
formance [48]. Therefore, the design of In1−xGaxAsyP1−y lattice–matched to InP [49] must
be considered, while the cutoff wavelength–related refractive index and permittivity is
shown in Figure 3a. However, the introduction of quaternary system material (Figure 3b)
might bring certain difficulties for epitaxial growth and the device fabrication process.
Therefore, a dipole–doped regime, as shown in Figure 3b is incorporated to reduce the con-
duction band barrier, which uses a lower dipole–doping concentration (≤ 5 × 1018 cm−3 to
avoid out–diffusion) to fully suppress the conduction band offset only left with a spike–like
barrier for electrons to tunnel through [50–52].
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Figure 3. (a) The cutoff wavelength–related refractive index and permittivity for In1−xGaxAsyP1−y

with the As–composition changed from 0 to 1. (b) Solutions for suppressing the bandgap discontinuity
by compositional graded quaternary material and dipole–doping regimes.

2.2. 3–dB Bandwidth Analysis and Discussion

Response time is a physical quantity that characterizes how quickly a PD responds to
an incident light signal, that is, it represents the total time it takes for a PD to convert an
optical signal into an electrical signal.

The total response time of PD generally consists of three parts: (a) diffusion time of
electrons in the absorption layer, τa, (b) circuit time constant, τRC, determined by junction
capacitance and load resistance, and (c) drift time of electrons in the collection layer, τc [44].
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PIN–PD is usually made up of parts (a) and (b), while (c) belongs to UTC–PD [44,53,54].
Therefore, the total response time for general UTC–PD can be given as

τ =
√

τ2
a + τ2

c + τ2
RC, (1)

while the PIN–PD can be dealt with as a special case, just having a single intrinsic/depletion
layer, Wa. The RC–delay time–limited bandwidth, fRC, and transit–time–limited bandwidth,
fRC, usually consist of the main 3–dB bandwidth of a PD, which here the diffusion is
neglected at the high–frequency response. We assume that a PD has one single intrinsic layer
(Figure 4) with the i–layer thickness of d and the area of A, so the fRC can be expressed as

fRC =
1

2πRC
=

1
2πR

d
εA

, (2)

where the junction capacitance C = εA/d approximately equals PD capacitance (in ideal
cases), the ε is the relative permittivity of i–layer, and R is the resistance and equals the
sum of diode series resistance, RS, and the load resistance, RL, has a typical value of 50 Ω.
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It needs to be noted that Equation (2) will be changed if a PD has multiple dielec-
tric/depletion layers and the corresponding values will be replaced by the relative permittivity,
εreq, and the total depletion thickness, dT, respectively, which are shown as follows [55]:

εreq =

[
∑n

m=1
dm

dTεrm

]−1
, (3)

and
dT = d1 + d2 + · · ·+ dn. (4)

Therefore, the total capacitance, CT, and the RC–limited 3–dB bandwidth, f3dB,RC, can
be rewritten as

CT =
ε0εreqA

dT
= 8.854 × 10−6 εreqA

dT
(pF), (5)

and
f3dB,RC =

1
2πRCT

=
1

2πR
dT

ε0εreqA
, (6)

where ε0 is the vacuum permittivity, with a value of 8.854 × 10−12F/m.
For a UTC–PD with the same thickness of the absorber and collector, assuming a pure

diffusion case without quasi–field, the 3–dB bandwidth can be given as [44,54]

f3dB,tr
∼=

1
2πτa

=
1

2π
(

W2
a/3De + Wa/vth

) , (7)

where De is the electron diffusion constant, vth is the thermionic velocity and the related
equations and values are shown in Table 1.
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Table 1. The explanations for parameters [44] used for the 3–dB bandwidth calculation.

Symbol Value and Units Explanations

kB 1.38 × 10−23 J/K Boltzmann constant
q 1.6 × 10−19 C Electron charge
T 300 K Temperature

m0 9.11 × 10−31 kg Electron mass in vacuum
µe 5000 cm2/Vs Electron mobility in p–InGaAs
µh 150 cm2/Vs Hole mobility in p–InGaAs

ve,os, vns 4 × 107 cm/s Electron overshoot velocity in InGaAs and InP
vhs 4.5 × 106 cm/s Hole saturation velocity
De 2kBTµe/q Electron diffusion constant
m∗ 0.043m0 Electron effective mass at the band edge
vth

√
2kBT/πm∗ Thermionic–emission velocity

ve,dri ∼ µe(ϕ/Wa) Electron drift velocity in absorber
ve,diff ∼ 3De/Wa Electron diffusion velocity in absorber
τa W2

a/3De + Wa/vth Carrier traveling time by electron diffusion
τc Wc/ve,os Electron drift time in collector
kB 1.38 × 10−23 J/K Boltzmann constant

In addition, for the electron drift/delay time–limited bandwidth in the collector of
UTC–PD, f3dB,co, can be considered as

f3dB,co
∼=

1
2πτc

, (8)

where the electron overshoot velocity in the InP collector is ve,os = 4 × 107 cm/s, while the
corresponding electron drift time τc = Wc/ve,os which is around 0.5~1 ps for a collector
with a thickness of 200~400 nm. However, the electron drift time, τc, usually can be ignored
for a designed UTC–PD which has a similar thickness for the absorber and collector due to
the relatively greater carrier traveling time (τa) in the absorber. The τa can be separately
calculated to be 3.74 ps and 11.2 ps for the 200 nm and 600 nm absorber by [44,54]

τa =
W2

a
3De

+
Wa

vth
. (9)

It is quite clear that we can ignore the electron drift time when the thickness of the
absorber approximately equals the collector.

Therefore, the total bandwidth, f3dB,UTC, as a general case, can be written as

f3dB,UTC =
1

2πτ
=

1

2π
√

τ2
a + τ2

c + τ2
RC

, (10)

while the similar values for the absorber and collector, i.e., Wa ∼= Wc, so Equation (10) can
be changed to

f3dB,UTC =
1

2πτ
∼=

1

2π
√

τ2
a + τ2

RC

, (11)

and the f3dB,UTC also has another form, as shown in Equation (12), for treating PD with a
small junction area less than 10 µm2.

f3dB,UTC =
1

2πτ
∼=

1
2π

√
τ2

a
=

1
2πτa

. (12)
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For PIN–PD, both of the holes and electrons are in the single intrinsic/depletion layer,
Wa, while the hole and electron saturation velocity are vhs and vns, so the 3–dB bandwidth
for a PIN–PD with a thin absorber can be given as [43,54]

f3dB,PIN ≈ 3.5
2πτa

, (13)

where the τa equals Wa/v, and the average velocity formula is 1/v4 = 0.5
(
1/v4

ns + 1/v4
hs
)
.

Meanwhile, a thinner absorber can make PIN–PD obtain a larger transit–time–limited
bandwidth, but it also causes a decrease in the RC–limited bandwidth by Equation (2),
while the drawback can be overcome in UTC–PD, just by independently designing the
absorber and collector. Therefore, a thinner absorber can be used in UTC–PD for a larger
transit–time–limited bandwidth without sacrificing the RC–limited bandwidth by well–
designing a relatively thick collector. Additionally, some references show the detailed
theoretical and experimental analysis of the characteristics for PIN–PD and UTC–PD,
including energy band, electrical field, doping mechanism, optimization of absorber and
collector, bandwidth, responsivity, saturation, and output power [56–62] as well as transient
response [63], dark current [64,65], and P–contact shapes [66]. According to the above–
mentioned bandwidth equations and the values from Table 1, the 3–dB bandwidths for
PIN–PD and UTC–PD can be calculated as shown in Figure 5a, including the assumed
values during the calculation.
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Figure 5. (a)The calculated 3–dB bandwidth versus the absorber thickness for UTC–PD and PIN–PD.
(b) The 310 GHz bandwidth [67] is used to indicate the calculated accuracy in (a). (c) Measured and
calculated 3–dB bandwidth for UTC–PD (at high and low input) and PIN–PD [44]. (d) Quantum
efficiency, responsivity versus 3–dB bandwidth for back–illuminated UTC–PD [44], refracting–facet
UTC–PD (RF–PD) [68], and total–reflection UTC–PD (TR–PD) [69].

It can be seen that the bandwidth of UTC–PD is proportional to 1/A2 [44,54] when the
absorber thickness is larger than 100 nm, while it is proportional to 1/A for PIN–PD [44,54].
Figure 5c is from [44] as a reference. The well–designed UTC–PD has improved 3–dB
bandwidths over 150 GHz, 220 GHz [70], while the maximum value is up to 310 GHz
(Figure 5b), and the 10–dB and 15–dB bandwidths are separately 750 GHz and >1 THz,
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but the responsivity is only 0.07 A/W [67]. To improve the low responsivity of UTC–PD,
the refracting–facet UTC–PD (RF–PD) [68] and total–reflection UTC–PD (TR–PD) [69] are
proposed to increase the light propagation length in the absorber, where RF–PD uses an
angled edge to reflect the light while TR–PD employs a V–grooved mirror integrated with
two PD to totally reflect the back–illuminated light. A high responsivity of 1 A/W with
50 GHz 3–dB bandwidth (0.32 A/W and 170 GHz) is achieved for RF–PD, while the TR–PD
shows 0.83 A/W responsivity and a 58 GHz 3–dB bandwidth, as shown in Figure 5d.

Up to now, many PIN–PD and UTC–PD structures are proposed to improve the
device performance, including frequency response, output power, saturation current, and
responsivity, while the common band diagrams, including simple p–i–n type (Figure 2a),
partially depleted absorber (PDA) type, dual depletion type, general UTC type, hybrid
absorber type, charge–compensated (CC) hybrid absorber type and near–ballistic (NB)/NB–
CC type [31,32,38,44,47,71–80], are summarized and shown in Figure 6.
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Figure 6. Band diagrams for designing different kinds of PDs to realize various performances,
including high responsivity, high speed, and high power [71,72]. (a) Partially depleted absorber PD
(PDA–PD) band diagram [73,74,81]; (b) dual depletion PD band diagram [75,76]; (c) UTC–PD band
diagram [31,32,44]; (d) hybrid absorber structure PD band diagram [47,71,72,77]; (e) CC–MUTC–PD
band diagram [38,47,78]; and (f) near–ballistic (NB) CC–MUTC–PD band diagram [79,80].

In practice for UTC–PD, we need to choose one of them for adequate design (such
as device size, bandwidth, absorber and collector layers, doping, electrical field, electron
mobility, diffusivity, and diffusion time, etc.) according to the requirements and applica-
tions. We take the UTC–PD design as an example and assume three types of p–doping in
the absorber with the values of 2.5 × 1017 cm−3, 1 × 1018 cm−3, and 2.5 × 1018 cm−3, corre-
sponding the electron mobility (µe) of 6000, 5000 and 4000 cm2/Vs [44]. Using equations
shown in Part 2.2, the electron traveling time in the absorber (τa), the electron drift time in
the collector (τc), and the electron diffusion constant (i.e., electron diffusivity, De) can be
calculated as given in Figure 7a–c and summarized in Figure 7d. From Figure 7d, we find
that the τa is much bigger than τc and indicates the electron diffusion time in the absorber
which determines the total carrier transit time [82], so it only needs to consider τa and
use Equation (7), i.e., f3dB,tr, to evaluate the device’s 3–dB bandwidth at MMW and THz
frequency bands when the absorber thickness is smaller than 100 µm.



Appl. Sci. 2024, 14, 3410 9 of 38

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 38 
 

absorber with the values of 2.5 ×  10ଵ଻ cmିଷ, 1 ×  10ଵ଼ cmିଷ, and 2.5 ×  10ଵ଼ cmିଷ, cor-
responding the electron mobility (μୣ) of 6000, 5000 and 4000 cmଶ Vs⁄  [44]. Using equa-
tions shown in Part 2.2, the electron traveling time in the absorber (τୟ), the electron drift 
time in the collector (τୡ), and the electron diffusion constant (i.e., electron diffusivity, Dୣ) 
can be calculated as given in Figure 7a–c and summarized in Figure 7d. From Figure 7d, 
we find that the τୟ is much bigger than τୡ and indicates the electron diffusion time in 
the absorber which determines the total carrier transit time [82], so it only needs to con-
sider τୟ and use Equation (7), i.e., fଷୢ୆,୲୰, to evaluate the device’s 3–dB bandwidth at 
MMW and THz frequency bands when the absorber thickness is smaller than 100 μm. 

 
Figure 7. The calculated electron traveling time in the absorber and collector on 3–dB bandwidth 
(BW) [44,82,83]. (a)The electron traveling time versus the absorber and collector thickness (assume 𝑊௔ ≅ 𝑊௖); (b) relationship between the 3–dB bandwidth and absorber/collector thickness; (c) com-
parisons of the calculated electron diffusivity versus p–doping concentration in the absorber [83]; 
and (d) summary of three p–dopings in the absorber with the calculated values. 

2.3. Equivalent Circuit Models 
The time–delay equivalent circuit model for air–bridge type waveguide PIN–PD was 

thoroughly analyzed by Wang et al. [84–86], as shown in Figure 8. Fundamentally, a basic 
air–bridge typed–PD is a current generator, and the corresponding equivalent circuit is 
composed of four parts, as shown in Figure 9, including the PD itself, the air bridge, the 
coplanar waveguide (CPW), and the 50 Ω load [86,87]. The photocurrent can be obtained 
and simulated using a current source, I୮୦, which is in parallel with the junction capaci-
tance, C୨, and the large junction shunt resistance (megohms, usually ≥ 100 kΩ), R୨, and 
in series with a small series resistance, Rୱ (or Rୡ) (related to Pା, Nା layers and ohmic 
contact resistance of metallic connection), as well as the air–bridge inductance from p–
contact to p–electrode pad, Lୠ (or Lୱ), determined by the bridge geometry. The Cୢ୶ is 
the capacitance between the air bridge and the n–electrode pad. The characteristic imped-
ance, Zୡ, of the CPW, which can be measured with open and short circuit yielding a p–
electrode pad capacitance, C୮ and an n–electrode pad–induced pad inductance, L୮ (or Lୋ), is calculated by Zୡ = ඥL୮ C୮ ⁄  with a common value of 50 Ω (e.g., L୮ = 55 pH, C୮ =

(d) 

(a) 

101 102 103

Absorber/Collector thickness (nm)

10-2

10-1

100

101

102

El
ec

tro
n 

tra
ve

lin
g 

tim
e 

(p
s)

P-doping(Absor.):2.5 1017

P-doping(Absor.):1.0 1018

P-doping(Absor.):2.5 1018

Drift in collect.: 2.0 107 cm/s
Drift in collect.: 3.0 107 cm/s
Drift in collect.: 4.0 107 cm/s

Absorber:
diffusion

Collector: drift

(b) 

101 102 103

Absorber/Collector thickness (nm)

100

101

102

103

104

105

Ba
nd

w
id

th
 (G

H
z)

P-doping(Absor.):2.5 1017

P-doping(Absor.):1.0 1018

P-doping(Absor.):2.5 1018

Velocity(collect.):2.0 107 cm/s
Velocity(collect.):3.0 107 cm/s
Velocity(collect.):4.0 107 cm/s

Extreme condition: BW
with three overshoot
velocity @ Wa=0

Electron diffusion time in ! " --- total carrier
transit time.

(c) 

× × ×
× This work
Others: Shimizu

P-In0.53Ga0.47As R.T.

Figure 7. The calculated electron traveling time in the absorber and collector on 3–dB bandwidth
(BW) [44,82,83]. (a) The electron traveling time versus the absorber and collector thickness (assume
Wa ∼= Wc); (b) relationship between the 3–dB bandwidth and absorber/collector thickness; (c) com-
parisons of the calculated electron diffusivity versus p–doping concentration in the absorber [83];
and (d) summary of three p–dopings in the absorber with the calculated values.

2.3. Equivalent Circuit Models

The time–delay equivalent circuit model for air–bridge type waveguide PIN–PD
was thoroughly analyzed by Wang et al. [84–86], as shown in Figure 8. Fundamentally,
a basic air–bridge typed–PD is a current generator, and the corresponding equivalent
circuit is composed of four parts, as shown in Figure 9, including the PD itself, the air
bridge, the coplanar waveguide (CPW), and the 50 Ω load [86,87]. The photocurrent can be
obtained and simulated using a current source, Iph, which is in parallel with the junction
capacitance, Cj, and the large junction shunt resistance (megohms, usually ≥ 100 kΩ),
Rj, and in series with a small series resistance, Rs (or Rc) (related to P+, N+ layers and
ohmic contact resistance of metallic connection), as well as the air–bridge inductance from
p–contact to p–electrode pad, Lb (or Ls), determined by the bridge geometry. The Cdx
is the capacitance between the air bridge and the n–electrode pad. The characteristic
impedance, Zc, of the CPW, which can be measured with open and short circuit yielding
a p–electrode pad capacitance, Cp and an n–electrode pad–induced pad inductance, Lp
(or LG), is calculated by Zc =

√
Lp/Cp with a common value of 50 Ω (e.g., Lp = 55 pH,

Cp = 22 fF, so Zc = 50 Ω in [87]). One thing to note is that some PDs do not use air
bridge during the device fabrication process, so the parasitic capacitance between the
p–electrode and n–electrode, Cdx and air–bridge inductance, Lb (or Ls) could not be used
in the equivalent circuit model, as shown in Figure 10.
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Figure 10. PD equivalent circuit model with coplanar waveguide (CPW) pad and load resistance.

To evaluate the opto–microwave conversion properties of high–speed PDs by using
S–parameters (such as reflection coefficients S22 and optoelectronic conversion properties
S21), a small–signal radio frequency (RF) equivalent circuit for PD is reported considering
synthetically both the analysis of the carrier transit effect [88] and the external parasitic
resistance–capacitance (RC) delay–time constant [85]. The small–signal RF equivalent
circuit is shown in Figure 11, which uses the voltage (RF voltage, Vac)–controlled current
source (VCCS, Iac = gmVac, gm is denoted as transconductance representing optical–
to–RF conversion quantum efficiency, i.e., responsivity) to replace of the current source,
Iph in Figures 9 and 10, while the overall frequency response (O–E 3–dB bandwidth)
of PD is determined by both of the transit time and the RC–delay time constant, i.e.,
1/f2

3dB = 1/f2
tr + 1/f2

RC. The transit–time bandwidth, ftr = 1/(2πτtr) of ac–photocurrent, Iac
is determined by the carrier transit–time effect (τtr = RtCt), which is indirectly affected by
selecting the values of input circuit elements of Ct, Rt, and gm. The signal source impedance
is R0. The RC–delay time constant bandwidth can be calculated using Equation (6). In
addition, the elements in an external circuit, such as in the air bridge, CPW pad (and
P–contact shapes [66]), and load, also have an effect on the overall frequency response
of PDs.

The similar and/or improved equivalent circuit models and RF small–signal equiv-
alent circuit models, which are given from some specific examples for both PIN–PD and
UTC–PD, with and without air bridge, can be found in previous works [25,85–87,89–119].
Some typical improved RC–delay time models are the modified UTC–PD (MUTC−PD)
(Figure 12a) [89] and the dipole–doped UTC–PD (Figure 12b) [50], which are exploited as
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follows. For the MUTC–PD [89] (Figure 12a) and dual–drifting layer UTC–PD (DDL–UTC–
PD) [100], Li et al. focus on the analysis of the absorbing depleted region (resistance, Ru, and
capacitance, Cu) and the non–absorbing depleted region (resistance, Rj, and capacitance, Cj).
Based on the RF small–signal equivalent circuit model without considering the air–bridge
circuit, as shown in Figure 13a, the improved equivalent circuit model of the RC–delay time
is shown in Figure 13b, while the further simplified one without considering Ru and Cu
is reported by Han et al. [90], as shown in Figure 13c. In the above–mentioned RC–delay
time models, the bulk material resistance is R11, while R22 represents P– and N–contact
resistance, Cp–elect is the P–electrode parasitic capacitance. Based on this model, the experi-
mental and circuit analysis exhibit the bandwidth of an MUTC–PD up to 40 GHz, while the
affected factors of the device performance, such as space charge screening, self–induced
electrical field and over–shoot effects, are also discussed in detail [89].

In particular, the dipole–doped structure [50], as shown in Figure 12b, has been
proposed by Wang et al. to tackle the bandgap discontinuity between the InGaAs absorber
and the InP collector interface, and also to simplify the difficulty of epitaxy growth. The
corresponding equivalent circuit for the RC–delay time [96] proposed by Meng et al. is
shown in Figure 13d, where the resistance and capacitance for the dipole–doped part are
denoted as Rdd and Cdd. Raborb and Rcollect represent the resistance of the absorber and
collector, while the junction capacitance is Cj. Through carefully choosing the values for
circuit components, the simulated bandwidth matches the measured value very well from
10 MHz to 20 GHz and can be estimated to be ~62.5 GHz at a −5 V bias voltage.
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To carefully analyze and depict UTC–PD impedance and photoresponse behavior, an
accurate circuit model is proposed [99]. This model not only provides detailed explanations
for inconsistent values at low frequencies (here, from DC to 30 GHz, the CPW parasitic
effects are negligible) between the classical circuit models of PDs and measurements but
even presents a comprehensive study for both the measured device impedance and S11
up to 110 GHz, while showing the values of frequency photoresponse up to 67 GHz. The
RC–delay time of this new model is shown in Figure 13e, where two RC parallel circuits
(R2C2 and R3C3) are used to model the two spacers (or transition layers) in UTC–PD,
while the R4C4 parallel circuit denotes the carrier collector, and the R1 represents the series
resistance with a small value (related to P+, N+ layers and ohmic contact resistance of
metallic connection/doped materials). In addition, the heavily p–doped neutral thick
absorber usually can be ignored due to a negligible resistive effect [99]. It is noted that
the parasitic capacitance, Cp, and inductance, L4 of the CPW pad cannot be ignored if
the designed device photoresponse is above 75 GHz. This model provides useful and
accurate information to optimize the UTC–PD complex impedance over the frequency
range, thus providing a method for power maximization from UTC–PD to an antenna and
then radiating to the air, by employing complex conjugate impedance matching between
them [99,120]. Based on this new accurate model, some UTC–PD structures are designed
and integrated with antennas [22,25,121]. In Figure 14, the matching network is employed to
optimize the impedance matching to increase the RF output power, while stray capacitance
is introduced in model–2 (without in model–1) to represent the parasitic effect resulting
from the flip–chip bonding [25]. Compared with Figure 14a, the accurate equivalent circuit
model is used for UTC–PD in Figure 14b, and the extra capacitance is also employed [22].

Moreover, by optimizing the impedance transmission line of the signal pad in CPW,
a new transmission line with a characteristic impedance of 96 Ω is introduced forming
a new low–inductive peaking CPW [36,37,101]. Subsequently, the charge–compensated
MUTC–PD (CC–MUTC–PD) [78] is flip–bonded with this new CPW on aluminum nitride
(AlN) (or diamond submounts for thermal dissipation [38,122]) die for further increasing
the bandwidth and decreasing the output power roll–off at >120 GHz frequency [121].
Similarly, an inductive 115 Ω characteristic impedance CPW, as shown in Figure 15, is
proposed and fabricated to improve the PD bandwidth from 28 GHz to 37.5 GHz [90],
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while further optimization is applied for MUTC–PD to obtain higher 3–dB bandwidth (and
RF output power) from 156 GHz (−0.16 dBm @ 170 GHz [111]) up to 220 GHz (−4.94 dBm
@ 230 GHz [113]). Note that some special examples with detailed parameters have been
reported in the above–mentioned literatures cited in this paper, so here they are not given.
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Figure 14. Equivalent circuit models for MUTC–PD integrated with antennas. (a) Classical equiv-
alent circuit models of MUTC–PD with Vivaldi antenna and matching network [25]; (b) improved
equivalent circuit models of CC–MUTC–PD with planer antennas [22].
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Figure 15. Two CPW schematic diagrams, equivalent circuit models, and simulated results [107].
(a) Conventional CPW–1 with 50 Ω impedance and the new CPW–2 with 115 Ω impedance, and
the fabricated CPW–1, and CPW2; (b) PD equivalent circuit model (Region 1: transit time; Region 2:
RC–delay time; Region 3: CPW pad) and the simulated series inductance and shunt capacitance.

2.4. Saturation Current and Output Power

High–power PDs with a broadband frequency response are key components serving
as microwave photonic antenna systems [123–125], phased array antennas, MMW imaging
and sensing systems [5], and analog fiber–optic links wireless communications [8,126–129].
The high–speed and high–power PD is a promising candidate, such as the UTC–PD which
can be monolithically integrated with a matching circuit using a coplanar waveguide short
stub to achieve saturation output power, obtaining a value of −13.2 dBm (20.8 mW) at
100 GHz with a −3 V bias voltage [90].

Furthermore, narrow bandwidth high–power also serves as an analog photonic emitter
and oscillator systems. The charge–compensated MUTC–PD (CC–MUTC–PD) with a cliff
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layer [78] is an excellent candidate to achieve high power and high frequency which are
realized by the flip–chip techniques on AlN [36,37] or diamond [38] submounts, as shown
in Figure 16a, for thermal dissipation. Figure 16b shows that the dissipated power of the
device bonded on the diamond submount is faster than that of the devices bonded both
on AlN and no bonding. Similarly, the simulated results indicate that the lowest junction
temperature is produced from the device bonded on the diamond submount when using
the same input power, as shown in Figure 16c.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 38 
 

2.4. Saturation Current and Output Power  
High–power PDs with a broadband frequency response are key components serving 

as microwave photonic antenna systems [123–125], phased array antennas, MMW imag-
ing and sensing systems [5], and analog fiber–optic links wireless communications [8,126–
129]. The high–speed and high–power PD is a promising candidate, such as the UTC–PD 
which can be monolithically integrated with a matching circuit using a coplanar wave-
guide short stub to achieve saturation output power, obtaining a value of –13.2 dBm (20.8 
mW) at 100 GHz with a –3 V bias voltage [90]. 

Furthermore, narrow bandwidth high–power also serves as an analog photonic emit-
ter and oscillator systems. The charge–compensated MUTC–PD (CC–MUTC–PD) with a 
cliff layer [78] is an excellent candidate to achieve high power and high frequency which 
are realized by the flip–chip techniques on AlN [36,37] or diamond [38] submounts, as 
shown in Figure 16a, for thermal dissipation. Figure 16b shows that the dissipated power 
of the device bonded on the diamond submount is faster than that of the devices bonded 
both on AlN and no bonding. Similarly, the simulated results indicate that the lowest 
junction temperature is produced from the device bonded on the diamond submount 
when using the same input power, as shown in Figure 16c. 

 
Figure 16. (a) Flip–chip bonded CC–MUTC–PD; (b) PD junction temperature vs. dissipated power; 
and (c) junction temperature comparisons for PD with and without submounts [38].  

Considering to use the well–designed high impedance CPW signal transmission line, 
bonding on AlN submount, a 9 μm CC–MUTC–PD with 70 GHz bandwidth achieves an 
RF output power of –2.6 dBm at 160 GHz [121]. To further improve the RF output power, 
high thermal conductivity substrates, including AlN and diamond, are employed bond-
ing with CC–MUTC–PDs using flip–chip techniques [114], which shows 3–dB bandwidth 

(a) (b)

(c)

700

650

600

550

500

450

400

350

300

420

400

380

360

340

320

300

370

360

350

340

330

320

310

300(c)

700.97 428 375.17

2.5

2

1.5

1

0.5

0
290 390 490 590 690

Figure 16. (a) Flip–chip bonded CC–MUTC–PD; (b) PD junction temperature vs. dissipated power;
and (c) junction temperature comparisons for PD with and without submounts [38].

Considering to use the well–designed high impedance CPW signal transmission line,
bonding on AlN submount, a 9 µm CC–MUTC–PD with 70 GHz bandwidth achieves an
RF output power of −2.6 dBm at 160 GHz [121]. To further improve the RF output power,
high thermal conductivity substrates, including AlN and diamond, are employed bonding
with CC–MUTC–PDs using flip–chip techniques [114], which shows 3–dB bandwidth of
105 GHz, 117 GHz, 129 GHz, and 150 GHz for PDs with diameters of 10 µm, 8 µm, 6 µm
and 4 µm at a −3 V bias voltage, achieving an RF output power of −3 dBm at 150 GHz
and −5.7 dBm at 165 GHz. Using the same methods for heat dissipation, the record RF
output powers for gated modulation at 1 GHz and 10 GHz are separately 41.5 dBm (14.2 V)
and 40 dBm (10 W) for 40 µm CC–MUTC–PD at a −36 V bias voltage [122], as shown in
Figure 17.
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Figure 17. CC–MUTC–PD RF output power and peak power at different photocurrents and bias
voltages. (a) RF power vs. photocurrent with different device diameters and bias voltages [130];
(b) RF power vs. photocurrent with different bias voltages for a 40 µm diameter device [122]; (c) peak
power at 10 GHz pulse signal vs. photocurrent with different bias voltages [122]; and (d) peak power
at 1 GHz pulse signal vs. photocurrent with different bias voltages [122].

In brief, the PD saturation current and RF output power is affected by several factors,
including device area, PD types, bias voltage, fabrication quality, CPW design, junction
heat with high–bias voltages, short microwave stub [131], submounts, measurements
and so on, which need to be considered comprehensively. Furthermore, the superior
conductivity of SiC substrate also is an excellent candidate for heat dissipation. Using
the wafer–bonding technique, InP–based UTC–PD bonded on the SiC substrate [39]
can increase the RF output power to a mW–level, i.e., 0.22 dBm (1.05 mW) at 300 GHz
with 15.5 mA photocurrent and 2.01 dBm (1.59 mW) with the optimized bias at 18 mA
photocurrent [132,133], while the output power is up to 4.04 dBm (2.53 mW) at 273 GHz
with the optimized bias voltage at 18 mA photocurrent when this PD integrates with a
taper slot antenna [134,135], as shown in Figure 18. The comparisons of 3–dB bandwidth,
responsivity, saturation current or 1–dB compression saturation current and RF output
power for different PDs [67,94,95,97,101,111,113–115,119,121–124,130,131,134,136–152]
are shown in Table 2.

Table 2. The 3–dB bandwidth (BW), saturation current (ISat or Iph), responsivity (R), bias voltage
(Vbias) and output power (Pout) comparisons for PDs.

PD Type * BW (GHz) ** R (A/W) ISat (mA) Pout(dBm), Vbias Ref.

UTC–PD 310 0.07 NA 11 (12.59 mW) @ 100 GHz, −0.5 V [67]

NBUTC–PD 120 (64 µm2, −3.0 V) 0.15 24.6 6.28 (4.25 mW) @ 110 GHz, −5 V [94]

NBUTC–PD 270 (3.5 µm, −3.0 V) 0.12 17 6.12 (4.093 mW) @ 170 GHz, −2 V [95,146]

NBUTC–PD 225 (3 µm, −1.5 V) 0.08 13 −1.74 (0.67 mW) @ 260 GHz, −2 V [97]
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Table 2. Cont.

PD Type * BW (GHz) ** R (A/W) ISat (mA) Pout(dBm), Vbias Ref.

CC–MUTC–PD >110 (4 µm) 0.17 27 7.80 (6.03 mW) @ 110 GHz (6 µm), −4 V [101]

MUTC–PD 156 (4.5 µm, −3 V) 0.165 14.6 −0.53 (0.885 mW) @ 170 GHz, −3.5 V [111]

MUTC–PD 150 (4.5 µm, −3 V) 0.165 14.6 −0.16 (0.964 mW) @ 170 GHz, −3.5 V [111]

MUTC–PD 200 (3.6 µm) 0.07 8.4 −2.14 (0.611 mW) @ 200 GHz, −2 V [113]

MUTC–PD 230 (3 µm) 0.07 5.85 −4.94 (0.321 mW) @ 220 GHz, −2 V [113]

CC–MUTC–PD 105 (10 µm, −5.0 V) 0.15 >30 14 (25.12 mW) @ 80 GHz (10 µm), −2 V [114]

CC–MUTC–PD 117 (8 µm, −3.0 V) 0.15 >20 11.3 (13.49 mW) @ 100 GHz (8 µm), −2 V [114]

CC–MUTC–PD 117 (8 µm, −3.0 V) 0.15 >20 8.50 (7.08 mW) @ 110 GHz (8 µm), −2.5 V [114]

CC–MUTC–PD 150 (4 µm, −3.0 V) 0.15 8.0 −3.0 (0.5 mW) @ 150 GHz (4 µm ), −2.5 V [114]

CC–MUTC–PD 100 (7 µm , −1.1 V) 0.11 4.9 −19.3 (11.75 µW ) @ 300 GHz (7 µm ), 0 V [115]

CC–MUTC–PD 125 (5 µm , −1.1 V) 0.11 25.3 −10.5 (89.13 µW ) @ 300 GHz (10 µm ), −1.8 V [115]

WG–MUTC–PD 165
(
2 × 15 µm2, −1.2 V) 0.312 10.6 –1.69 (0.678 mW) @ 215 GHz, −2 V [119]

CC–MUTC–PD 70 (9 µm ) 0.2 40 –2.60 (0.55 mW) @ 160 GHz, −5 V [121]

CC–MUTC–PD 13 (40 µm , −6 V) 0.7 234 (−10 V) 41.5 (14.2 W) @ 1 GHz, −36 V [122]

CC–MUTC–PD 13 (40 µm , −6 V) 0.7 234 (−10 V) 40 (10 W) @ 10 GHz, −36 V [122]

CC–MUTC–PD 13 (40 µm , −6 V) 0.7 234 (−10 V) 29.8 (0.955 W) @ 15 GHz, −10 V [122]

UTC–PD 120 (8 µm ) NA 21 0 (1 mW) @ 120 GHz, −3V [123,124]

CC–MUTC–PD 10 (50 µm ) 0.75 300 32.7 (1.86 W) @ 10 GHz, −14 V [130]

CC–MUTC–PD 11 (50 µm ) 0.75 228 30.1 (1.02 W) @ 10 GHz, −11 V [131]

UTC–PD on SiC NA NA 15.5 0.22 (1.05 mW) 300 GHz, −1 V [134]

UTC–PD on SiC NA NA 18 2.01 (1.59 mW) 300 GHz, bias optimized [134]

PIN–PD 1 (90 µm ) NA 620 26.5 (0.447 W) @ 1 GHz, −5 V [136]

PIN–PD > 6 (34 µm ) NA 260 26 (0.398 W) @ 6 GHz, −5 V [136]

PIN–PD > 5 (50 µm ) 0.55 120 25.8 (0.38 W) @ 5 GHz [137]

PIN–PD 7 (70 µm ) 0.6 200 29 (0.794 W) @ 5 GHz, −5.8 V [138]

PIN–PD 40 ∼ 50 (10 µm ) ~0.7 30 14 (25.12 mW) @ 50 GHz, −2 V [139]

MUTC–PD array 23.8 (40 µm ) 0.438 86.8 16 (39.81 mW) @ 12 GHz, −3 V [140]

MUTC–PD 34 (20 µm, −4 V) 0.41 ~70 17.1 (51.29 mW) @ 30 GHz, −4 V [141]

MUTC–PD ∼ 45 (15 µm, −4 V) 0.41 38 14.6 (28.84 mW) @ 40 GHz, −4 V [141]

WG–UTC–PD > 67
(
3 × 10 µm2, −3 V) 0.19 13 1.1 (1.29 mW) @ 100 GHz, −3 V [142]

TTR–UTC–PD > 110
(
3 × 20 µm2 ) 0.5 16 0 (1 mW) @ 110 GHz, −8 V [143]

NBUTC–PD 290
(
64 µm2 , −3.0 V) 0.15 13.6 1.85 (1.53 mW) @ 110 GHz, −3 V [144]

NBUTC–PD 280
(
64 µm2 , −3.0 V) 0.15 18 4.12 (2.58 mW) @ 110 GHz, −3 V [144]

NBUTC–PD 200
(
64 µm2 , −3.0 V) 0.15 29 8.10 (6.46 mW) @ 110 GHz, −3 V [144]

NBUTC–PD 180
(
64 µm2 , −3.0 V) 0.15 37 10.7 (11.75 mW) @ 110 GHz, −3 V [144]

Type–II UTC–PD 140 (3.2 µm , 0 V) 0.09 8 −13.9 (40.74 µW ) @ 160 GHz, 0 V [145]

NBUTC–PD 315 (3.5 µm , −0.5 V) 0.1 13 0.174 (1.04 mW) @ 280 GHz, −1.2 V [147,148]

RCE–UTC–PD 300
(
3 × 3 µm2 ) 0.12 9.8 –1.25 (0.75 mW) @ 300 GHz, −1 V [149]

Two UTC–PD 70 per PD 0.17 20 0.79 (1.2 mW) @ 300 GHz, −3.9 V [150]

Type–II UTC–PD 330 (3 µm , −0.5 V) 0.11 13 –3 (0.5 mW) @ 320 GHz, −1 V [151]

MUTC–PD ~100 0.22 20 –2.7 (0.54 mW) @ 350 GHz, −2.5 V [152]
* Waveguide–type PDs are denoted as ‘WG’, while others are vertical double–mesa PDs. ** PD diameter, area, and
bias voltage are shown in brackets.



Appl. Sci. 2024, 14, 3410 17 of 38Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 38 
 

 
Figure 18. Two mW RF output power UTC–PD on SiC substrate in 300 GHz band [134]. (a) UTC–
PD chip and the packaged module; (b) schematic of UTC–PD and effective–medium (EM) wave-
guide, while showing the electrical field distribution; (c) UTC–PD chip on SiC, where a short–stub 
matching circuit and a metal–insulator–metal (MIM) capacitor is used to increase the output power; 
(d) UTC–PD chip RF output power and photocurrent at 300 GHz; and (e) RF output power and 
photocurrent at 273 GHz for the packaged module (UTC–PD chip integrated with tapered slot an-
tenna). 

Table 2. The 3–dB bandwidth (BW), saturation current (𝐼ௌ௔௧ or 𝐼௣௛), responsivity (𝑅), bias voltage 
(𝑉௕௜௔௦) and output power (𝑃௢௨௧) comparisons for PDs. 

PD Type * BW (GHz) ** R (A/W) 𝑰𝑺𝒂𝒕 (mA) 𝑷𝒐𝒖𝒕 (dBm), 𝑽𝒃𝒊𝒂𝒔  Ref. 
UTC–PD 310 0.07 NA 11 (12.59 mW) @ 100 GHz, –0.5 V [67] 
NBUTC–PD 120 (64 μmଶ, –3.0 V) 0.15 24.6 6.28 (4.25 mW) @ 110 GHz, –5 V [94] 
NBUTC–PD 270 (3.5 μm, –3.0 V) 0.12 17 6.12 (4.093 mW) @ 170 GHz, –2 V [95,146] 
NBUTC–PD 225 (3 μm, –1.5 V) 0.08 13 –1.74 (0.67 mW) @ 260 GHz, –2 V [97] 
CC–MUTC–PD  >110 (4 μm) 0.17 27  7.80 (6.03 mW) @ 110 GHz (6 μm), –4 V [101] 
MUTC–PD  156 (4.5 μm, –3 V) 0.165 14.6 –0.53 (0.885 mW) @ 170 GHz, –3.5 V [111] 
MUTC–PD  150 (4.5 μm, –3 V) 0.165 14.6 –0.16 (0.964 mW) @ 170 GHz, –3.5 V [111] 
MUTC–PD  200 (3.6 μm) 0.07 8.4 –2.14 (0.611 mW) @ 200 GHz, –2 V [113] 
MUTC–PD  230 (3 μm) 0.07 5.85 –4.94 (0.321 mW) @ 220 GHz, –2 V [113] 
CC–MUTC–PD 105 (10 μm, –5.0 V) 0.15 >30 14 (25.12 mW) @ 80 GHz (10 μm), –2 V [114] 
CC–MUTC–PD 117 (8 μm, –3.0 V) 0.15 >20 11.3 (13.49 mW) @ 100 GHz (8 μm), –2 V [114] 
CC–MUTC–PD 117 (8 μm, –3.0 V) 0.15 >20 8.50 (7.08 mW) @ 110 GHz (8 μm), –2.5 V [114] 
CC–MUTC–PD 150 (4 μm, –3.0 V) 0.15 8.0 –3.0 (0.5 mW) @ 150 GHz (4 μm), –2.5 V [114] 
CC–MUTC–PD 100 (7 μm, –1.1 V) 0.11 4.9 –19.3 (11.75 μW) @ 300 GHz (7 μm), 0 V [115] 
CC–MUTC–PD 125 (5 μm, –1.1 V) 0.11 25.3 –10.5 (89.13 μW) @ 300 GHz (10 μm), –1.8 V [115] 

(b) (e) 

UTC-PD

DC
bias

GND
pad

GND
pad

Signal
pad

Capacitor

(a) 
(c) 

(d) 

Figure 18. Two mW RF output power UTC–PD on SiC substrate in 300 GHz band [134]. (a) UTC–PD
chip and the packaged module; (b) schematic of UTC–PD and effective–medium (EM) waveguide,
while showing the electrical field distribution; (c) UTC–PD chip on SiC, where a short–stub matching
circuit and a metal–insulator–metal (MIM) capacitor is used to increase the output power; (d) UTC–
PD chip RF output power and photocurrent at 300 GHz; and (e) RF output power and photocurrent
at 273 GHz for the packaged module (UTC–PD chip integrated with tapered slot antenna).

3. Solutions of Bandwidth–Responsivity Trade–Off
3.1. High–Reflected Mirrors for Photodiodes

High–performance PD based on III–V compound semiconductors serves as a key
component and has already been demonstrated in various applications in wireless commu-
nications and radio–over–fiber and antenna systems [5]. The key parameters of PDs, which
are responsivity, bandwidth, and saturation power, have been well designed for increasing
one of them. For tackling the trade–off between bandwidth and responsivity in PD, several
kinds of structures have been reported. The first structure is the resonant cavity enhanced
(RCE) structure [33]. By selecting distributed Bragg reflectors (DBRs) as a bottom mirror in
the PD, the incident light is reflected to the active layer, to achieve secondary absorption, as
shown in Figure 19a. The detailed requirements for DBR design, which is also amenable
to the RCE scheme, i.e., many number of different semiconductor material combinations,
have been already reported in a review article [153].

Based on the reflection theory of RCE, many kinds of reflected mirror models, as
shown in Figure 19b–f, which are used in vertical–mesa and waveguide types of PDs
to improve the responsivity without sacrificing the bandwidth, have been proposed in
the last 30 years. Most of the fabrication of reflected mirrors are the material combi-
nations of DBRs (Figure 19b) [154–165], while periodic (or non–periodic) strip or con-
centric circular subwavelength gratings (SWGs), two–dimensional square bulk SWGs
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(Figure 19c) [140,161,166–174], Au mirrors [149], and even the scattering structure formed
by a periodic cylindrical particle array [175], also can be employed as reflected ones. Those
types of mirrors are usually either on the PD bottom (i.e., bottom mirrors) realized by
direct epitaxial growth by metal–organic chemical vapor Deposition (MOCVD) or quasi–
monolithically integrated using micron–level–thick benzocyclobutene (BCB) bonding (or
integrated [69]) techniques, or on the top of the PD (i.e., top mirrors) implemented by
employing the metal contacts (or strip gratings) by magnetic sputtering (or electron beam
evaporation) or the flip–chip method with chemical etching [158,176–178].
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Figure 19. Photodiodes (PIN–PDs or UTC–PDs) are integrated or quasi–integrated with different
kinds of bottom mirrors or reflectors. (a) Conventional RCE photodiode model, i.e., photodiode with
DBR mirror; (b) photodiode with dual mirrors, i.e., bottom mirrors (DBR or subwavelength grating
(SWG) mirrors) and top mirrors (dielectric layers, or SWG or ‘metal’ mirrors); (c) photodiode with
SWG–focused mirror; (d) photodiode with tapered holes and bottom mirror (DBR or SWG mirrors);
(e) waveguide photodiode with DBR mirror; and (f) waveguide photodiode with SWG–focused
mirror (strip SWG or concentric circular SWG mirrors).

Figure 20 shows PIN–PD and UTC–PDs integrated or quasi–integrated (BCB bond-
ing) with two kinds of bottom mirrors [34,35,140,157,179] It can be seen from Figure 20a
that the GaAs–based PIN–PD is integrated with 4 DBRs (three GaAs/AlGaAs DBRs and
one Si/SiO2 DBRs) forming a four–mirror and three–cavity(M4C3) structure operating
at 1550 nm [157]. The fabricated M4C3 structure achieves 70% peak quantum efficiency,
36 GHz 3–dB bandwidth, and quite a narrow spectrum linewidth (full–width at half–
maximum (FWHM)) of 0.75 nm which is well–suited to high–density wavelength division
multiplexing (WDM) communication systems [155]. The HR–UTC–PD [34], as shown in
Figure 20b, is quasi–integrated with high–reflectivity (HR) DBR mirrors, which makes the
responsivity increase by 23.2% without sacrificing the 3–dB bandwidth. As depicted in
Figure 20c, the FR–UTC–PD [35] is quasi–integrated with a focusing reflection (FR) mirror,
which is designed with a non–periodic concentric circular high–contrast grating (NP–CC–
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HCG) on the silicon substrate. Based on the 84.59% FR–efficiency, the integrated device
achieves 36.5% improvement for the responsivity, without altering the 3–dB bandwidth.
Figure 20d shows a symmetric–connected UTC–PD array (SC–PDA) integrated with a
two–dimensional (2D) SWG beam–splitter [140], where the integrated device obtains an
RF output power of 16 dBm at 12 GHz with a 87.9 mA saturation current and 0.438 A/W
responsivity, showing stronger high–power handling capability than that of a single pho-
todetector (~11 dBm@12 GHz and 46.7 mA, 0.179 A/W), without complex coupling, phase
matching as well as any cooling techniques. Therefore, these kinds of mirrors perfectly
realize the decoupling between the responsivity and bandwidth for photodiodes, while
the improvement of responsivity and/or bandwidth can be further enhanced if using the
well–optimized bonding process in the future.
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Figure 20. UTC–PDs integrated with different kinds of mirrors. (a) PIN–PD integrated with 4 DBRs
forming a four–mirror and three–cavity (M4C3) structure [157]; (b) UTC–PD integrated with high–
reflectivity (HR) DBR mirrors, using HR–UTC–PD for short [34]; (c) UTC–PD integrated with non–
periodic concentric circular high–contrast grating (NP–CC–HCG, i.e., focusing reflection (FR) mirror),
referred to it as FR–UTC–PD [35]; and (d) symmetric–connected UTC–PD array integrated with
2D–SWG beam–splitter [140].

3.2. Microhole Design for Photodiodes

Moreover, the application of micro–holes [180–185] etched from the top until through
the active regions is also an effective way to assist the light–matter interactions. Figure 21
shows PDs with different kinds of micro– or/and nano–holes in active layers for enhancing
light–matter interactions to balance the frequency response and responsivity [180,184].
Figure 21(a1,a2) reports a novel design that uses the etched periodic or photon–trapping
micro– and nanoholes (600~1700 nm diameters) with square (Figure 21(a3)) or hexagonal
(Figure 21(a4)) shapes that penetrate from the top mesa to the bottom contact layer in
the Si photodiode [180]. Such a structure reveals that the lateral propagating slow and
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stationary optical modes can be generated only using normal incident light, which promotes
a well–rounded interaction of light with Si that is an order of magnitude greater compared
with the same thick Si–film absorber while ensuring an ultrafast carrier transport. This
design enables the Si–based PDs to monolithically integrate with CMOS and extends its
applications for optical data links in data communications and computer networks [180].
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Figure 21. Photodiodes with different kinds of micro–holes for enhancing light–matter interactions.
(a) Schematic of Si–based photodiode with micro–holes [180]: (a1) PD with GSG–pad; (a2) scanning
electron micrograph (SEM) of PD active region; (a3) SEM of square holes; (a4) SEM of hexagonal
holes. (b) Microstructure PIN photodiode (MPIN–PD) [184]: (b1) schematic diagram; (b2) design of
V–groove and center cone.

Given the 1550 nm wavelength application, microstructure PIN–PD (MPIN–PD)
is proposed and analyzed numerically by employing an InP substrate, as shown in
Figure 21b [184]. The well–designed central obconical shape surrounded by a V–groove
trench not only greatly facilitates the interaction of light and InGaAs absorber, but also
increases the device responsivity and bandwidth simultaneously. With the optimized di-
mensions of the V–groove and center cone, together with the optimized circular electrodes,
the efficiency and bandwidth of MPIN–PD are separately increased by 61% and 21%. In
addition, the back–to–back type of PD [186], waveguide–coupled PD [187], dual–absorber
PD [58,161,169] and near–ballistic PD [79] also can be used to achieve high responsivity.

With the evolution of the RCE scheme and tapered–holes structures, a novel model for
vertical–mesa PD, as shown in Figure 19d, which is realized based on tapered holes and
bottom mirrors, could be used to solve the trade–off between bandwidth and responsivity.
For waveguide PDs, the responsivity could be improved by exploiting an SWG high–
focused mirror which is made by periodic (or non–periodic) strip or concentric circular
SWG bonded at the back of the device (Figure 19f), while the usage of DBR mirrors
(Figure 19e) have already been simulated [188] and achieved experimentally [189] showing
similar performance for the trade–off.

3.3. High–Reflected Mirrors for Group–IV Photodiodes

However, the PDs based on III–V compound semiconductors are not easy for CMOS
compatibility, so the group–IV PDs are gradually paid more attention by researchers, which
more easily enables electronic photonic integrated circuits (EPICs) with low–cost, compact,
and large–scale integrations [190]. It is to be noticed that the Si–based PD cannot be directly
used for the C–band and L–band fiber–optic telecommunication regimes due with the
bandgap of 1.12 eV only resulting in a ~1107 nm cutoff wavelength.

Therefore, germanium (Ge) will play an important role for the above–mentioned
telecommunication bands owing to a relatively small bandgap (less than 0.7 eV at room tem-
perature), though its optical response rolls off rapidly beyond 1500 nm [191] while this de-
fect can be solved by depositing the Ge–layer on the Ge–on–insulator (GOI) platform [190].
By introducing 0.16% tensile strain to the Ge active layer, the operation wavelength is



Appl. Sci. 2024, 14, 3410 21 of 38

extended to cover the entire range of telecommunication C– and L–bands (1530–1620 nm).
The high refractive index Ge absorber with the low refractive indices of the bottom in-
sulator and the deposited SiO2 top layer separately serve as two mirrors which finally
constitute a RCE–Ge PD on the GOI platform [190] to increase the responsivity, similar to
the model shown in Figure 19b. Such RCE–Ge PD on GOI (i.e., GOI–PD) indicates that the
responsivity can be greatly increased up to 0.15 A/W at 1550 nm while covering the entire
C– and L–bands due to the resonant cavity effect.

Meanwhile, germanium–tin (GeSn) PD on Si is another typical group–IV candidate for
SWIR applications which only needs to incorporate Sn into Ge shrinking the direct bandgap
and causing redshift of the absorption edge from C–band to the mid–infrared range and
beyond [192,193]. GeSn–based (2.5% Sn) PIN–RCE–PD on SOI use the buried oxide (BOX)
and the deposited SiO2 as the bottom and top mirrors forming multiple reflections to
enhance light–matter interaction, which shows ~0.4 A/W responsivity at 0 V bias voltage
in the C–band, which is much higher than that of the conventional GeSn PIN–PDs with the
values of 0.1~0.3 A/W [194]. The introduction of 10% Sn extends the operation wavelength
to a 2 µm band, where the metal–semiconductor–metal (MSM) RCE–GeSn–PD can work
at 1550 nm and 2 µm wavelengths by optimizing the cavity length. Based on the RCE
resonance effects, a record responsivity of 0.43 A/W is obtained with a −3 V bias voltage at
2 µm wavelength at room temperature, revealing that it is promising for CMOS–compatible
photonic–integrated circuit applications covering the entire telecommunication bands in a
2 µm range [195].

4. Photodiode Photonic–Integrated Applications
4.1. Photodiodes Integrated with Short–Stubs

With the development of MMW to THz communication techniques, the photonics–
based technology provides lower loss in the optical fiber and a large bandwidth while
needing the PDs with a high output power and broadband high–frequency characteristics.

Furthermore, we could not ignore the connected compact rectangular waveguide
(WR) output port for practical use in a package module [90,152,196–200]. Figure 22 shows
two different equivalent circuits and the fabricated micrographs for the photonic MMW
generator (PWG), where each PWG includes a UTC–PD, a short–stub matching circuit
(impedance transformer), and a metal–insulator–metal (MIM) capacitor, CMIM (i.e., C
in Figure 22d,e) [196,199]. The calculated relative output power curves are given for
comparisons as shown in Figure 22c, in which the higher power is obtained by PMG–A at
~100 GHz (W–band). Meanwhile, the PMG works at the J–band as shown in Figure 22f,
where a WR–3 waveguide output port is used for practical use. It is noticed that a typical
case is a coupler integrated with UTC–PD packaged with WR–1.5, which attains a record
output power of −19 dBm at 500 GHz with a 9 mA photocurrent while showing a wide
range 3–dB bandwidth of 340 GHz, i.e., from 470 GHz to 810 GHz [201]. The detailed
results of PDs integrated with WR ports and short stubs [90,197,198,200,201] are shown in
Table 3.

Table 3. The comparisons of PDs integrated with WR ports and short stubs.

Device Type Coupling Type Si Lens Iph (mA) Output Power (dBm) Ref.

UTC–PD WR10 port (W–band) No 25 13.2 (20.8 mW ) @ 100 GHz [90]

UTC–PD WR3 port (J–band) No 26 −8.73 (134 µW ) @ 264 GHz [190]

UTC–PD WR8 port (F–band) No 25 12.3 (17 mW ) @ 120 GHz [197,198]

UTC–PD WR6 port (D–band) No 7 > 10 (> 10 mW ) @ 104~185 GHz [200]

Coupler integrated UTC–PD WR1.5 port No 9 −18.96 (12.7 µW ) @ 500 GHz [201]

Coupler integrated UTC–PD WR1.5 port No 9 > −22 (> 6.31 µW ) @ 470~810 GHz [201]

Coupler integrated UTC–PD WR1.5 port No 6 −22 (6.31 µW ) @ 500 GHz [201]

Coupler integrated UTC–PD WR1.5 port No 6 > −25 (> 3.16 µW ) @ 470~810 GHz [201]
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Figure 22. Photonic MMW generator (PMG) equivalent circuits and fabricated micrographs [196].
(a,d) PMG–A works at W–band; (b,e) PMG–B works at W–band; (c) relative output power compar-
isons for PMG–A, PMG–B, and UTC–PD without PMG; and (f) PMG works at J–band [168].

4.2. Photodiodes Integrated with Antennas

Another photonic–integrated device is PD with antennas for increasing output power
for practical use. The general schematic diagram of the photonics–based transmitter and
receiver is shown in Figure 23. One of the unique performances of UTC–PDs [44,54] is
both a large bandwidth and high saturation output power, which can be used as an MMW
signal emitter [123] for wireless applications.
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Figure 23. General schematic diagram of (a) PD photonic–integrated emitter and (b) receiver.

To obtain V–band–to–G–band (50 GHz~220 GHz) photonically driven emitters and ex-
tend applications to MMW and THz signal wireless links, high–power photonic–integrated
emitters with three types of planar antennas have been proposed [22,202], as shown in Fig-
ure 24. The high–speed and high–power broadband CC–MUTC–PD [78,101] with 0.2 A/W
responsivity and 12 dBm output power is used for the MMW and THz emitter design. The
fabricated emitter with the sinuous antenna and 8 µm PD shows a record output power
of 20 dBm at 90 GHz with a photocurrent of 20 mA while achieving an output power of
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9.9 dBm at 70 GHz, 11.5 dBm at 100 GHz, all with 7 mA photocurrent, for log–periodic and
spiral antennas, respectively [22].
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Figure 24. Schematic diagram of CC–UTC–PD photonic–integrated emitter with Si–lens, the three
different planar antennas, and the top/bottom views of the fabricated emitter [22].

Using flip–chip technology, UTC–PD can be mounted on a planar slot antenna on the Si
substrate [123,124,203], as shown in Figure 25a, and then boned on a hemispherical Si–lens
to collimate the MMW signal direction, which generates a larger than 0.5 mW output power
from the PD chip while radiating a bigger than 0.3 mW power into the free space, at a
120 GHz bandwidth [123,124]. Meanwhile, this design indicates the potential applications
in future wireless communication, sensing, radar, measurement, and imaging systems
based on photonic–assisted MMW generation and transmission techniques. Beyond the
F–band, the electrical transmission line will bring loss and reflection, so the miniaturized
PD–integrated antenna with a quasi–optical configuration (Figure 25b) is necessary for
sub–MMW signal handling [204]. As shown in Figure 25c, a UTC–PD integrated with a
log–periodic antenna achieves a saturation output power of 300 µW at a photocurrent of
20 mA (Figure 25d) [205]. Using a similar configuration, the UTC–PD integrated with a
log–periodic antenna exhibits a high output power of 2.6 µW at 1.04 THz with a saturation
current of 13 mA [204].

However, a single PD integrated with an antenna suffers some limitations, including
the limited emitted power resulting from the saturation of PD and the limited antenna
directivity due to the finite effective aperture of the planar antenna [206]. Here, four
InP–based photodiodes operating at 300 GHz, which are integrated with a linear bowtie
antenna array mounting on the Si–lens, are proposed, as shown in Figure 26, to increase the
radiation power. Compared to the straight radiation of a single emitter, the array emitter
realizes a 10.6 dB higher power (theoretical gain: 12 dB), while the 3–dB beamwidth is
reduced by 8.5◦ and up to 22.5◦, which achieves the output power increase and higher
directivity. These photonic–integrated antenna arrays provide new solutions to wireless
communications beyond 5G and will further exploit combinations of other photonic devices
for application to future complex MMW and THz transceivers.
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Figure 25. (a) UTC–PD integrated with slot antennas used as an MMW signal emitter for free–space
applications [123,124]. (b) The fabricated quasi–optical UTC–PD with Si–lens module for practical
use [204]. (c,d) UTC–PD integrated with log–periodic antenna (micrograph as shown in the inset)
attains 300 µW output power and 20 mA photocurrent at a 1.5 V bias voltage [205].

In addition, a resonant antenna integrated with UTC–PD is another excellent candidate
to be employed for output power radiation in the THz bands [207–209]. Figure 27a shows
the THz UTC–PD chip integrated with a twin–diploe antenna [209] using an impedance
matching circuit [90] to enlarge the output power and the resonant behaviors are found
exhibiting the peak output powers of 5.9, 3.8, and 1.1 µW at 0.78, 1.04 and 1.53 THz
(Figure 27b), while generating a record output power of 10.9 µW at 1 THz with a photocur-
rent of 14 mA [209].

Moreover, the THz wave and THz beam steering provide great opportunities for
free–space applications, including imaging, sensing, radar, and wireless communications
in the 6G era and beyond [15,135,210]. Figure 27c shows a 4 × 1 UTC–PD array integrated
with a 4×4 unidirectional slot antenna to generate THz signals based on coupled fiber beats
techniques [211]. The adaptive genetic algorithm is used to control the produced THz beam
steering and the experiment achieves a precise pointing towards the intended direction of
the 300 GHz beam, which greatly improves the THz power efficiency by beam steering and
paves the way for THz wireless communication using large–scale UTC–PD array [211–213].

With the development of communication techniques, the frequency range (MMW to THz:
30 GHz~3 THz) between microwave and far–infrared is set to meet the growing demand.
Exploiting and making the most of the MMW and THz wireless signals [7,214,215] with
high–radiated power have long been studied and generated by the electronic system [26–28]
or photonic system [6,8,9,15–23] or hybrid electronic–photonic systems [216,217], which have
shown a very diverse range of application in information and communications, security screen-
ing, food and agriculture, biometrics, medical and medicine, drug inspection, semiconductor
wafer inspection, and air pollution [218–220].
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Given the photonic–generated THz signal, ultrafast broadband, and high–power PDs,
such as UTC–PDs [44,54] and traveling–wave PD (TW–UTC–PD) [221], are necessary. By
combining the TW–PD structure for high responsivity and the UTC–PD structure for high
output power, a new TW–UTC–PD is proposed for integration with antennas for MMW and
THz signal radiation [21,222]. The TW–UTC–PD separately integrates with the resonant, bowtie,
and log–periodic antennas for generating THz signals, covering frequencies up to 1 THz. The
radiated power at different photocurrent levels is shown in Figure 28, where the 4 × 15 µm2

PD integrated with a resonant antenna achieves an RF output power of 148 µW at 457 GHz
and 24 µW at 914 GHz with a 10 mA photocurrent (Figure 28a). Figure 28b shows that the
RF output power of 105 µW at 255 GHz and 10 µW at 612 GHz with a 13 mA photocurrent
are attained by a 2.5 × 50µm2 PD integrated with a bowtie antenna while exhibiting 70 µW at
150 GHz with a 9 mA photocurrent for integrating with a log–periodic antenna.
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Figure 26. InP–based PIN–PD integrated with four bowtie antennas and mounted on Si–lens to
increase emitted power and high directivity [206]. (a) The fabricated InP chip and the schematic for
packaging of the antenna array; (b) the emitter chip module; and (c) measurement setup.

Another type of PD for THz applications is related to the design, usage, and optimiza-
tion of the hybrid absorber UTC–PD (i.e., modified UTC–PD, MUTC–PD) [72], as shown
in Figure 29. The band diagram for this type of MUTC–PD is shown in Figure 29a, where
the absorber consists of a non–depleted absorber with p–doping and a depleted absorber
without doping. The maximum 3–dB bandwidth can be calculated while just comprehen-
sively analyzing the numerical relation of thickness among depletion (Wdep), non–depleted
(Wan), and depleted (Wad) absorbers. Figure 29d shows the frequency response at different
quasi–fields in the non–depleted absorber, while the Wan, Wad and Wdep are separately
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0.12 µm, 0.06 µm, and 0.18 µm. The 3–dB bandwidth is enlarged from 603 to 1087 GHz
with the increase in quasi–field from 10 to 30 kV/cm.
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Figure 27. (a) THz UTC–PD chip integrated with twin–diploe antenna using impedance matching
circuit and (b) the output power versus different frequency [209]. (c) Adaptive THz beam steering in
fiber–coupled UTC–PD array chip to generate THz wave [211–213].
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Figure 28. Traveling–wave UTC–PD (TW–UTC–PD) integrated with resonant, bowtie, and log–
periodic antennas, and the radiated power at different photocurrent levels for resonant antenna (a),
and for bowtie and log–periodic antennas (b), where the device dimensions are in µm2 [21,222].
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Figure 29. Hybrid absorber UTC–PD (modified UTC–PD, MUTC–PD) integrated with bowtie
antenna [72]. (a) Band diagram of MUTC–PD; (b) MUTC–PD integrated with bowtie antenna;
(c) incident light coupling to MUTC–PD by a refracting–facet plane and 45◦ mirror; (d) frequency
response of MUTC–PD with three quasi–field values; (e) comparisons of the measured THz power
(open circles) and calculated values of the integrated device using different electron effective velocity,
ve f f . Note: The inset is the packaged device module (i.e., photomixer) with Si–lens and fiber pigtail.

The MUTC–PD is integrated with a bowtie antenna shown in Figure 29b, where
Si–lens (Figure 29c) is employed to increase the output power. Being accompanied by a
well–designed matching circuit and the rectangular waveguide output port, the quasi–
optical antenna–integrated photomixer module can be completed as shown in the inset of
Figure 29e. It can be seen that the measured output power gradually decreases with the
increase in the frequency while the typical values are larger than −20 dBm at 300 GHz,
−30 dBm at 1 THz, and approximately −40 dBm at 2 THz. Furthermore, the calculated
results which changed with the different effective electron velocities are also shown in
Figure 20e, as comparisons with the measured values. Parts of PDs photonic–integrated
antennas [18,21,22,25,72,91,98,123,124,134,142,204–206,208,209,223–227] are summarized
in Table 4.

Table 4. The comparisons of emitted power for PDs integrated with antennas.

Device Type * Coupling Type Si Lens Iph (mA) Output Power (dBm) Ref.

NBUTC–PD Yagi antenna No 30 –14.1 (25.7 mW) @ 100 GHz [18,223]

TW–UTC–PD Log–periodic antenna No 9 −11.55 (70 µW ) @ 150 GHz [21]

TW–UTC–PD Bowtie antenna No 13 −9.79 (105 µW ) @ 255 GHz [21]

TW–UTC–PD Resonant antenna No 10 −8.3 (148 µW ) @ 457 GHz [21]

TW–UTC–PD Bowtie antenna No 13 −20 (10 µW ) @ 612 GHz [21]

TW–UTC–PD Resonant antenna No 10 −16.2 (24 µW ) @ 914 GHz [21]

CC–MUTC–PD Log–periodic antenna Yes 7 9.9 (9.77 mW) @ 70 GHz [22]

CC–MUTC–PD Sinuous antenna Yes 7 11.5 (14.13 mW) @ 90 GHz [22]

CC–MUTC–PD Sinuous antenna Yes 20 20 (100 mW) @ 90 GHz [22]

CC–MUTC–PD Spiral antenna Yes 7 8.8 (7.59 mW) @ 100 GHz [22]

MUTC–PD Vivaldi antennas No 10 5 (3.2 mW) @ 110 GHz [25]

Hybrid absorber UTC–PD Bowtie antenna Yes 6 −20 (10 µW ) @ 300 GHz [72]
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Table 4. Cont.

Device Type * Coupling Type Si Lens Iph (mA) Output Power (dBm) Ref.

Hybrid absorber UTC–PD Bowtie antenna Yes 6 −30 (1 µW ) @ 1 THz [72]

Hybrid absorber UTC–PD Bowtie antenna Yes 6 −35.2 (0.3 µW ) @ 1.5 THz [72]

Hybrid absorber UTC–PD Bowtie antenna Yes 6 −40 (0.1 µW ) @ 2 THz [72]

Hybrid absorber UTC–PD Bowtie antenna Yes 6 −44 (0.04 µW ) @ 2.5 THz [72]

MUTC–PD Patch antenna No 45 20 (100 mW) @ 60 GHz [98]

TWPD Bowtie antenna Yes 6.3 −33 (0.5 µW ) @ 40 GHz [91]

UTC–PD Slot antenna Yes >20 –5.23 (0.3 mW) @ 120 GHz [123,124]

UTC–PD on SiC Tapered slot antenna No 14.5 1.59 (1.44 mW) @ 273 GHz, −1 V [134]

UTC–PD on SiC Tapered slot antenna No 18 4.04 (2.53 mW) @ 273 GHz, bias optimized [134]

WG–UTC–PD Bowtie antenna Yes 13.5 −12.22 (60 µW) @ 250 GHz [142]

UTC–PD Log–periodic antenna Yes 13 −25.9 (2.6 µW) @ 1.04 THz [204]

UTC–PD Log–periodic antenna Yes 20 −5.23 (300 µW) @ 300 GHz [205]

PIN–PD array Bowtie antenna Yes NA >10 dB vs. an emitter @ 300 GHz [206]

UTC–PD Log–periodic antenna Yes 15 −11.2 (75 µW) @ 414 GHz [208]

UTC–PD Log–periodic antenna Yes 15 −17.4 (18 µW) @ 609 GHz [208]

UTC–PD Log–periodic antenna Yes 15 −20.8 (8.3 µW) @ 804 GHz [208]

UTC–PD Twin dipole antenna Yes 14 −19.6 (10.9 µW) @ 1.04 THz [209]

UTC–PD Log–periodic antenna Yes 20 −9.2 (120 µW) @ 300 GHz [224]

Type–II UTC–PD Dual–ridge horn antenna No NA −15 (31.6 µW) @ 240 GHz [225]

UTC–PD TEM–horn antenna Yes 2.75 −29.5 (1.13 µW) @ 940 GHz [226]

UTC–PD TEM–horn antenna Yes 2.5 −33.4 (0.46 µW) @ 1.04 THz [226]

UTC–PD TEM–horn antenna Yes 2.88 −35.1 (0.31 µW) @ 1.365 THz [226]

UTC–PD slot antenna Yes 10 −15.53 (28 µW) @ 700 GHz [227]

UTC–PD slot antenna Yes 10 −24.56 (3.5 µW) @ 1.25 THz [227]
* Waveguide– and traveling–wave–type PDs are denoted as ‘WGPD’ and TWPD, while others are vertical–mesa PDs.

5. Discussion

During the design of high–speed and high–output power photodiodes, the compatible
photodiode–integrated devices, the measurement setups, and applications for communica-
tion systems, there are lots of considerations and challenges that need to be noticed. They
are mainly reflected as follows: (1) The efficient optical coupling and precise alignment
between the photodiode and other optical components. (2) The wider bandwidth with
high response for photodiodes. (3) The wider dynamic range and linearity for higher
output power without small saturation or signal distortion. (4) The effects resulting from
temperature and heat from high–power conditions. (5) The reliability and robustness of
photodiodes, and the scalability and modularity of photodiode–integrated devices. (6) The
potential limitations at the 300 GHz band, such as the coverage range with high propa-
gation loss, the penetrating obstacles from the walls, buildings, and vegetation, and the
complexity and cost of exploiting and deploying photodiodes to the MMW and THz bands.
(7) The design of corresponding other components matching with photodiodes in THz
links and systems.

Though achieving high–speed, high–power photodiodes and photodiode–integrated
devices with over 2 mW output power in the THz band has been realized, it is still a big
challenge to apply photodiodes to 6G technology. Compared with existing communication
systems, 6G requires ultra–high data rates (such as 200~1000 Gbit/s) and also requires
the matching terahertz sources, photodiodes, and components in THz links and systems.
However, considering the wider applications of photodiodes in transparent materials,
including cell phone screens, smart windows, and automobile/aircraft win screens, is also
a big challenge. A possible solution could be to implement the integration of photodiodes
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with waveguide–based Bragg grating devices in glass inscribed using femtosecond laser in
the future.

6. Conclusions

This paper reviews the advances in high–speed, high–power photodiodes from fun-
damentals to applications. (1) For the overall design and consideration of photodiodes,
this paper discusses the principles of PIN–PD and UTC–PD, while reporting the detailed
calculation of the 3–dB bandwidth for the two typical photodiodes and summarizes the
energy band diagrams for several kinds of photodiodes. Given the equivalent circuits, this
paper shows the general ones and RF small–signal ones together, and also considers the
different designs for the RC–delay time part and the external circuit parts, including the
air bridge, CPW pad, and load. Additionally, the DC saturation and RF output power are
also analyzed in detail and a table for comparison is also included. (2) The solutions of
bandwidth–responsivity trade–off for photodiodes are discussed in detail, which range
from the use of high–reflected mirrors to the making of microholes and extending the
reflected mirrors for group–IV photodiodes. (3) The photodiode photonic–integrated ap-
plications are presented, including the integration with short stubs and various planar
antennas for high output power at high–speed conditions, and showing the parameter
comparisons in tables, which provides a reference for the practice use of photonics–based
devices operating at the system–level with the radiation power up to the mW–level and
beyond in the THz band.
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