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Abstract: Herein, we examined the transformative potential of artificial intelligence (AI) and machine
learning (ML) as new fronts in addressing some of the pertinent challenges posed by food integrity
to human and animal health. In recent times, AI and ML, along with other Industry 4.0 technologies
such as big data, blockchain, virtual reality, and the internet of things (IoT), have found profound
applications within nearly all dimensions of the food industry with a key focus on enhancing food
safety and quality and improving the resilience of the food supply chain. This paper provides an
accessible scrutiny of these technologies (in particular, AI and ML) in relation to food integrity
and gives a summary of their current advancements and applications within the field. Key areas of
emphasis include the application of AI and ML in quality control and inspection, food fraud detection,
process control, risk assessments, prediction, and management, and supply chain traceability, amongst
other critical issues addressed. Based on the literature reviewed herein, the utilization of AI and ML
in the food industry has unequivocally led to improved standards of food integrity and consequently
enhanced public health and consumer trust, as well as boosting the resilience of the food supply chain.
While these applications demonstrate significant promise, the paper also acknowledges some of the
challenges associated with the domain-specific implementation of AI in the field of food integrity. The
paper further examines the prospects and orientations, underscoring the significance of overcoming
the obstacles in order to fully harness the capabilities of AI and ML in safeguarding the integrity of
the food system.

Keywords: artificial intelligence; machine learning; food integrity; food safety; food quality control;
food hazards; nutritional health

1. Introduction

Food integrity is a vital aspect of the food industry and encompasses the preservation
of the safety, quality, and authenticity of food throughout the entire food supply chain,
from its production and handling to its delivery and consumption. Important elements
of food integrity encompass the prevention of food fraud, the assurance of food safety,
the guarantee of traceability across the supply chain, and the promotion of sustainability
and transparency in food production and distribution processes, with the ultimate goal
of protecting the health and well-being of consumers. With regard to food safety, it
continues to present serious hazards to public health, given the persistent threats posed
by contamination incidents and food-associated disease outbreaks [1–5], being driven
by the ever-increasing demand for cheaper products, low-cost manufacturing, and the
increasing globalization of the food supply chain, amongst other factors. According to
the World Health Organization (WHO) estimates, consumption of unsafe food results in
the loss of 33 million healthy years of life annually [6,7]. Diarrheal diseases alone are
implicated in about 50% of the global burden of foodborne diseases, causing illness in at
least 550 million people and resulting in 230,000 annual deaths annually [8]. In fact, it is
acknowledged that these figures are conservative [9] as the net societal impact of food
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safety and microbiological food hazards including morbidity and consequent immobility,
disability, mortality, costs of diagnosis/treatment, etc., are difficult to accurately estimate
but unequivocally prodigious. Moreover, the disproportionate impact of food safety on
designated societal groups (e.g., children, the elderly, the poor, and other vulnerable
members of society who bear the brunt of this effect) further exacerbates this dire situation.

In response, government agencies and relevant health actors along the food supply
chain often review food safety policies and tighten regulations in order to mitigate public
health concerns. For example, recent high levels of ochratoxin A (OTA), a potent mycotoxin,
in certain food products prompted the European Commission to take action by issuing Reg-
ulation (EU) 2022/1370 on 5 August 2022 [10], amending Regulation (EC) No. 1881/2006
and adding maximum levels (MLs) for OTA in certain foodstuffs. While previous regula-
tions already established MLs for OTA in selected foods, the absence of limits for other
food items contributing to human exposure necessitated this amendment. Additionally,
the updated regulation introduced new MLs for various foodstuffs and tightened existing
limits for specific food items. These changes aimed to enhance public health by ensuring
stricter adherence to food processing and handling standards [10–12].

Indeed, food integrity poses a complex and multidimensional challenge and traditional
methods of monitoring food quality and safety rely on manual inspection and testing, which
can be time-consuming and prone to human error. To effectively address these concerns,
food businesses must develop robust monitoring systems that can detect and prevent food
quality issues early in the production process. This is where AI and ML technologies
are emerging as a beacon of promise and a transformative frontier in addressing these
critical challenges within the food system. AI and ML have the potential to tackle complex
problems and unearth innovative solutions with real-life applications, including improving
the accuracy, efficiency, and effectiveness of food safety and quality monitoring systems.
The US Food and Drug Administration (FDA) also acknowledges the role of AI and ML in
food safety. In an April 2019 publication, the FDA outlined measures to lead the US into a
more advanced phase of food safety, advocating the utilization of AI and ML applications
in the field [13,14]. These technologies can analyze vast amounts of data in real-time,
enabling rapid and precise identification of potential hazards or deviations from quality
standards, and determine which products should be given priority for monitoring, as well
as forecast future food safety events or outcomes. These models also provide insights into
the timing and location of monitoring activities throughout the food supply chain, as well
as identifying the origins of ingredients, enabling quicker and more precise recalls in the
event of safety violations. AI can assist food firms in complying with rigorous regulatory
standards and frameworks and other essential quality criteria.

In recognition of the potential of AI and ML to revolutionize food integrity practices,
this paper delves into the diverse applications of AI in the field of food integrity, offering a
comprehensive review of recent developments and their implications. From leveraging
computer vision for food inspection, sorting, and grading to the prediction of pathogenic
microbial contamination patterns, each application represents a step toward a more secure
and reliable food supply chain. In looking forward, we deliberate the prospects and
directions that will be pivotal in harnessing the full potential of AI and ML for the benefit
of food safety and public health on a global scale.

2. Methodology

A comprehensive semi-formal literature search methodology was adopted in this
study following a modified workflow described by Gbashi et al. [15] and Vinci et al. [16].

2.1. Data Sources

Various internet search engines were utilized for digital data collection. Google Scholar
and Google search engines were queried using numerous English-language keywords
related to the study. In addition, Scopus, Web of Science, PubMed, and other databases
were used to retrieve relevant publications and information on the study title. Some of
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the query terms included in the search are artificial intelligence, machine learning, food
integrity, food quality, food integrity, food contamination, food pathogens, applications of
AI and ML in food safety and quality, etc.

2.2. Study Inclusion and Exclusion Criteria

Following an internet search, an inclusive data selection and collection method was
implemented and the final consulted literature included relevant systematic and meta-
analytic reviews, non-systematic critical reviews, technical papers, theses, communications,
reports, blog posts, and web pages, among others, published in the English language. The
returned publications were critically scrutinized and evidently irrelevant articles were
excluded. After the inclusion criteria had been applied, all duplicate papers were removed
while all pertinent articles were retrieved, collated, reviewed a second time, and relevant
information abstracted.

3. Artificial Intelligence (AI) and Machine Learning (ML)

AI and ML are two related but separate topics in computer science. AI seeks to
replicate human intelligence in machines, while ML focuses on creating algorithms that
allow computers to learn from data (Figure 1 and Table 1). In the succeeding sections of
this article, the differences and characteristics of these two complementary fields will be
explored more in-depth.

Table 1. Differences between AI and ML.

Aspect AI ML

Description AI is the emulation of human intelligence processes by
machines, particularly computer systems. It entails creating
systems or algorithms capable of carrying out activities that
usually demand human intelligence, like comprehending
natural language, identifying patterns, acquiring knowledge
from experience, and making judgements

ML is a branch of AI that concentrates on
creating algorithms and statistical models to
empower computers to carry out tasks
without absolute instructions.

Goal/objective To create systems with the ability to carry out activities that
usually demand human intelligence

To allow machines to enhance their
performance on a particular activity by
learning from data without the need for
explicit programming

Focus/scope Has a broader scope, encompassing a wide range of
approaches, including ML

More focused on extracting patterns and
insights from data to enhance the
performance of a certain activity or
application.

Techniques and
methodologies

Incorporates a variety of methods and techniques, including
computer vision, natural language processing, expert
systems, etc.

Primarily focuses on mathematical and
statistical techniques algorithms for
analyzing data and forecasting outcomes

Data dependency May or may not depend strongly on acquired data Strongly data-dependent for model training
and predictions

Human
intervention

Capable of functioning autonomously or with human
involvement

Dependent on human involvement for
training, validation, and adjusting
parameters

Decision making Can make decisions based on predetermined rules or
acquired patterns

Utilizes data-driven patterns to make
decisions.

Adaptability Capable of adjusting to novel circumstances by following
predetermined guidelines or assimilating information from
fresh data

Enhances and refines its performance
through increased data and iterations

Examples Chatbots, expert systems, virtual assistants, autonomous
cars, robotics, natural language processing, computer vision,
game-playing AI, etc.

Regression, classification, clustering
algorithms, neural networks, decision trees,
SVM, and reinforcement learning algorithms
are examples of ML techniques
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Figure 1. Artificial intelligence vs. machine learning.

3.1. Artificial Intelligence (AI)

AI is a wide-ranging domain within the discipline of computer science, focusing on
the creation and advancement of computer systems and related technologies that possess
the ability to execute tasks that conventionally necessitate human intelligence [17–19]. The
aforementioned tasks encompass a range of cognitive abilities, such as logical thinking,
experiential learning, problem solving, comprehension of natural language, perception,
and the capacity to interact with and modify the surrounding environment [18,20].

Historically, AI emerged as an academic discipline in the 1950s when researchers
aimed to develop robots with the ability to think, solve problems, and learn indepen-
dently [21,22]. The field remained largely unpopular until the 2000s [21], with repeated
cycles of optimism, followed by periods of disappointment and loss of funding, referred to
as AI winter [23]. The introduction of data-driven algorithms and ML revolutionized the
field by offering the unique dimension of learning from historical information to enhance
problem-solving. Funding and interest significantly rose after 2012 when deep learning
methodologies exhibited significant learning and predictive capabilities, outperforming
perhaps all previous AI techniques [24,25], and after 2017 with the introduction of the
transformer architecture [25,26]. In the early 2020s, a surge in AI development occurred,
primarily led by entities in the US such as big technology firms, universities, and laborato-
ries, resulting in notable progress in the field.

AI can be categorized into two distinct types: Narrow or Weak AI and General or
Strong AI [27]. Weak AI is specifically engineered to carry out a particular activity within set
limits (i.e., they are specialized and have a restricted range of use). They do not possess the
broad cognitive capabilities seen in human intelligence. Weak AI’s primary advantage is its
practical utility in several fields, allowing for automation, optimization, and improvement
in particular jobs. These systems are commonly utilized in several industries like healthcare,
finance, manufacturing, and customer service to optimize processes, increase decision
making, and improve user experiences. Weak AI also has significant limitations. These
systems have limited comprehension outside of their planned scope, which makes it
difficult for them to deal with unforeseen inputs or situations. Concerns about data privacy,
prejudice, and ethical implications emerge when these systems handle sensitive information
and impact decision-making processes. On the other hand, strong AI seeks to mimic human
intelligence in several areas and possesses the capacity to comprehend, acquire knowledge,
and apply it across a wide spectrum of tasks, akin to human intelligence [27–30].

3.2. Machine Learning (ML)

ML, on the other hand, is a subset of AI that is focused on the creation and refine-
ment of algorithms and statistical models that can effectively learn from historical data
and thus accomplish tasks (such as making decisions or predictions) without explicit in-
structions/programming tailored to the specific task at hand [19,22]. The fundamental
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principles and methodologies of ML include supervised learning, unsupervised learning,
and reinforcement learning [31,32].

Supervised learning: In supervised learning, models are trained using labeled data,
where each input datum point is associated with a specific target label. During the training,
the algorithm establishes the relationship between the input and output by modifying its
internal parameters to reduce the discrepancy between the predicted output and the real
output, known as the error or loss. The trained algorithm can thus be utilized for predicting
or categorizing new unseen data [31–33]. Supervised learning can be further classified into
two primary types: classification and regression [34]. Classification involves predicting the
category or class label of future observations using past observations with known labels.
The output variable is categorical, indicating that it assumes a finite set of values. Whereas
regression problems involve predicting a continuous numerical value using input features.
The output/response variable is continuous, allowing it to assume any value within a
specific range. Some of the underlying algorithms of supervised learning include linear
regression, support vector machine (SVM), logistic regression, ANN, gradient-boosted
regression/classification, random forest, etc. [34–37].

Unsupervised learning: Unsupervised learning involves models identifying patterns
in data without the need for labeled examples or explicit guidance [38]. The goal is
to investigate the inherent organization of data and decipher concealed distributional
patterns, clusters, or connections in the data without predetermined labels or intended
results [38]. Unsupervised learning is especially beneficial in situations where there is a
lack of labeled data, when obtaining such data is costly, or when the data’s underlying
structure is not fully comprehended. Tasks, methods, and approaches associated with
unsupervised learning include clustering methods, dimensionality reduction strategies,
anomaly detection, association rule learning algorithms, etc. [38–40]. Clustering methods
seek to categorize related data points into groups or clusters using a similarity measure.
The goal is to divide the data into separate groups where data points in the same group
are more alike to each other than to those in other groups. Clustering algorithms such as
hierarchical clustering and K-means clustering are commonly used [38,39]. Dimensionality
reduction strategies focus on decreasing the number of features, characteristics, or variables
in the data while retaining critical data information. This can aid in visualizing data with
many dimensions, eliminating interference, and expediting further processing. Principal
Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE)
are popular unsupervised ML techniques used for dimensionality reduction and data
exploration [41,42]. Anomaly identification, sometimes referred to as outlier detection, is the
process of discovering uncommon or unusual patterns or data points that differ significantly
from the typical data distribution [43]. Anomaly detection techniques encompass distance-
based methods, density-based techniques, isolation forests, etc.

Reinforcement learning: This category of ML entails models learning through inter-
actions with an environment and obtaining feedback, in the form of incentives or pun-
ishments [44–46]. The fundamental elements of a reinforcement learning system include
the agent, the one who engages with the environment to learn or make decisions, and
the environment, the external system the agent interacts with. Actions refer to the range
of potential choices or maneuvers available to the agent. The state refers to the present
condition or arrangement of the surroundings. Rewards are feedback from the environment
that indicates whether the agent’s activities were successful or not. Policy refers to the
systematic approach or plan that guides an agent in selecting actions based on different
states to make judgments [44,47,48]. In general, reinforcement learning aims to identify
the most effective strategy that maximizes the total reward received over a period of time
through interacting with the environment, obtaining rewards or penalties as feedback, and
adjusting its policy accordingly [45–47]. Table 1 provides a systematic overview of the
distinctions between AI and ML.
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4. Application of AI in Food Integrity

The application of AI and ML in food integrity has many dimensions (Figure 2). Until
recently, a greater part of food safety and quality evaluation procedures depended on manual
human labor and inspection, which involved performing arduous, repetitive, and time-
consuming assays with increased vulnerabilities to human bias and errors. These factors
underscore the importance of the increasing capabilities of AI, ML, and analog technologies
in playing a viable role in food integrity activities throughout the food supply chain. Below,
some of the applications of AI and ML in ensuring food integrity are discussed.
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4.1. AI and ML in Food Quality Control and Regulatory Compliance

Relevant players in the food value chain are progressively embracing AI and ML
technologies to enhance safety inspection and quality control operations, as well as opti-
mize their operations in order to minimize errors and deviations from established quality
standards. A case in point is that of AgShift [49], a US-based food company that imple-
ments an AI-powered automated food inspection system. The company’s primary product,
the “Hydra” platform, utilizes AI, IoT, and computer vision to automate and standardize
evaluations of food quality. The system employs deep learning techniques in an auto-
mated workflow to examine photos of food products, detecting flaws and evaluating
them to guarantee adherence to industry standards and regulations. This approach im-
proves the efficiency of inspections, decreases human errors, upholds consistent quality
control, and empowers food firms to limit waste and provide safer superior products to
consumers [49,50].
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Computer vision, one of the critical technologies implemented by AgShift, facilitates
the extraction of intricate insights from digital images, videos, and other visual inputs
that are consumed and comprehended by AI algorithms that use such to make informed
judgments and take suitable actions. In food processing, computer vision is employed
for quality control by identifying defects, ensuring proper labeling, and assessing over-
all product quality. Manual food quality inspections and quality control in the process
stream are suboptimal in many ways. On the one hand, the task is frequently perceived as
monotonous, demanding sustained attention from individuals for extended durations, a
cognitive aspect in which human brains are notoriously deficient. Nonetheless, with the
aid of AI and ML technologies, automated systems are able to establish accurate and con-
sistent quality characteristics of different food products ranging from differences in shapes,
sizes, colors, textures, and nutraceutical compositions of different food commodities and
maintain quality during processing.

Chen et al. [51] implemented an ML-driven computer vision system to discriminate
defective rice grains with flaws such as fracture, chalkiness, or spotting. The method em-
ployed near-infrared pictures and a support vector machine (SVM) classifier for computer
intelligence and decision making. The results of the study indicated that the system was
very effective, with an accuracy of 99.3% in identifying fractured kernels, a 96.3% accuracy
in identifying chalky grain regions, and a 93.6% accuracy in identifying impaired/spotted
grain areas, all within a record average execution time of 0.15 s. Alavi [52] proposed a
Mamdani fuzzy inference system (MFIS) as a decision-making tool for categorizing and
grading Mozafati dates according to three quality parameters: juice quantity, size, and
freshness. Their ML-based grading method demonstrated an 86% conformity with the
human-based grading method. Moreso, the model was more accurate than that of human
specialists in date classification. Ireri et al. [53] developed an ML-powered computer vi-
sion system that accurately identified and graded tomatoes based on visual appearance
(from RGB images). For defect detection, the system deployed a radial basis function
(RBF) kernel-SVM classifier, which effectively detected calyx and stalk scars, achieving an
accuracy of nearly 95% for both defect-free and damaged tomatoes. Overall, the system
demonstrated great promise as an inline tomato sorting tool, capable of ensuring adherence
to quality standards while streamlining the process.

Another computer vision approach being implemented for food quality inspection
is hyperspectral imaging for compositional analysis of food products, which does not
require any form of sample preparation [54]. The utilization of spectral signatures of
different chemical constituents facilitates the process of composition mapping in food
materials and products. Kamruzzaman et al. [55] utilized near-infrared hyperspectral
imaging (900–1700 nm) in combination with partial least squares (PLS) regression to predict
the nutritional/chemical composition of mutton (lamb meat). The constructed models
demonstrated strong predictive ability with coefficients of determination (R2) ranging
from 0.63 to 0.88. In a different study, Rivera et al. [56] demonstrated the capability of
KNN modeling of near-infrared hyperspectral images for the detection and classification of
mechanically-induced damage in ‘Manila’ mangos at different ripeness stages. A classi-
fication accuracy of up to 97.9% was achievable on the third-day post-damage using the
KNN model. Liu et al. [57] detected fecal contamination in apple skins using hyperspectral
reflectance imaging techniques and various image processing algorithms, followed by PCA
dimensional reduction. Gómez-Sanchis and colleagues [58] utilized a hyperspectral imag-
ing system combined with various algorithms such as classification and regression trees
(CART) and linear discriminant analysis (LDA) for early detection of rottenness caused by
Penicillium digitatum in mandarins. Lee et al. [59] described a novel computer vision system
utilizing an AI model based on the Mask region-based convolutional neural network (Mask-
RCNN) architecture to detect tomato fruits and estimate their size and weight. Their trained
model showed strong efficiency at identifying and distinguishing multiple occurrences of
tomato fruit in intricate environmental conditions and the estimated dimensions by the
model exhibited a promising correlation with the real dimensions.



Appl. Sci. 2024, 14, 3421 8 of 28

4.2. AI and ML in Food Supply Chain Traceability

The US FDA Food Safety Modernization Act (FSMA) addresses the need for rapid
and effective food tracking and tracing [60]. Food traceability refers to the ability to system-
atically track (both backward and forward) the origin, location, and transformations of a
food product and its ingredients at any stage of the supply chain, including manufacturing,
processing, transport, distribution, and storage. Globalization and the increased complexity
of the food supply chain, characterized by numerous actors and logistical steps, coupled
with recent high-profile fraud and safety incidents, have fueled a heightened demand for
transparency in food provenance and traceability [61]. Traceability helps consumers, food
companies, inspectors, and government agencies to locate the source of a food product,
assess the magnitude of potential food safety issues, and determine when and where such
issues may have occurred, aiding in faster elimination of the affected product from the sup-
ply chain, thus minimizing public health situations. Traceability also ensures compliance
with guidelines, reduces risks, promotes trust and responsible sourcing, improves supply
chain efficiency and transparency, and enhances fair competition.

Against the backdrop of novel technological inventions such as blockchain, 5G, big
data, and IoT, food traceability in the Industry 4.0 age seems to greatly prosper, addressing
critical vulnerabilities to fraudulent activities in the food supply chain that have heretofore
remained elusive. The incorporation of these technologies presents novel opportunities
for attaining more intelligent food traceability. AI, which is based on the principles of data
science, is compatible with blockchain’s data storage approach, such as “Hyperledger”, as
it embodies data intelligence. The effectiveness of the convergence of these technologies
is attributed to their collective emphasis on data. The application of blockchain’s data
decentralization, immutability, consensus algorithms, and smart contracts can enhance the
development of reliable AI systems [62]. An example in point is the collaboration between
Walmart and IBM to implement a food traceability system based on the Hyperledger
Fabric, allowing for swift source tracking of agricultural commodities within seconds. In
China, this technology was utilized to track pork in the supply chain [63]. Furthermore,
IBM, Walmart, and JD.com, in partnership with Tsinghua University National Engineering
Laboratory for E-Commerce Technologies, declared the establishment of the Blockchain
Food Safety Alliance [64]. The solution, created by IBM’s blockchain platform, has a global
scope and involves major participants such as Dole, Nestlé, and Tyson Foods. Its objective
is to enhance efficiency, transparency, and authenticity in food supply chains on a global
scale [64].

Shahbazi et al. [65] presented a food traceability system for perishable foods based
on blockchain, ML, and fuzzy logic. This novel system is called the Blockchain Machine
Learning-based Food Traceability System (BMLFTS) and it incorporates a shelf-life manage-
ment component. According to the authors, the proposed food traceability system enhances
the efficiency of the current supply chain environment and produces reliable tracking, mon-
itoring, and food quality outcomes. Li et al. [66] investigated the geographical origin of
refined sugar using high-resolution mass spectrometry and the SVM algorithm, with a
demonstrated classification accuracy of 83.3%. In a different study, the geographical origin
of Saanen goat milk from Guangdong, Shaanxi, and Inner Mongolia Provinces in China
was traced using mass spectrometric data and ML (OPLS-DA) modeling [67]. Liu et al. [68]
successfully employed a lipidomics technique in combination with PCA and partial least
squares-discriminate analysis (PLS-DA) to determine the geographical origin of Crassostrea
gigas oyster species from three different maritime locations in China. In another study,
Balamurugan et al. [69] described the development of a refined ML classifier to detect
anomalies such as contaminated food items along the supply chain that may need to be re-
called. The monitoring system was enhanced by integrating internet-of-things (IoT) and the
Bayes classifier algorithm with the Food Supply Chain Management (FSCM) system, which
resulted in a secure framework for effective monitoring, tracing, and administration of the
entire food supply chain, encompassing producers, exporters, and buyers. Wang et al. [70]
described an enhanced traceability system for food quality assurance and evaluation based
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on AI and ML technologies. Their proposed system integrates fuzzy classification and
ANN models that allow for both forward tracking and varied tracing along the supply
chain to offer real-time evaluations of food quality along the entire supply chain. The
researchers conducted a case study with a pork producer and the findings revealed the
system’s efficacy in guaranteeing food quality and delivering precise assessments. Using
an open-source IoT-enabled spectrometer, Violino et al. [71] demonstrated an AI-powered
approach for tracking the geographical origin of Italian Extra Virgin Olive Oil (EVOO).
Their trained ANN model had a 94.6% accuracy in the classification of the oil samples.

4.3. AI and ML in Predictive Analytics for Risk Assessment

Through rigorous analysis of extensive food safety datasets, predictive AI and ML
models can accurately estimate the probability of future occurrences and identify specific
areas that require attention, as well as assist in developing effective food safety management
systems [72]. This information is used to build interventions that allocate resources more
effectively while helping food safety specialists make well-informed decisions to guarantee
a more secure food supply chain [50,72]. In the study by Wu and Weng [73], numerous
ensemble learning models were utilized to forecast food safety hazards, with a specific
emphasis on enhancing border inspection techniques for imported food in Taiwan. Online
implementation of their approach models resulted in a notable improvement in the non-
conformity hit rate, demonstrating the efficacy of ensemble learning in predicting food
safety risks. In a different approach, Zhang [74] constructed a food safety risk intelligent
early warning system leveraging the predictive prowess of SVM that can assess and signal
food safety risks.

Liu et al. [75] created an ML-based automated food safety early warning system for
the dairy supply chain with the goal of detecting indicators that precede the emergence
of food safety hazards from adjacent domains of the food supply chain, referred to as
“drivers of change”. The European dairy supply chain was used as a case study during
the implementation of the system. The authors adopted a Bayesian network to detect
chemical food safety risks in milk. Throughout the study period (2008–2019), anomalies
were regularly detected in the data across all nations examined, offering the opportunity
for prompt preventive actions by food manufacturers or inspectors to tackle emerging food
safety issues. In a different study, Rortais et al. [76] utilized an unsupervised ML model,
specifically the Latent Dirichlet Allocation topic model, to analyze the Europe Media Moni-
tor Medical Information System (EMM/MEDISYS) corpus in order to promptly identify
instances of food fraud (beeswax adulteration) reported in the media. A total of 2276 news
articles were collected and categorized into 10 subjects. Each topic showed a different
level of connection to beeswax adulteration. The themes also indicated the potential for
new hazards in the cosmetic and food packaging industries. Additionally, some of the
themes emphasized the rise of fresh market prospects for beeswax. Overall, the adopted
Latent Dirichlet Allocation topic model demonstrated abilities in efficiently analyzing vast
media communications and creating targeted food fraud filters on EMM/MEDISYS, which
could directly aid stakeholders responsible for monitoring, evaluating, and addressing
food fraud instances.

Marvin et al. [77] developed an AI model to accurately estimate the likelihood of
food fraud events. The Bayesian network model developed in the study was derived
from an analysis of 1393 instances of food fraud data from 15 distinct sources. The model
successfully identified product categories with the greatest likelihood of being involved in
fraudulent activities with a prediction accuracy of 91.5%. Elsewhere, a similar model was
developed to forecast significant food safety risks and their corresponding food products,
with an emphasis on herbs and spices [78]. The model’s predictive accuracy exceeded 85%.
Zhang et al. [79] investigated the use of an extreme learning machine (ELM) model to predict
food safety risks in dairy products. This early-warning model implemented the kernel-
based extreme learning machine (K-ELM), which achieved a prediction accuracy of 86%,
showing its potential to guarantee the quality and safety of food products. Nogales et al. [80]



Appl. Sci. 2024, 14, 3421 10 of 28

evaluated different ML models, both neural and non-neural, for the prediction of food
safety risks using data from the European Union Rapid Alert System for Food and Feed
(RASFF). The models that comprised logistic regression, decision trees, random forest,
boosted tree, SVM, Support Vector Regression (SVR), and multilayer perceptron (MLP)
were applied at three specific stages of a simplified RASFF system, each contributing to
an intermediate output. Results from the experiments revealed that utilization of deep
learning with entity embedding yielded the most accurate results, with accuracies ranging
from 82.31 to 88.94% in the three distinct stages of the simplified RASFF procedure.

4.4. AI and ML in Real-Time Monitoring of Food in the Supply Chain

With the decentralized nature of the food supply chain, which presents difficulties for
governmental oversight, the integration of AI and IoT in these supply enterprises offers
peculiar benefits for real-time monitoring and assessment of food product quality and safety.
Real-time monitoring constitutes the continuous and instantaneous collection, analysis,
presentation, and reporting of data as events unfold. It entails the utilization of technologies
and systems that offer prompt or nearly instantaneous feedback on a process, system, or
environment. The main objective of real-time monitoring is to facilitate timely decision
making, intervention, or response using the most current information accessible. With the
integration of AI and ML technologies, real-time monitoring often involves the use of smart
sensors and other data collection devices at critical stages of the supply chain. The gathered
data are thereafter transmitted to AI systems for immediate processing and predictive
modeling with the goal of identifying any deviations from the specified standards, enabling
prompt corrective measures, and improving overall process effectiveness and safety.

Alfian et al. [81] developed and demonstrated an ML-enhanced RFID-based system in
combination with sensors to track and monitor the temperature and humidity of perishable
foods along the supply chain (i.e., during storage and transportation). In the study by
Liu et al. [82], an IoT-based solution was proposed for food safety and quality control.
This system was evaluated via a pilot project in China known as the Internet of Agricul-
tural Things (AIoT), which incorporated cutting-edge technologies to create a streamlined
approach for monitoring and tracing the food supply chain, specifically targeting food
safety issues. The data and information synthesized from the so-called AIoT system were
presented in an easily accessible and user-friendly manner, allowing both consumers, sup-
pliers, and supervisors to make well-informed decisions when purchasing and supervising
food supplies, presenting a hopeful resolution to augment the transparency, traceability,
and ultimately, the security of food supply chains. Khan et al. [83] proposed a combination
of advanced deep learning (ADL) and IoT-blockchain technologies to optimize the prove-
nance of the food supply chain within the context of Food Industry 4.0. Their proposed
system allowed food consumers to verify the origin and method of food distribution be-
fore consuming it, promoting transparency. The technology also ensures that goods are
maintained at the proper temperature throughout the whole supply chain.

An AI-powered early warning system based on an analytic hierarchy process inte-
grated extreme learning machine (AHP-ELM) was proposed by Geng et al. [84] to address
the complexities and intricacies of food safety inspection data. The algorithm extracts effec-
tive process characteristic information (PCIs) from the inspection data by employing the
analytic hierarchy process (AHP) model. The study concluded that the proposed AHP-ELM
model was effective and feasible in processing complex food inspection data, contributing
to improving the quality of food products, ensuring food safety, and reducing the overall
risk of food safety incidents. Tian [85] conducted a study showcasing a decentralized
real-time food safety supply chain traceability system that integrated Hazard Analysis
and Critical Control Points (HACCP), blockchain, and IoT in order to make information
available to all participants and players along the food supply chain, effectively minimizing
the hazards associated with centralized information systems and aiding in strengthening
food safety protocols and restoring consumer trust in the food sector.



Appl. Sci. 2024, 14, 3421 11 of 28

Sadilek et al. [86] investigated an ML-powered system for the real-time detection of
foodborne illness in a real-world setting. They created a Foodborne Illness Detector in
Real-time (FINDER), an ML algorithm that uses location and anonymized aggregated web
search data to predict foodborne disease in real-time. FINDER determined the percentage
of patrons who went to a specific restaurant and then looked up terms related to food
poisoning online. Using this data, eateries/restaurants that may be hazardous can be iden-
tified, enabling inspection agencies and health workers to focus their restaurant inspection
efforts. According to the study, restaurants identified by FINDER are 3.1 times more likely
to be found hazardous during inspections than restaurants identified by other existing
methods. Tutul et al. [87] presented an advanced and intelligent system that enables contin-
uous monitoring of food products in real-time. The system integrated multiple IoT devices
(such as temperature, humidity, and gas concentration sensors) and ML technologies to con-
stantly monitor food products’ freshness in real-time. The system also includes a web-based
dashboard that presents real-time data and generates alarms when food products exceed
predetermined threshold levels. Users have the ability to remotely access the dashboard via
a mobile application, allowing for convenient monitoring from any location. The system
is designed to be cost-effective and intuitive, making it accessible for both commercial
and personal use. Evaluation of the performance of the system showed it was effective in
predicting the freshness of food with high accuracy.

4.5. AI and ML in Food Pathogen Detection, Classification, and Virulence/Resistance Prediction

The utilization of AI and ML methodologies in foodborne pathogen source fingerprint-
ing, prediction of antibiotic resistance, and rapid detection and assessment of foodborne
outbreaks and associated risks has been facilitated by the emergence of pathogen genomes
and novel data streams, including textual data [14]. Wang et al. [88] developed a classifi-
cation system based on ML for predicting microorganisms that cause foodborne illnesses.
The study attempted to examine connections between several factors (such as area, time,
and exposed food) and foodborne disease pathogens using case data from the National
Foodborne Disease Surveillance Reporting System. Multiple ML models were used to cate-
gorize these infections and the best model (i.e., the gradient boost decision tree) predicted
Salmonella, Norovirus, E. coli, and Vibrio parahaemolyticus with a 69% accuracy rate.

Yan et al. [89] used Raman spectroscopy in conjunction with ML to rapidly identify
food-borne pathogens at the single-cell level. They collected 15,890 single-cell Raman
spectra from 23 common strains from 7 different genera. Individual bacterial cells were
analyzed and distinguished at the serotype level using a decision tree technique. The
adopted methodology demonstrated an average correct prediction rate of 86.23% on an
independent test set. The approach showed great promise for the quick diagnosis of
pathogenic bacteria, demonstrating the ability to swiftly identify food-borne pathogens at
the single-cell level in contaminated food. In a different study, Pesesky et al. [90] compared
ML and rule-based techniques for predicting antimicrobial resistance profiles in Gram-
negative bacilli, specifically Enterobacteriaceae isolates, including E. coli. Three curated
antibiotic resistance sequencing databases were compared to determine resistance genes of
78 previously known whole genome-sequenced (Enterobacteriaceae) isolates. The rule-based
system used hard-coded resistance profiles based on curated information for identified
genes, whereas the ML approach treated all resistance genes equally and predicted based on
algorithmically deduced patterns in the data. Both classifiers performed similarly, agreeing
with phenotypic antibiotic susceptibility testing (AST) for over 90% of the isolates tested.

Teyhouee et al. [91] studied the prospective detection of foodborne illness outbreaks
using ML algorithms. The research looked at the performance of Hidden Markov Models
(HMMs) for syndromic surveillance monitoring and disease outbreak detection under two
different data collection regimes. A sentinel population was used in one regime, with
smartphone-based software tracking the location of food consumption and subclinical
reporting. To compare the results with the HMM, the researchers used an SVM technique.
According to the findings, depending purely on clinical data has a low potential for
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automatic epidemic detection. However, when guided by subclinical reporting, the use
of HMMs indicated remarkable potential for detecting foodborne illness outbreaks, even
from a relatively small sentinel group representing 4% of the population. Vangay et al. [92]
investigated the persistence of Listeria monocytogenes in retail delicatessen environments
using expert elicitation and ML. Using retail delicatessen operations as a template, the study
extracted parameters utilized by food safety specialists in estimating bacterial persistence
in the environment. Likewise, with the Delphi approach, the researchers undertook an
expert elicitation with 10 food safety experts from academia, business, and government to
classify L. monocytogenes persistence based on environmental sampling results from 30 retail
delicatessen stores gathered over six months. Variations in random forest, SVM, logistic
regression, and linear regression were used to model the results. With average validation
errors of 3.1% and 2.2% (n = 144), the SVM and random forest models properly classified
the data.

The burden of atypical mutations in protein-coding genes across independently
evolved Salmonella enterica lineages was measured and the data was used to train an
ML classifier (i.e., random forest) in order to identify strains associated with extraintestinal
disease [93]. The classifier was able to accurately distinguish between invasive and long-
established gastrointestinal Salmonella serovars. Furthermore, in immunocompromised indi-
viduals in sub-Saharan Africa, the model demonstrated the ability to distinguish between
the recently identified Salmonella enteritidis and Typhimurium lineages linked to invasive
illness, as well as within-host adaptation to invasive infection. In their study, Yi et al. [94]
presented an AI-biosensing framework intended for automated and accelerated pathogen
detection in a variety of water samples, including liquid food and agricultural water. Target
bacteria were identified and quantified by the framework using a deep learning model
that was trained on the bacteria’s microscopic patterns generated by unique interactions
with bacteriophages. The model was then applied to real-world water samples with en-
vironmental noises that were not observed during training. The AI model demonstrated
its capacity to generalize to unseen data by making quick predictions in less than 5.5 h on
real-world water samples, even though it was only trained on lab-cultured bacteria. The
model’s accuracy ranged from 80% to 100% and it can be effectively utilized to evaluate the
microbiological quality of water during culinary and agricultural processes. Elsewhere, a
pan-genome-based ML technique was used in the Her and Wu [95] study to forecast the
antimicrobial resistance behaviors of E. coli strains. Findings from the study revealed that
the group of AMR genes located in the accessory region of the pan-genome had the highest
prediction accuracy, indicating the significant contribution of these gene clusters to AMR
activities in E. coli, a well-known persistent food pathogen. Additionally, the researchers
were able to select subsets of AMR genes for various antibiotic medications using a genetic
algorithm (GA). Compared to the gene sets reported in the literature, the subsets chosen by
the GA performed better in predictions.

4.6. AI and ML for Chemical and Biochemical Food Hazard Prediction and Analysis

AI and ML systems have the capability to thoroughly examine chemical and bio-
chemical data pertaining to the composition of food and the presence of contaminants and
other unwanted substances in order to forecast future risks. In the study by Chakraborty
et al. [96], various ML models were used to classify and predict aflatoxin B1 (AFB1) levels
in maize kernels. The hyperspectral images of 240 maize kernels that were exposed to six
varying levels (25, 40, 70, 200, 300, and 500 ppb) of AFB1 were preprocessed and used to
generalize a number of ML models, including partial least square discriminant analysis
(PLS-DA) and KNN. The choice of the wavelength (508 nm) was determined by analyzing
the loadings of PCA in order to differentiate between noncontaminated and contaminated
maize kernels. A classification accuracy of 94.7% was attained by employing PLS-DA with
standard normal variate (SNV) pre-processed data. Moreover, the KNN model using the
raw data showed the highest efficiency, with an accuracy of 98.2%.
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In their study on the detection of pesticide residue levels in crops, Ye et al. [97]
employed visible/near-infrared (Vis-NIR) (376–1044 nm) and NIR (915–1699 nm) hyper-
spectral imaging systems (HSIs) together with ML to detect the levels of pesticide residues
in grapes. Three grape cultivars were exposed to four degrees of pesticide application.
Logistic regression, SVM, random forest, convolutional neural network (CNN), and resid-
ual neural network (ResNet) were utilized to build classification models for the pesticide
residue levels in the crop. ResNet proved to be the most effective model for Vis-NIR
spectra, achieving an accuracy rate above 93%. With regards to the NIR spectra data, logis-
tic regression had the highest performance, surpassing 97% accuracy, while SVM, CNN,
and ResNet also demonstrated comparable and satisfactory prediction outcomes. Baghel
et al. [98] employed ML to optimize pesticide spray on crops. The algorithm pinpoints the
areas on the crop that do not necessitate additional pesticide spraying, enabling farmers to
exclusively administer pesticides to the required regions. This system reduced pesticide
repetition by at least 20% compared to the standard method (the exit concept). Inferences
from the study indicated that implementation of the concept has the potential to decrease
the usage of pesticides in India by 72.5%. In a different study, Shen et al. [99] adopted ML
models to predict pesticide dissipation half-life intervals. Four machine learning models,
namely gradient boosting regression tree (GBRT), random forest, support vector classifier
(SVC), and logistic regression, were developed to predict pesticide dissipation half-life
intervals using temperature, plant component class, extended connectivity fingerprints
(ECFP), and plant type as model inputs. The GBRT-ECFP model exhibited superior perfor-
mance compared to the other models. In their study, Bhatia and Albarrak [100] presented a
novel approach using Explainable Artificial Intelligence (XAI) and Faster RCNN to digitize
food product information, retrieve it, evaluate the composition of the foods, and identify
the hazardous ingredients that may compromise food integrity.

Linear and non-linear ML models were employed by Petrea et al. [101] to ascertain
the levels of heavy metals present in turbot muscle and liver tissues. The models were
constructed using data that were obtained from the scientific literature and included eleven
heavy metals (As, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Ni, and Zn) that were found in the liver
and muscle tissues of specimens of turbot. Over 70% prediction accuracy was attained by
the non-linear tree-based random forest prediction models for As, Cd, Cu, K, Mg, and Zn in
muscle tissue and As, Ca, Cd, Mg, and Fe in turbot liver tissue. The adopted multiple linear
regression (MLR) and random forest models were found to be appropriate for predicting
the levels of heavy metals in the liver and muscle of turbot. Using a different approach,
Yu et al. [102] estimated heavy metal concentrations in winter wheat leaves from a typical
sewage irrigation area based on canopy reflectance spectra and ML modeling. Spectral
data from winter wheat canopies were collected at 61 sampling stations in Longkou City,
Shandong province, China, and the Pb, Zn, Cd, Cr, Ni, and Hg contents were measured.
Back-propagation neural network (BPNN), partial least squares regression, and stepwise
multiple linear regression methods were used to build eight estimation models, which
were trained with reflectance spectra, a first-order derivative of spectral reflectance (FDR),
a second-order derivative of spectral reflectance (FDR), and spectral parameters (SPs). The
study revealed that the BPNN model with SPs performed best for Pb, Zn, and Cd, while
the BPNN model with FDR performed best for Cr, Ni, and Hg.

4.7. AI and ML in the Formulation of New Recipe and Personalized Nutrition for Improved
Quality and Safety

Beyond the prediction of food safety hazards, AI and ML are driving product develop-
ment innovation, for improved food quality and nutritional health. AI-based algorithms
benefit from the fundamental understanding of the intricacies and interrelationships of
the various food components and ingredients and vast datasets containing consumer
preferences, market trends, and nutritional profiles and are able to suggest varied ingre-
dient combinations and design tailored food products for consumer-specific needs and
tastes. AI-driven product development improves not only customer satisfaction and food
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safety/quality but also market competitiveness by knowing consumer preferences and
market dynamics and responding to changing trends. For example, Park et al. [103] as-
sembled various culinary recipes and food chemical information to create FlavorGraph, a
large-scale food-compound network graph. The food-specific metapath graph embedding
method was combined with a chemical structure learning layer to create an intricate repre-
sentation of food vectors for FlavorGraph. The food representation vectors were then used
to make meal pairing recommendations and predict new food-compound relationships.
FlavorGraph, according to the authors, can be used to better comprehend the cooking and
medicinal uses of food. Furthermore, the deep learning algorithms described in the study
can be used as the foundation for meal pairing and food-relationship prediction problems.

Iwendi and colleagues [104] proposed a deep learning solution for health-based medi-
cal datasets, which autonomously determines the appropriate food and makes recommen-
dations for patients based on their specific diseases and other features such as age, gender,
weight, calories, protein, fat, sodium, fiber, and cholesterol. Their study implemented
several ML and deep learning algorithms such as logistic regression, naive Bayes, recurrent
neural network (RNN), MLP, gated recurrent units (GRU), and long short-term memory
(LSTM) in accomplishing the research goal. The medical dataset, which was gathered from
the internet and hospitals, included information from 30 patients with 13 attributes related
to various diseases and 1000 products, each with an 8-feature set. The performance of
the different ML and deep learning models was evaluated and it was observed that the
LSTM model surpassed other methods in terms of prediction accuracy (97.74%), recall,
precision, and F1 measures. Vairale and Shukla [105] developed a diet recommendation
system by employing hybrid collaborative filtering learning methods. The nutrition sup-
port system was created by utilizing KNN and collaborative filtering models to recommend
well-balanced diets for thyroid patients that fulfill their specific nutrient needs. The system
manages the patient’s dietary intake by providing the necessary nutrients required for
those with thyroid issues.

Sowah and colleagues [106] created a diabetes management system that uses several
ML and AI algorithms to improve diabetes control based on patient calorie intake through
food consumption. The system essentially implements a meal suggestion system with food
identification capabilities, aimed at providing users with daily individualized meal plans
based on their nutritional needs and previous meal choices. The system allows users to
input food images to decide whether a meal is safe to consume or not. For specific calorie
intakes, the food recognition and categorization model reached an accuracy level of more
than 95%. In recognizing personalized eating habits and the value of individualized diets
in maintaining food consumer health, Naik [107] proposed an intelligent food recommen-
dation system using deep learning wherein food consumers are recommended products
based on the experiences of other customers who have used the same product. A web
crawler with a review collection technique is used in the implementation to collect reviews
about food products and save them in the application. User-specific nutrition questions
contribute to the creation of a health profile for each user. In the recommendation process,
the genetic algorithm builds the association between the product and the user and makes
appropriate food recommendations.

4.8. AI and ML in the Detection of Food Fraud

Food fraud refers to any deliberate misrepresentation or deception related to food
products, which includes the substitution, adulteration, or mislabeling of ingredients in
order to achieve economic gain. AI and ML models can scrutinize ingredient information,
supply chain records, and consumer feedback, to identify patterns and anomalies and
detect risky features that indicate potential fraud in the food industry. Not only can AI and
ML technology aid in the detection of food fraud but it can also contribute to prevention
efforts. For instance, by analyzing historical data and detecting fraudulent patterns, ML
algorithms can help food organizations identify vulnerable points in their supply chains
and implement measures to prevent fraudulent activities.
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Buyuktepe et al. [108] developed a Deep Neural Network (DNN) model and employed
XAI technologies to predict food fraud categories, analyze the outcomes, and explain the
forecasts generated by the AI model. Bouzembrak and Marvin [109] employed Bayesian
network (BN) modeling to predict several types of food fraud using notification data from
the Rapid Alert System for Food and Feed (RASFF) spanning from 2000 to 2013. The
study sought to forecast anticipated forms of food fraud for imported items based on their
known product categories and countries of origin, thereby enabling focused enforcement
efforts. The model was trained on 749 RASFF fraud warning data classified into six distinct
types and further validated with an additional 88 RASFF fraud notifications from the year
2014. The model demonstrated an accuracy of 80% when the fraud type, country, and food
category constituted pre-existing knowledge and 52% accuracy when this information was
not previously documented in the RASFF database. Such a system could be utilized by risk
managers and controllers at border inspection checkpoints to effectively prioritize fraud-
type checks while dealing with goods imports. Elsewhere, Marvin et al. [77] constructed a
BN model to scrutinize all relevant driving factors influencing food fraud cases, utilizing
data from RASFF and the European Medicines Agency (EMA). Their BN model attained a
91.5% accuracy in forecasting food fraud categories, providing significant information for
risk managers.

In their study, Mithun et al. [110] utilized deep learning techniques to discriminate
between bananas that have ripened naturally and those that have been artificially ripened.
According to the authors, a risk exists that bananas that have been artificially ripened
may have been treated with compounds that can cause cancer, such as calcium carbide.
The deep learning model implemented in the study achieved a classification accuracy of
90%, while accuracies of up to 98.74% and 89.49% were also achievable using the random
forest and MLP feed-forward neural network classifiers, respectively. Elsewhere, the work
undertaken by Pulluri and Kumar [111] involved the development of a smart electronic
nose (SE-Nose) designed to rapidly detect and measure food adulteration, particularly in
recognizing the presence of pork in beef. The methodology employed classification models
to do qualitative analysis of adulteration and regression models to conduct quantitative
analysis. SVM classification and regression models yielded exceptional outcomes, with
an accuracy rate of up to 99.996%. Moreover, the SVM models significantly lowered the
detection time for identifying pork adulteration in beef to 40 s, which is a 33%-time decrease
compared to the other approaches.

de Santana et al. [112] combined infrared spectroscopy and ML to identify instances
of food adulteration. Their proposed system was utilized in two investigations on food
adulteration: one using evening primrose oils analyzed with ATR-FTIR spectroscopy and
the other including ground nutmeg analyzed with NIR diffuse reflectance spectroscopy.
The proposed methodology, which employs the random forest algorithm with artificial
outlier generation as a one-class classifier, showed improved performance in comparison
to the PLS-DA and SIMCA methods. Specificity values of 0.9988 and 0.9286 were observed
for evening primrose oil and ground nutmeg, respectively. Lim et al. [113] employed deep
learning techniques to differentiate between 10 different types of plant oils by examining
the fatty acid profiles in the oils. Their ML approach consisted of supervised end-to-end
learning methodologies to ascertain the oil composition of various oil mixes. The model
was trained using a substantial dataset of simulated oil mixes and showed effectiveness
during validation with an independent test dataset.

Mu et al. [114] presented a partial least square model for predicting oil adulteration
with errors below 2%. The researchers further employed ANN and SVM algorithms to
categorize pure and mixed oils, specifically focusing on differentiating between olive,
rapeseed, peanut, and blend oils. The study determined that by utilizing their approach, a
classification accuracy of 100% was attainable. Laga and Sarno [115] utilized different ML
algorithms to distinguish between pure beef and mixed beef. This distinction was made
by analyzing various beef parameters, including temperature, strain, and humidity. By
employing an electronic nose equipped with electrochemical and air sensors (capable of
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detecting gaseous emissions), data were collected and used to generalize the ML models to
determine whether the beef is blended or unadulterated. The model performance, ranked
from highest to lowest accuracy at room temperature, was as follows: KNN with an average
ROC value of 0.886, Naïve Bayes with an average ROC value of 0.856, Random Forest with
an average ROC value of 0.839, and SVM with an average ROC value of 0.821. Table 2
summarizes some of the studies reviewed herein on the applications of AI and ML in the
domain of food safety and integrity.

Table 2. Applications of AI and ML in food integrity.

S/No. Intelligent
Approach Model(s) Application Objective Food Commodity Reference

1. AI
Food quality control
and regulatory
compliance

Food inspection system
Raspberries, almonds,
strawberries, cashew,
carrots, and blueberries

[49]

2. ML SVM
Food quality control
and regulatory
compliance

Discriminate defective
grains Rice [51]

3. ML Fuzzy system
Food quality control
and regulatory
compliance

Categorizing and
grading Mozafati dates [52]

4. ML

Radial basis
function (RBF)
kernel-SVM
classifier

Food quality control
and regulatory
compliance

Identify and grade
food products Tomatoes [53]

5. ML
Partial least
squares (PLS)
regression

Food quality control
and regulatory
compliance

Predict
nutritional/chemical
composition

Mutton [55]

6. ML KNN
Food quality control
and regulatory
compliance

Detection and
classification of
mechanically-
damaged fruits

‘Manila’ mangos [56]

7. ML PCA
Food quality control
and regulatory
compliance

Detection of fecal
contamination Apple skins [57]

8. AI Mask-RCNN
Food quality control
and regulatory
compliance

Fruit detection,
identification, and
dimensions estimation

Tomatoes [59]

9. ML

classification
and regression
trees (CART)
and LDA

Food quality control
and regulatory
compliance

Early detection of
rottenness caused by
Penicillium digitatum

Mandarins [58]

10 AI and ML Food supply chain
traceability

Swift source tracking
of agricultural
commodities

Various food products [63]

11. ML
Bayesian
regression and
random forest

Food supply chain
traceability

Food supply chain
tracing Perishable foods [65]

12. ML SVM Food supply chain
traceability

Trace geographical
origin of food Refined sugar [66]

13. ML OPLS-DA Food supply chain
traceability

Trace geographical
origin of food Saanen goat milk [67]

14. ML PCA and
PLS-DA

Food supply chain
traceability

Trace geographical
origin of food

Crassostrea gigas oyster
species [68]
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Table 2. Cont.

S/No. Intelligent
Approach Model(s) Application Objective Food Commodity Reference

15. ML Bayes classifier
algorithm

Food supply chain
traceability

Detect anomalies such
as contaminated food
items along the supply
chain that may need to
be recalled

Various food
commodities [69]

16. AI and ML

Fuzzy
classification
and ANN
models

Food supply chain
traceability

Both forward tracking
and varied tracing
along the supply chain
with real-time
evaluations of food
quality along the entire
supply chain

Various food
commodities. Case
study conducted on a
pork producer

[70]

17. AI ANN Food supply chain
traceability

Trace geographical
origin of food

Italian Extra Virgin
Olive Oil (EVOO) [71]

18. ML

Numerous en-
semble learning
models includ-
ing Bagging-
Logistic, Bagging-
CART, Bagging-
C5.0, Bagging-
NB (Bayesian
classification),
and Bagging-RF.

Predictive analytics
for risk assessment

Forecast food safety
hazards, with a specific
emphasis on enhancing
border inspection
techniques for
imported food

Various food
commodities [73]

19. ML SVM Predictive analytics
for risk assessment

Food safety risk
intelligent early
warning system

Various food
commodities [74]

20. ML Bayesian
network

Predictive analytics
for risk assessment

Food safety early
warning system with
the goal of detecting
indicators that precede
the emergence of food
safety hazards from
adjacent domains of
the food supply chain

Dairy supply chain [75]

21. ML
Latent Dirichlet
Allocation topic
model

Predictive analytics
for risk assessment

Promptly identify
instances of food fraud
reported in the media

Beeswax [76]

22. ML Bayesian
network

Predictive analytics
for risk assessment

Estimate the likelihood
of food fraud events

Various food
commodities including
fish and seafood”,
meat, and fruits and
vegetables

[77]

23. ML Bayesian
network

Predictive analytics
for risk assessment

Forecast significant
food safety risks and
their corresponding
food products

Herbs and spices [78]

24. ML

Kernel-based
extreme learn-
ing machine
(K-ELM)

Predictive analytics
for risk assessment

Predict food safety
risks Dairy products [79]
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Table 2. Cont.

S/No. Intelligent
Approach Model(s) Application Objective Food Commodity Reference

25. AI and ML

Logistic
regression,
decision trees,
random forest,
boosted tree,
SVM, Support
Vector
Regression
(SVR), and
multilayer
perceptron
(MLP)

Predictive analytics
for risk assessment

Predict food safety
risks

Various food
commodities [80]

26. ML XGBoost
Real-time monitoring
of food in the supply
chain

Monitor the
temperature and
humidity of perishable
foods. Also establish
the direction of
movement of the
products along the
supply chain

Perishable foods [81]

27. ML
Real-time monitoring
of food in the supply
chain

Real-time monitoring
and tracing the food
supply chain,
specifically targeting
food safety issues

Various food
commodities [82]

28. AI and ML

A combination
of advanced
deep learning
(ADL) and
IoT-blockchain
technologies

Real-time monitoring
of food in the supply
chain

Optimize provenance
of the food supply
chain

Various food
commodities [83]

29. AI

Analytic
hierarchy
process
integrated
extreme
learning
machine
(AHP-ELM)

Real-time monitoring
of food in the supply
chain

Real-time food
monitoring and early
warning

Various food
commodities [84]

30. Blockchain and
IoT

Real-time monitoring
of food in the supply
chain

Real-time food safety
supply chain
traceability

Various food
commodities [85]

31. ML
Real-time monitoring
of food in the supply
chain

Real-time detection of
foodborne illness

Various food
commodities [86]

32. ML

PCA and
t-distributed
Stochastic
Neighbor
Embedding
(t-SNE)

Real-time monitoring
of food in the supply
chain

Continuous
monitoring of food
products in real-time

Various food
commodities [87]
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Table 2. Cont.

S/No. Intelligent
Approach Model(s) Application Objective Food Commodity Reference

33. ML

Decision tree,
random forest,
gradient boost
decision tree
(GBDT), and
adaptive
boosting
models

Food pathogen
detection,
classification, and
virulence/resistance
prediction

Prediction of
microorganisms that
cause foodborne
illnesses

[88]

34. ML

PCA, Kernel
principal
component
analysis
(KPCA),
decision tree
(DT), CART,
and PCA-SVM
classifier

Food pathogen
detection,
classification, and
virulence/resistance
prediction

Rapidly identify
food-borne pathogens
at the single-cell level

[89]

35. ML

Rules-based
(RB) algorithm
and logistic
regression
algorithm

Food pathogen
detection,
classification, and
virulence/resistance
prediction

Prediction of
antimicrobial
resistance profiles

[90]

36. ML

Hidden Markov
Models
(HMMs) and
SVM

Food pathogen
detection,
classification, and
virulence/resistance
prediction

Syndromic surveillance
monitoring and disease
outbreak detection

Various food
commodities [91]

37. ML

Variations of
random forest,
SVM, logistic
regression, and
linear
regression

Food pathogen
detection,
classification, and
virulence/resistance
prediction

Classification and
estimation of
pathogenic bacterial
persistence

Various food
commodities [92]

38. ML Random forest

Food pathogen
detection,
classification, and
virulence/resistance
prediction

Distinguish between
invasive and
long-established
gastrointestinal
Salmonella serovars

[93]

39. AI R-CNN deep
learning model

Food pathogen
detection,
classification, and
virulence/resistance
prediction

Rapid pathogen
detection

From liquid food to
agricultural water [94]

40. ML

SVM, Naïve
Bayes,
Adaboost, and
random forest

Food pathogen
detection,
classification, and
virulence/resistance
prediction

Forecast antimicrobial
resistance behaviors of
E. coli strains

[95]

41. ML

Different ML
models
including PCA,
PLS-DA, and
KNN

Chemical and
biochemical food
hazards prediction
and analysis

Classification and
prediction of aflatoxin
B1 (AFB1) levels

Maize kernels [96]
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Table 2. Cont.

S/No. Intelligent
Approach Model(s) Application Objective Food Commodity Reference

42. AI and ML

Logistic
regression,
SVM, random
forest,
convolutional
neural network
(CNN), and
residual neural
network
(ResNet)

Chemical and
biochemical food
hazards prediction
and analysis

Detection of pesticide
levels Grapes [97]

43. ML

Logistic
regression
classification,
polynomial
regression, and
KNN

Chemical and
biochemical food
hazards prediction
and analysis

Optimization of
pesticides spray on
crops

Various crops [98]

44. ML

Gradient
boosting
regression tree
(GBRT),
random forest,
support vector
classifier (SVC),
and logistic
regression

Chemical and
biochemical food
hazards prediction
and analysis

Prediction of pesticide
dissipation half-life
intervals in plants

[99]

45. AI

Deep
reinforcement
learning-based
supply chain
management
(DR-SCM) and
explainable
artificial
intelligence-
based faster
regions with
convolutional
neural
networks
(XAI-based
Faster RCNN)

Chemical and
biochemical food
hazards prediction
and analysis

Identification of
hazardous chemical
components in foods

Various food
commodities [100]

46. ML

Stepwise
multiple linear
regression and
random forest

Chemical and
biochemical food
hazards prediction
and analysis

Estimation of the
concentrations of
heavy metals food
commodities

Turbot muscle and
liver tissues [101]

47. AI and ML

Back-
propagation
neural network
(BPNN), PLS,
and stepwise
multiple linear
regression

Chemical and
biochemical food
hazards prediction
and analysis

Estimation of the
concentrations of
heavy metals food
commodities

Wheat leaves [102]
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Table 2. Cont.

S/No. Intelligent
Approach Model(s) Application Objective Food Commodity Reference

48. AI and ML

Logistic
regression,
naive Bayes,
recurrent neural
network (RNN),
MLP, gated
recurrent units
(GRU), and
long short-term
memory
(LSTM)

Formulation of new
recipe and
personalized nutrition

Diet recommendation.
Automatically
determine the
appropriate food and
make
recommendations for
patients based on their
specific diseases and
other features such as
age, gender, weight,
calories, protein, fat,
sodium, fiber, and
cholesterol

Different food recipes [104]

49. ML

KNN with
alternating least
squares
(KNN-ALS)
and KNN with
stochastic
gradient decent
(KNN-SGD)

Formulation of new
recipe and
personalized nutrition

Diet and exercise
recommendation
system for a balanced
diet for thyroid
patients

Various diets [105]

50. ML KNN
Formulation of new
recipe and
personalized nutrition

Meal recommendation
system for diabetic
patients

Various diets [106]

51. AI
Word
Embedding and
deep learning

Formulation of new
recipe and
personalized nutrition

Intelligent food
recommendation Various diets [107]

52. AI

DNN and
explainable
artificial
intelligence
(XAI) tech-
niques such as
Local Inter-
pretable Model-
Agnostic
Explanations
(LIME), Shapley
Additive
exPlanations
(SHAP), and
What-If Tool
(WIT)

Detection of food
fraud

Predict food fraud
categories and
interpret the
predictions of the AI
model

Various food
commodities [108]

53. ML BN Detection of food
fraud

Prediction of several
types of food fraud

Various food
commodities [109]

54. ML BN Detection of food
fraud

Prediction of food
fraud categories

Various food
commodities [77]

55. AI and ML
Deep learning,
random forest,
and MLP

Detection of food
fraud

Discrimination
between bananas that
ripened naturally and
those that were
artificially ripened

Bananas [110]
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Table 2. Cont.

S/No. Intelligent
Approach Model(s) Application Objective Food Commodity Reference

56. AI and ML SVM and MLP Detection of food
fraud

Detection of meat
adulteration Beef and pork [111]

57. ML
Random forest,
PLS-DA, and
SIMCA

Detection of food
fraud

Detection of food
adulteration

Evening primrose oils
and ground nutmeg [112]

58. AI and ML

t-stochastic
neighborhood
embedding,
PCA, PLS2,
Gaussian
mixture model

Detection of food
fraud

Discrimination of
different types of plant
oils

Vegetable oils includ-
ing groundnut oil,
high-erucic acid
rapeseed oil, high-oleic
acid sunflower oil,
low-erucic acid
rapeseed oil, linseed
oil, low-oleic acid
sunflower oil, maize
oil, rice bran oil, soy-
bean oil, and sesame oil

[113]

59. AI and ML PLS, ANN, and
SVM

Detection of food
fraud

Prediction of oil
adulteration

Olive oil, rapeseed oil,
peanut oil, and blend
oils

[114]

60. ML

KNN, SVM,
Naïve Bayes,
and random
forest

Detection of food
fraud

Distinction between
pure beef and mixed
beef

Beef [115]

5. Study Limitations

While this study aims to offer a thorough and extensive analysis of the present state
of research in enhancing food integrity via AI and ML, it is critical to recognize various
limitations. Firstly, it is important to note that the understanding of the results and the
conclusions made in this review article depends on the quality and accuracy of the research
included. The scope of this review is constrained by the existing literature and may not
include every pertinent study or advancement in the subject. The authors acknowledge that
the choice of search engines and databases, as well as the search terms/phrases and syntax
employed to obtain data from the internet, may limit the accessibility of information. In
this regard, the authors made deliberate efforts to significantly broaden the range of search
phrases and utilized many databases in order to consolidate as much relevant information
as possible.

Moreover, data quality and availability are crucial factors for the successful implemen-
tation of AI and ML systems, as amongst other things, the accuracy of model decisions
is directly influenced by data quality. AI and ML algorithms can be influenced by biases
present in the data used for training, potentially resulting in unintended effects or preju-
diced outputs, particularly in crucial domains like food integrity. Researchers frequently
encounter difficulties as a result of the limited availability of data, emphasizing the im-
portance of standardizing and exchanging data across many fields. Our study may have
overlooked the significant obstacles associated with data gathering, standardization, and
privacy concerns, as well as details about the quality of data used to generalize the models
described in the respective studies reviewed herein. These challenges have the potential to
affect the dependability and scalability of AI/ML solutions in many food integrity scenarios.
Finally, the field of AI and ML is vast and constantly evolving. Given the ever-changing
nature of research in this domain, it is possible that new studies and advancements have
been published since the completion of this review. Therefore, it is important to seek
updated information in addition to that presented in this study to ensure its relevance.
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6. Future Prospects and Directions

Going forward, the use of AI and ML in food integrity will continue to play a crucial
role in transforming the food and beverage industry landscape. These technologies have
demonstrated their efficacy in many other scientific fields and likewise provide unique ben-
efits in the food and beverage industry by predicting and identifying food safety hazards,
enhancing production processes, minimizing food waste, improving product monitoring,
etc. Indeed, the incorporation of AI and ML technologies in food processes is rather essen-
tial in the present competitive and quality-focused food industry. Organizations that do
not adopt these technologies early enough face the risk of lagging behind. Moreover, the
continuous advancement of AI and ML, for example via artificial general intelligence (AGI)
and its adaptive learning capabilities, will continue to benefit the creation of customized
food safety solutions tailored to the specific needs of diverse food industry segments, fos-
tering a more resilient and responsive approach to safety management and staying ahead
of evolving food integrity threats.

Although AI and ML offer several prospects for the food and beverage industry, it
is crucial to acknowledge and tackle some of the pertinent challenges to the adoption of
these technologies within the domain. For example, it is vital to meticulously tackle data
privacy and security concerns in order to guarantee the safeguarding of delicate information
throughout the manufacturing process. Another challenge is that many food safety records
are highly dispersed across various domains (such as food, health, and agriculture) and
frequently not digitized [116]. Consolidation of these records in a digital and computer-
friendly format, in addition to the integration of numerous data sources to produce a larger
dataset, has the potential to improve modeling performance. By merging data from diverse
sources, one can capture a greater range of characteristics and factors that influence food
safety outcomes. This comprehensive approach enables a more comprehensive knowledge
of the complex relationships and dynamics within the food safety domain. For example,
mycotoxins, which are harmful substances produced by certain molds, are affected by
environmental factors such as temperature and humidity. By including climatic data in
the modeling process, one can acquire insight into the environmental conditions that
influence mycotoxin levels in food products. This bigger dataset not only enriches the
information available for modeling but it also allows for the identification of detailed
linkages and patterns that may not be obvious when using a restricted scope of data. It
enables a more nuanced and accurate portrayal of the many elements influencing food
safety, ultimately leading to more robust and effective models. However, it is critical to
approach the integration of disparate data sources with caution, taking into account data
quality, relevance, and potential biases.

Continued innovation and strategic collaborative efforts among food companies,
governments, regulatory agencies, academic specialists, consumers, and various other
stakeholders along the food supply chain are critical to drive AI advancement and integra-
tion in the domain. As the food industry continues to adopt these new technologies, it is
critical to prioritize ethical considerations, regulatory compliance, and security measures to
guarantee responsible and secure implementations. Lastly, it is important to acknowledge
that as the integrated domain of AI and food integrity evolves, there will be significant
disruptions and changes in the way food safety specialists and industry players manage
risks and make decisions, resulting in the emergence of potentially new operational risks.
Therefore, it is imperative to foresee these risks and create plans for contingency mitigation.

7. Conclusions

The food industry, which is characterized by perpetual evolving consumer trends,
competitiveness, emerging food safety risks, and the obligation for industry players to
adhere to stringent safety standards, faces the difficult issue of ensuring food integrity and
ensuring quality in manufacturing processes. In this review paper, we explored the general
research trends and transformative potential of AI and ML in food integrity, ranging from
the detection of food fraud, quality control, supply chain traceability and transparency,
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analytics for risk assessment and hazard prediction, real-time monitoring, food pathogen
detection and prediction, and personalized nutrition for improved quality and safety. From
the literature examined herein, it is deduced that through the utilization of AI and ML and
related technologies such as big data, predictive analytics, IoT, blockchain, real-time sensor
technologies, virtual reality, etc., the food and beverage industry can actively reduce risks,
improve product safety, and strengthen consumer trust. The paper further underlines the
need for data quality, privacy, and data protection, as well as careful attention to ethical
considerations for realizing the full benefits of AI in the industry. The paper concludes
with a call to action for continuing research, innovation, and collaboration, highlighting
the immense promise of AI and ML in conjunction with related technologies in building a
secure and resilient global food supply chain.
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