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Abstract: A knowledge graph is a repository that represents a vast amount of information in the
form of triplets. In the training process of completing the knowledge graph, the knowledge graph
only contains positive examples, which makes reliable link prediction difficult, especially in the
setting of complex relations. At the same time, current techniques that rely on distance models
encapsulate entities within Euclidean space, limiting their ability to depict nuanced relationships
and failing to capture their semantic importance. This research offers a unique strategy based on
Gibbs sampling and connection embedding to improve the model’s competency in handling link
prediction within complex relationships. Gibbs sampling is initially used to obtain high-quality
negative samples. Following that, the triplet entities are mapped onto a hyperplane defined by the
connection. This procedure produces complicated relationship embeddings loaded with semantic
information. Through metric learning, this process produces complex relationship embeddings
imbued with semantic meaning. Finally, the method’s effectiveness is demonstrated on three link
prediction benchmark datasets FB15k-237, WN11RR and FB15k.

Keywords: knowledge graph embedding; metric learning; link prediction; negative sampling;
semantic extraction; relation fusion

1. Introduction

A knowledge graph is a vast storehouse of entities and their relationships, structured as
triplets. Knowledge graph embedding (KGE) is a method for mapping entities and relations
existing in a knowledge graph to the low-dimensional [1], dense space while preserving
the ternary’s internal structure and allowing for a dispersed representation of things and
relations. Similar to tasks in [2–5], computing the low-dimensional vectors for entities
and relations in a knowledge graph enhances recommendation accuracy, Q&A answers,
and semantic representations. This improvement is crucial for enhancing the efficacy of
knowledge graph applications and is a vital aspect of knowledge graph completion and
link prediction. As a result, a growing multitude of scholars are concentrating on link
prediction based on KGE.

Recently, researchers have introduced a range of KGE models to tackle link prediction
tasks. Link prediction involves forecasting another entity that can complete a valid triple
(h, r, t) when given one entity under a specific relation. Deep learning-based KGE models
often establish a scoring function to decide the presence of a link based on the score of
the projected triplet Φ(h, r, t). KGE models that focus only on internal facts include the
Translation Distance Model (TDM) and Semantic Matching Model (SMM). The difference
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between the two is that the former uses distance as the scoring function, and the latter uses
the similarity measure as the evaluation function.

TDMs are widely used in link prediction tasks within the realm of KGE models
due to their simplicity and efficiency. However, it is important to note that TDMs have
limitations when it comes to expressiveness, as observed in [6]. Empirically, they tend to
underperform when compared to other models, particularly in modeling intricate relation
patterns. Compared with other methods, SMM has excellent performance in both result
performance and theoretical guarantee. Nonetheless, the substantial number of parameters
in SMMs presents obstacles when it comes to deploying them in extensive knowledge
graphs within industrial contexts. In summary, the challenge lies in achieving robust
modeling capabilities for intricate relation patterns simultaneously while maintaining
performance in KGE learning.

Meanwhile, because the knowledge graph only contains positive samples, in or-
der to assure the model’s generalization capacity, negative examples must be generated
throughout the training process using a tailored technique as a data augmentation strat-
egy to increase the model’s training effect. Currently, the widely adopted method of
negative sampling randomly selects negative samples by substituting either the head
or tail entity in the triplet. However, as training progresses, an abundance of zero-loss
negative samples emerges, leading to gradient disappearance due to the challenge of
adjusting these negatives effectively for each positive sample. Furthermore, negative sam-
pling should be considered to avoid generating erroneous negative triples. For example,
for (Beijing, located in, China), generating pseudo-negative examples by randomly re-
placing the head entity with (Shanghai, located in, China) will not only affect the model
training effect, but may also cause test set leakage. As a result, generating high-quality
negative samples is also a pressing issue.

To tackle the limitations of existing TDMs in obtaining semantic information and the
challenges posed by SMMs with an excess of parameters, we introduce a novel KGE model.
This approach dynamically represents entities and comprises two modules: Relation Fusion
and Metric Learning (ML). The ML module optimizes learning efficiency by extracting
shared parameters from the complete KG, inspired by prior work [7,8]. This minimizes
model parameters while enhancing semantic information content. Additionally, we pro-
pose a technique involving Relation Cutting and the development of a Mapping Matrix,
influenced by [9,10].

The core aim of this strategy is to amplify the differentiation between head and tail
entities while maintaining the coherence of identical triplets. This is accomplished by
dynamically embedding head and tail entities onto their respective relational hyperplanes,
employing the associated projection matrices. Additionally, the relation fusion module
bolsters the effectiveness of relational embeddings by amalgamating pertinent vector
information associated with relations. As a result, this diminishes the semantic gap within
entities and their associated negative samples.

In the context of the research, we contribute the following to address this challenge:

• We introduce the concept of Gibbs sampling and present a path-based negative sam-
pling method to generate high-quality negative samples. This method enhances the
generalization capacity of relation embeddings.

• To overcome the limitations of prior models in handling intricate relations, we introduce
a technique to acquire unique embeddings for a given entity across diverse relations and
positions. This dynamic representation effectively captures complex relationships.

• To lower the quantity of parameters simultaneously while maintaining overall features,
we introduce the concept of shared feature tensors. This improvement enables the
model to perform effectively across several embedding dimensions and considerably
improves training efficiency.
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This article represents an extended version of a paper [11] presented at the ICCAI
conference. In this iteration, we incorporate a Gibbs negative sampling module and
auxiliary loss. We expand the experimental validation and results analysis, demonstrating
the efficacy of the newly introduced modules.

2. Related Work
2.1. Data Augmentation for Link Prediction Task

Data augmentation is a useful method for expanding dataset size and enhancing data
diversity. Recently, techniques employing generative adversarial networks to generate
textual descriptions in knowledge graphs have emerged. OnToZSL [12] developed an
ontology encoder to learn relationship representations by encoding intricate logical
information between textual descriptions in knowledge graphs. However, this approach
solely focuses on generating textual descriptions, overlooking the potential benefits of
incorporating an entity’s structural information to enrich knowledge graph data samples.
WRAN [13] leveraged adversarial networks to learn entity embeddings with invari-
ant relationships from an entity’s textual features and structural encodings. With the
advancement of natural language corpora, various completion methods have utilized
pre-trained models to tackle issues. KG-BERT [14], for instance, is a BERT-based knowl-
edge graph representation learning method that achieves more accurate and expressive
entity and relationship representations by utilizing context-aware word vectors. Despite
these advancements, the challenge of insufficient knowledge graph samples remains
inadequately addressed.

Negative sampling was put forward by [15]. It was originally used to speed up the
training of the Skip Gram model. Now, it has been widely used in CV (Computer Vision),
recommendation systems, NLP (Natural Language processing), and other fields. In the
field of knowledge graph, Ref. [16] demonstrated that negative sampling is equally crucial
with positive sampling and experimentally negated the conventional intuition in graph
representation learning that “sampling adjacent nodes as positive node pairs and sampling
distant nodes as negative node pairs”.

In the knowledge map embedding task, negative sampling is regarded as an important
module that affects model performance. Take the TransE model [9] as an illustration; its
objective function is defined as the gap between positive and negative samples. GANs
(Generative Adversarial Networks) have also been introduced for generating negative
samples. After a detailed analysis of static negative sampling methods, KBGAN [17]
found that the majority of negative samples are weak negative examples rather than
strong negative examples. During training, the scoring of these negative examples rapidly
decreases, leading to the problem of gradient vanishing. By incorporating GANs [18],
one can generate well-crafted negative sample triplets and leverage new distributions in
the training process. IGAN [19] designed a generator and performed advanced negative
sampling based on softmax, using the boundary loss training of positive and negative
examples in the discriminator to obtain the final embedded model. A knowledge-guided
attention mechanism was introduced by [20], and they devised a semantic sampler along
with comparative learning to acquire diverse representations for negative samples across
various relationships. NSCaching [21] designed two modules: head entity cache and tail
entity cache. During the procession of training, to replace true triplets, entities are selected
from the head entity cache and tail entity cache. In addition, the two cache modules are
also updated as the model is trained.

In addition, there are some semantic related negative sampling models, such as joint
relationship context negative sampling, entity similarity-based negative sampling, etc.
As the performance of models encounters limitations in link prediction, researchers are
exploring solutions to improve embedding quality from multiple perspectives beyond
model design. Starting from the underlying logic of embedded models, negative sampling
is undoubtedly a research perspective with great potential.
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2.2. Translational Distance Models

The TransE model proposed by [22] represents a seminal work in translational dis-
tance models. It operates on the assumption that if a triple (h, r, t) exists, the vector
representations of the head and tail entities, denoted as h and t, along with the relation
r, should approximately fulfill the constraint h + r ≈ t. This simple constraint yields a
straightforward and effective modeling approach. However, it can sometimes result in the
convergence of representations for semantically different entities in vector space. After be-
ing trained by TransE, entities like (Shanghai, located in China) and (Beijing, located in
China) may exhibit vector representations vShanghai ≈ vBeijing, even though these entities
should not possess such a high similarity.

To overcome challenges, TransH, introduced by [9], utilizes hyperplanes. Indepen-
dently projecting the head and tail entities onto the relation-associated hyperplane precedes
the transformation process. In contrast, RotatE, proposed by [23], utilizes rotation opera-
tions in a complicated space, departing from operations of summing in Euclidean space.
This enhances the model’s capability to handle symmetry relations. PairRE, proposed
by [10], leverages pairwise relationships to model complex relations effectively.

Traditional TDMs, including TransE, come with their merits, such as straightforward
operations, a reasonable parameter count, and effective learning. However, they often
fall short in capturing the full semantic richness of learned vector representations. In our
approach, we seek to augment the modeling capacity beyond what TransH offers by
introducing paired additional mapping matrices. This augmentation allows for a more
sophisticated representation of intricate relations while preserving the simplicity and
efficiency found in TDMs.

2.3. Semantic Matching Models

In the realm of knowledge graph applications, semantic matching models hold indis-
pensable significance. An eminent contender in this class is RESCAL proposed by Nickel
et al. [24], which characterizes a knowledge graph with a binary three-dimensional tensor
X ∈ R|E|x|E|x|R| and depends on one-hot encoding. While RESCAL offers a foundational
approach, it has limitations. It fails to capture the rich semantic nuances within the graph
and scales poorly with the expansion of the size of the knowledge graph, making it less
suitable in industrial-scale scenarios. Several variations of RESCAL have emerged to ad-
dress these shortcomings. DistMult [25] simplifies the RESCAL model by constraining the
relation matrix to a diagonal form, effectively reducing the overall parameter complexity.
Going a step further, ComplEx [26] incorporates complex embeddings, enabling a more
accurate representation of non-symmetric relations. TuckER [27] employed a decompo-
sition algorithm to break down the tensor into entity and relation matrices, offering a
holistic approach to semantic matching. ConvE [28] takes a unique perspective by sepa-
rately reconstructing head entity and relation embeddings and applying a 2D convolution
layer to extract semantic features, enhancing its capability to handle complex relations.
InteractE [29] identifies a limitation in previous models, particularly ConvE, which restricts
feature interaction between entities and relations. To improve completion performance,
InteractE prioritizes increasing feature interaction, yielding better results.

While these semantic matching models have significantly advanced knowledge graph
applications, they often come with a high parameter count, posing challenges in terms of
overfitting and scalability. Inspired by TuckER, we propose the introduction of a shared
parameter tensor to mitigate these issues, allowing for a more effective learning in large-
scale knowledge graph scenarios.
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In summary, the evolution of semantic matching models has significantly enriched
the landscape of knowledge graph-based applications. Each model offers unique insights
and improvements over its predecessors, and our proposal of shared parameters seeks to
further enhance efficiency and scalability in this domain.

2.4. Metric Learning

Metric learning is a method of spatial mapping that enables the acquisition of a feature
space. Within this space, all data are transformed into feature vectors, where the distance
between feature vectors of similar samples is minimized while that between dissimilar
samples is maximized, thereby facilitating data discrimination.

Metric learning can be categorized into two types based on whether the original
feature space is transformed before measurement: direct measurement and transformed
measurement. Direct measurement typically relies on the Euclidean distance between
objects in the original feature space, such as the K-Nearest Neighbor (KNN) algorithm [30],
which calculates the similarity between objects directly based on Euclidean distance. Trans-
formed measurement, on the other hand, is generally based on the Mahalanobis Distance,
which measures distances after projecting source vectors onto a projection matrix. The met-
ric function parameterizing the KNN classifier introduces the notion of a large-margin
nearest neighbor classifier. The Mahalanobis Distance is an extension of the Euclidean
distance, encompassing all possible metrics in the feature space under linear conditions.
Consequently, learning the metric function translates into learning an embedding repre-
sentation by transforming input features into a lower-dimensional embedding space, thus
circumventing the degradation issues of conventional metric functions such as Euclidean
distance in high dimensions.

Ref. [31] introduced the Contrastive Loss function, which trains the model to determine
whether each pair of faces comes from the same person, aiming to pull similar samples
closer while pushing dissimilar samples apart. Ref. [32] proposed the Triplet Loss function
as an improvement, where each input consists of an anchor sample, a positive sample, and a
negative sample, and the network judges the distance between the anchor sample and the
positive and negative samples. Due to the similarity between small-sample classification
problems and face recognition tasks, these methods have gradually been applied to some
classification problems. For instance, Ref. [33] proposed Siamese Networks, which utilize
the Contrastive Loss for single-sample image classification. Ref. [34] implemented self-
supervised image classification based on the Siamese Network architecture by treating any
image and its transformation as a positive pair and any randomly selected pair of images
as negative samples.

3. Methodology

In this chapter, we present our proposed methodology, starting with the introduction
of a negative sampling technique aimed at obtaining superior negative samples. Secondly,
a knowledge graph embedding method is proposed that combines relationship fusion and
metric learning [11]. This model, which has fewer parameters and integrates semantic
information, is used in conjunction with the two methods introduced for link prediction
tasks. First, in Section 3.1, we introduce the proposed negative sampling method. Next,
Sections 3.2 and 3.3 present the proposed metric learning module and relation fusion
module, respectively. Finally, in Section 3.4, we delve into the objective function, while the
model’s comprehensive architecture is depicted in Figure 1.
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Figure 1. Overall architecture of the model. Initially, entities are chosen from the knowledge graph
for Gibbs sampling to derive high-quality negative sample triplets. Subsequently, shared weights
between positive and negative samples are extracted, and the samples are partitioned separately
along the directions of head and tail entities, resulting in two directional mapping matrices. Finally,
the similarity between these mapping matrices is measured through metric learning.

3.1. Negative Sampling

In this section, we introduce the negative sample generation module based on Gibbs
negative sampling. Moreover, in the second subsection, we introduce our relation negative
sampling method.

3.1.1. Gibbs Negative Sampling

Gibbs negative sampling is introduced to tackle the challenge of a substantial rise in
zero-loss negative samples caused by the subpar quality of negatives, resulting in gradient
vanishing. It also addresses the issue of test set leakage. Ref. [16] utilizes the Metropolis–
Hastings algorithm for negative sample generation in graph representation learning, which
is well-suited for one-dimensional distributions. However, in the context of embedding
knowledge maps, entities always appear in pairs within triples, manifesting as head entities
and tail entities. Consequently, a two-dimensional distribution is more appropriate for
generating samples. Drawing inspiration from this, our study explores Gibbs sampling,
commonly used for multivariate joint distributions, as it offers a simpler approach. Specif-
ically, we investigate the distribution characteristics of entities in the knowledge map.
For the entity-relation pair (h, r), the negative sample entities of higher quality are those T′

entities that exist in the observed facts in the form of (∼, r, t′). The formula for this is given
in Algorithm 1.

Algorithm 1 Gibbs Negative Sampling Algorithm
Require: Conditional probability distribution P, state transition times threshold n1, number of negative samples n2

Require: Random initialization state values x(0)1 , x(0)2
for µ in Search Grid do

Sample x(t+1)
2 from the conditional probability distribution P(x2 | x(t)1 )

for t = 1, 2, . . . , n1 + n2 − 1 do
Sample x(t+1)

1 from the conditional probability distribution P(x1 | x(t+1)
2 )

end for
Calculate loss Lµ of sample set:{

(x(n1)
1 , x(n1)

2 ), (x(n1+1)
1 , x(n1+1)

2 ), . . . , (x(n1+n2−1)
1 , x(n1+n2−1)

2 )
}

if current loss is greater than historical maximum loss then
Replace the maximum loss with the candidate sample set

end if
end for

Output: Sample set

N(h,r) =
{
(x(n1)

1 , x(n1)
2 ), (x(n1+1)

1 , x(n1+1)
2 ), . . . , (x(n1+n2−1)

1 , x(n1+n2−1)
2 )

}
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3.1.2. Relation Negative Sampling

This section presents a path-based approach to negative sampling, intending to en-
hance the expressive capabilities of relations. The method operates as follows for a given
relation: initially, all head and tail entities are connected to the relation to create a set
of entities:

ϵri = {h | (h, ri, t) ∈ T} ∪ {r | (h, ri, t) ∈ T} (1)

Pick the relation linked to every entity within the entity set ϵri to create a negative
relation sample:

Nri = {r | (h, r, t) ∈ T ∧ h, r ∈ ϵri} (2)

Within this context, T represents the set of triplets in the knowledge graph, and Nri denotes
the set of negative relation samples, representing the relations designated for comparison.

3.2. Metric Learning Module

This section presents an embedding methodology grounded in entity metric learning.
Metric learning focuses on the distance relationship between data entities, measuring the
similarity between them [7,8]. In contrast to TDMs, which utilize Euclidean distance for
entity translation, we propose that enhancing embeddings through the measurement of
semantic similarity between entities can yield more expressive embeddings.

In this process, the matrix functions to project the head and tail entities onto a dedicated
hyperplane determined by the relation. In this process, the matrix projects entities onto a
dedicated hyperplane determined by the relation. Following this projection, we derive the
final entity and relation representations by minimizing the cosine similarity between these
representations. The process is illustrated in Figure 2.

Figure 2. The overall architecture of the metric learning module.

3.2.1. Shared Parameters

In a specific graph scenario, the entity features and relation features are constrained.
As a consequence of this, a KG can be represented as two dimensions: de and dr. de
represents the dimension of all entities in the graph, while dr represents the dimension of
all relations. Moreover, the entities, relations, and the head and tail inhabit distinct feature
spaces. The KG features are critical to embedding quality. Utilizing feature information
poses a challenge because the available data often lack a comprehensive representation of
these features.

Referencing the literature [23,35], this paper expresses relation features in a vector
space of dimensionality dr and entity features in a vector space of dimensionality de.

We adopt an implicit feature representation approach, utilizing a three-dimensional
tensor W ∈ Rde×de×dr to capture feature interactions. Compared with previous methods,
our approach avoids explicitly expressing the eigenvalues and embedding dimensions
of entities and relationships, mitigating the exponential growth of parameters while the
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various relations and entities scale. Considering the potential disparity in vector spaces be-
tween head and tail entities, directly measuring their distance lacks practical relevance. As a
result, a projection matrix must be obtained in order to map them in a specified space before
performing measurements. The projection matrix in this work is relation-based-embedded.

The entity’s final embedding is dynamically determined by relational embedding to
achieve unique representations of the same entity across various relations and locations.

Unlike previous works, we propose a new method: the relation r in this paper is split
into two components: [rH , rT ], with r = rH ||rT , where || denotes vector concatenation.
By multiplying each pair of relation vectors with the shared parameter tensor, we derive
the projection matrix for both the head and tail entities, illustrated in Figure 3.

MH , MT = rH × W, rT × WT (3)

where MH , MT ∈ Rde×de denote the projection matrices for the head and tail entities,
and W, WT ∈ Rde×de×dr represents the shared parameter tensor, with WT being the trans-
posed form of W. The goal is to maintain relational consistency by providing different
representations for a given entity at the head and tail positions. After obtaining the projec-
tion matrix, we compute the final entity representation in the context of the current relation.

h⊥, t⊥ = hMH , tMT (4)

The method here does not employ distance metrics such as Euclidean distance because
the head and tail entities may not lie on the same plane. Directly using distance metrics
would not make sense in such cases. Therefore, the method of distance measurement after
projection was chosen.

Figure 3. Vector projection diagram.

3.2.2. Metric Learning

Metric learning is a method of spatial mapping that enables the learning of a feature
space. In this space, all data are transformed into feature vectors, with similar samples
having feature vectors close together and dissimilar samples having feature vectors far
apart, resulting in a distinct separation between them. Considering that entities should
manifest markedly different feature information under distinct relationships and positions,
this paper projects the head and tail entities of the triplets onto hyperplanes determined by
relationships. Through measuring the semantic similarity of projected head and tail entities,
distinctly separate embedding representations are learned for entities under different
relationships. This allows for clearer distinctions between entities, leading to enhanced
model accuracy.

The semantic affinity amid the projected entities is evaluated to assess whether they
correspond to a specific relation, thus determining the validity of the resulting triple. This
evaluation applies the cosine similarity between the head and tail entities, resulting in a
triplet score, defined as follows:

ϕ(h, t) = ∑n
i=1 hi × ti√

∑de
i=1(hi)2 ×

√
∑n

i=1(ti)2
(5)
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Here, de represents the dimension of the entity vector. We apply a sigmoid to calculate
the similarity score to obtain the predicted value.

p =
1

1 + e−ϕ(h⊥ ,t⊥)
(6)

Finally, the model utilizes binary cross-entropy as the loss function for optimization,
calculated as follows:

L(p, y) = − 1
ne

ne

∑
i=1

(yilog(pi) + (1 − yi)log(1 − pi)) (7)

In the given formula, yi represents whether there is a triplet i in reality, yi ∈ 0, 1.
Additionally, ne denotes the number of entities in the KG.

3.3. Relation Fusion Module

In this section, we present a network layer that leverages an attention mechanism for
refining relation representations. This improvement is achieved through the aggregation
of vector representations from other relations. Prior research has predominantly focused
on entity embedding learning, often considering relation embedding learning as relatively
straightforward. Common operations like weight matrices have been employed to update
relation embeddings. Therefore, our study delves into methods to enrich the expressiveness
of relation embeddings and suggests that relations should incorporate pertinent informa-
tion from other relations to enhance their semantics. The schematic diagram is shown
in Figure 4.

Figure 4. Relation fusion.

Ref. [36] conducted an analysis of the capabilities of various existing models in han-
dling the aforementioned relations. They pointed out that these methods were unable to
simultaneously model the upper two relations’ patterns. To address this limitation, our
study explores the potential of simultaneously modeling two relations by merging them
together. Drawing inspiration from the graph attention network, which has demonstrated
expressive capabilities [37–39], we employ a fusion operation in this paper.

If the relations r1 and r2 satisfy r2(e1, e2) ⇒ r1(e2, e1), then these relationships are
considered a pair of inverse relations, where e1 and e2 represent two entities. If the rela-
tions r1, r2, and r3 satisfy r2(e1, e2) ∧ r3(e2, e3) ⇒ r1(e1, e3), then these relationships are a
composed relation.

In order to obtain the attention coefficient between two relations as j and i, we
quote Formula (5):

eij = LeakyReLU[ϕ(ri, rj)] (8)
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After establishing the semantic meaning shared between relations, the aggregation of
related relation embeddings is performed based on the attention coefficient, as follows:

ri = σ( ∑
rj∈Ri

eijrj) (9)

The aggregated embeddings in this step are used to update the previous relational
embeddings. σ(·) represents sigmoid and i represents the sequence number of a relationship
selected for fusion, which contains the two special relation patterns mentioned above.

3.4. Loss Function

We primarily discuss the loss function of the proposed model in this section. Addi-
tionally, to enhance the model’s performance, we introduce a triplet auxiliary loss. Based
on Formula (5), the loss of a negative sample of relations in Section 3.1.1 is calculated by

Lri = − −1
|ϵri ∪ Nri |

log
∑r+i ∈ϵri

exp(ϕ(ri, r+i )/τ)

∑r−i ∈Nri
exp(ϕ(ri, r−i )/τ)

(10)

In the above equation, ϕ(·) is defined in Formula (5), and τ is a hyperparameter. Based
on (7) and (10), compute the overall loss of the model:

L = L(p, y) +
nr

∑
i=1

Lneg(i) (11)

where nr denotes the overall quantities of relations in the KG. ∑nr
i=1 Lneg(i) represents the

loss of the relation fusion module, and L(p, y) signifies the metric learning module loss.
To further enhance the positive impact of the negative sample generation method on

the model, this paper introduces an auxiliary loss module for the generator, employing
the contrast loss function as the primary auxiliary loss. The contrast loss stands as a
prevalent learning metric, which is frequently employed to construct a feature space that
brings akin samples into proximity and simultaneously separates distinct samples. By
incorporating this loss function, our objective is to increase the distance between the actual
tail entity and other entities in the semantic space for the missing triple (h, r, ?). This,
in turn, aims to improve the accuracy of the embedding vector in the link prediction task.
The corresponding loss function is as follows:

L(ei, e−i ) = − −1
|Pos(i)| log

∑e−i ∈N(h,r)
exp(ϕ(ei, e−i )/τ)

∑ej∈Pos(i) exp(ϕ(ei, ej)/τ
(12)

where Pos(i) represents all entities in the true triplets of a training batch, ϕ(·). Use the
cosine similarity function introduced by Formula (3).

4. Experiments

In this section, we describe experiments that were conducted on three established link
prediction benchmarks in order to evaluate the effectiveness of our model from different
perspectives. We refer to the model consisting of the Metric Learning and Relationship
Fusion modules as KGE-EML [11].

In knowledge graphs, there may be instances of missing entities in triplets, such as for
a triplet (h, r, ?), where the tail entity is missing. Our experiments predict the missing tail
entity using the knowledge graph embedding method proposed earlier, a task known as
link prediction. For example, for the missing triplet (Beijing, located in, ?), we predict the
missing tail entity China using the embedding model proposed earlier in the text. Certainly,
the missing triplet could also involve the absence of a relation or head entity, as illustrated
in Figure 5.



Appl. Sci. 2024, 14, 3412 11 of 17

Figure 5. A sample for a link prediction task in a knowledge graph. The ? indicates the missing entity
or relation in the tuple.

4.1. Datasets

We conducted experiments on three datasets: FB15k, FB12k-237, and WN11RR. FB12k-
237 and WN11RR were created by removing inverse relations and duplicate relations from
FB15k and WN11, respectively. By benchmarking the performances of the proposed model
on each of these datasets against other models, comparable datasets, we critically evaluated
its generalization ability.

In FB15k-237, there is an additional restriction: if a triplet (h, ri, t) exists in the training
set, the same triplet will not appear in the test or validation sets under (h, ri, t). WN18RR,
on the other hand, does not have this restriction. Furthermore, we conducted experiments
on the FB15k dataset to assess our model’s ability to handle complex relations. Detailed
information about these three datasets is provided in Table 1.

Table 1. Statistics of public datasets: FB15k, FB12k-237, and WN11RR.

Dataset Entity Relation Train Valid Test

FB15k 14,951 1345 483,142 50,000 59,071
WN11RR 40,493 11 86,835 5000 3134
FB15k-237 14,541 237 272,115 17,535 20,466

4.2. Link Prediction Results

In comparison to TDMs and SMMs, our model’s link prediction results on FB15k-237
are presented in Table 2. Our model outperforms other TDMs and SMMs, indicating its
promising performance. Notably, semantic matching models tend to perform better than
distance models, as most of them utilize cross-entropy loss. In this paper, we also adopt
such loss, treating all dataset entities as candidates for corrupted triplets.

Table 2 also showcases the model’s performance on the WN18RR dataset. Since this
dataset comprises only 11 relations, and our model primarily focuses on enhancing complex
relation modeling, the advantage is less pronounced. However, our model excels in MRR
and Hit@1 compared to all comparison models.

It is worth mentioning that our model’s Mean Rank (MR) performance on the FB15k-
237 dataset significantly surpasses that on the WN11RR dataset. This discrepancy can
be attributed to the fact that the FB15k-237 dataset has a smaller total number of enti-
ties compared to WN11RR (specific data in Table 1). The increased number of entities
in WN11RR introduces noisy entities, which can potentially impact the accuracy of the
prediction results.
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Table 2. Link prediction results on FB15k-237 and WN18RR.

Model FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.33 0.231 0.369 0.528 0.223 0.014 0.401 0.529
RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
PairRE 0.351 0.256 0.387 0.544 - - - -
DistMult 0.308 0.219 0.336 0.485 0.439 0.394 0.452 0.533
ComplEx 0.323 0.229 0.353 0.513 0.468 0.427 0.485 0.554
TuckER 0.358 0.266 0.394 0.544 0.47 0.43 0.482 0.526
ConvE 0.325 0.237 0.356 0.501 0.43 0.4 0.44 0.52
InteractE 0.354 0.263 - 0.535 0.463 0.43 - 0.528
PROCRUSTES 0.345 0.249 0.379 0.541 0.474 0.421 0.502 0.569
KGE-EML [11] 0.36 0.267 0.395 0.545 0.477 0.444 0.492 0.534
KGE-EML+GNS 0.365 0.265 0.398 0.55 0.487 0.447 0.506 0.569

The bold text here in the “Model” column represents our proposed model, while under each evaluation metric, it
signifies the best results.

4.3. Capacity for Handling Complex Relations

In this study, we conducted experiments using the FB15k dataset, which contains a
diverse range of relations, to assess our model’s capability in handling complex relations.
Complex relations are defined in reference [6].

The results in Table 3 clearly demonstrate that our method outperforms other methods
while dealing with relations in 1-to-n and n-to-1. This superiority arises from our method’s
capability to address the limitations of distance-based models when handling such relations.
We achieved this by partitioning the relation to obtain representations for positions of
entities, facilitating a more effective modeling of these intricate relations.

Table 3. Capacity for handling complex relations: we conducted the experiment on FB15k and show
the Hit@10 results in the table.

Model 1-to-1 1-to-n n-to-1 n-to-n

ComplEx 0.939 0.896 0.822 0.902
TransE 0.887 0.822 0.766 0.895
RotatE 0.923 0.84 0.782 0.908
PaiRE 0.785 0.899 0.872 0.94
Ours 0.865 0.948 0.875 0.913

The bold text here in the “Model” column represents our proposed model, while under each complex relation, it
signifies the best results.

4.4. Comparison with Other Negative Sampling Methods

Due to the lack of special requirements for the scoring function in the model discrimi-
nator, we used scoring functions from multiple models as discriminators. Four negative
sampling methods, namely, uniform random negative sampling, KBGAN, NSCaching,
and EANS [40], were used to make comparisons with the negative sampling method pro-
posed in this paper to verify the effectiveness of this method. The experimental results are
shown in Table 4.

In Table 4, Uniform, KBGAN, NSCaching, and EANS [40] represent the current state-
of-the-art negative sampling methods. This study utilized these methods along with
the GNS method proposed herein to examine the impact of different negative sampling
techniques on the model’s link prediction performance across distance models and tensor
decomposition models. The results of the other methods in the table were sourced from
published articles on the respective models, with bold fonts indicating the highest outcome.
Upon scrutiny of the results provided in the table, it becomes evident that GNS consistently
outperforms alternative negative sampling methods across the majority of models.
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In order to verify whether the gradient vanishing problem is mitigated, this study used
the uniform sampling method UNIFORM and the GNS method proposed in this paper to
train the model, respectively; then, we plotted the change curves of the training loss and
the accuracy index Hit@10 as the training proceeded. The experiments were conducted
on TransE and the proposed model using two datasets, FB15k-237 and WN18RR, and the
results are shown in Figure 6. First, it can be seen that although the losses of GNS and
Uniform converge gradually, they do not reduce to zero because the small sampling process
introduces noise into the gradient. However, due to the use of a negative sampling scheme
based on Gibbs sampling, which is able to continuously generate high-quality negative
samples as the model is trained, the loss of GNS ultimately remains greater than that of
Uniform, and the model trained using GNS consistently outperforms Uniform on Hit@10.

(a)

(b)

Figure 6. Changes in loss values at different stages of GNS and Uniform training. (a) TransE;
(b) KGE-EML [11].

Figure 7 displays the results of embedding visualization before and after the appli-
cation of GNS. The left panel shows the original KGE-EML model, where it is evident
that the original KGE-EML model has clear category boundaries. However, due to the
absence of a negative sampling strategy, a few scattered data points from other categories
are still present.

In the right panel, we observe that KGE-EML+GNS not only increases the separation
between data points from different categories but also addresses the issue of certain data
points that could not be distinguished by the original KGE-EML model. This demonstrates
that the proposed negative sampling and auxiliary loss functions in this paper effectively
preserve the semantic information of entities in the knowledge graph and enhance their
representational capability.
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Figure 7. Visualizations before and after applying GNS: (a) the visualization results of KGE-EML
embeddings; (b) the results after incorporating GNS negative sampling and auxiliary loss.

Table 4. Link prediction results with GNS using other negative sampling methods for different
scoring functions.

Models Methods FB15k-237 WN18RR

MR MRR Hit@10 MR MRR Hit@10

TransE Uniform 357 0.294 0.465 3384 0.226 0.501
KBGAN 722 0.293 0.466 5356 0.181 0.432
NSCaching - 0.299 0.476 4472 0.2 0.478
EANS 169 0.338 0.526 3488 0.222 0.526
GNS 159 0.343 0.53 2906 0.030 0.523

TransD Uniform 188 0.245 0.429 3555 0.19 0.464
KBGAN 825 0.247 0.444 4083 0.188 0.464
NSCaching 189 0.286 0.479 3104 0.201 0.484
EANS 208 0.334 0.519 6937 0.218 0.476
GNS 167 0.341 0.529 5199 0.226 0.495

DistMult Uniform 254 0.241 0.419 5110 0.43 0.49
KBGAN 276 0.227 0.4 11351 0.204 0.295
NSCaching 273 0.283 0.456 7708 0.413 0.455
EANS 397 0.309 0.482 4938 0.438 0.538
GNS 176 0.302 0.477 3580 0.391 0.539

ComplEx Uniform 339 0.247 0.428 5261 0.44 0.51
KBGAN 881 0.191 0.321 7528 0.318 0.355
NSCaching 221 0.302 0.481 5365 0.446 0.509
EANS 454 0.323 0.503 5350 0.463 0.558
GNS 203 0.27 0.428 3842 0.468 0.559

RotatE Uniform 187 0.295 0.478 3274 0.473 0.565
EANS 169 0.341 0.528 3149 0.487 0.574
GNS 162 0.334 0.52 3105 0.492 0.577

The bold text here in the “Model” column represents our proposed model, while under each evaluation metric, it
signifies the best results.

5. Conclusions

The introduction of knowledge graphs has offered novel perspectives for knowledge
representation and application. However, existing models face challenges such as incom-
plete structural information and inadequate semantic details in learned knowledge graph
embeddings. This study addresses these issues through the following approaches.
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Firstly, an investigation into the impact of the number of negative samples and different
sampling strategies is conducted. The random sampling method is refined, introducing
the Gibbs negative sampling method. Additionally, a contrast loss function is applied
to mitigate gradient vanishing during training, expanding the influence of high-quality
negative samples through the GNS module.

Secondly, to bolster relationship modeling, a metric learning-based KGE model is
introduced. Entities’ projection onto hyperplanes, determined by relations, is utilized. The
semantic similarity measurement replaces the Euclidean distance comparison, enhancing
the model’s representational power. Furthermore, a graph attention network layer is
incorporated to fuse embedded relation information, augmenting the expressive capabilities
of relations. Link prediction experiments on public and private datasets demonstrated
the superiority of the proposed KGE-EML model over baseline models, showcasing a
high prediction accuracy and high generalization capabilities. Refinement tests based on
relationship types illustrate the model’s effectiveness in capturing complex relationships.

Finally, an auxiliary loss is introduced to extend the model into a generative adversarial
network-based model. The experimental results indicate improved performance in link
prediction compared to the original model. Furthermore, comparisons with other negative
sampling methods affirm the significant advantage of the proposed GNS module.

The current study has certain limitations, particularly in its handling of one-to-one
relationships, where the effectiveness does not reach its full potential. This could be
attributed to the influence of high-quality negative sampling on processing capability.
Nonetheless, it is worth noting that the current performance demonstrates significant
improvements. Moving forward, future research will concentrate on refining the sampling
methodology to address this limitation more effectively.
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