
Citation: Xin, Y.; Zhou, K.; Liu, S.;

Liu, T. A Variable-Scale Attention

Mechanism Guided Time-Frequency

Feature Fusion Transfer Learning

Method for Bearing Fault Diagnosis

in an Annealing Kiln Roller System.

Appl. Sci. 2024, 14, 3434. https://

doi.org/10.3390/app14083434

Academic Editor: Qizhi Xu

Received: 7 March 2024

Revised: 15 April 2024

Accepted: 17 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Variable-Scale Attention Mechanism Guided Time-Frequency
Feature Fusion Transfer Learning Method for Bearing Fault
Diagnosis in an Annealing Kiln Roller System
Yu Xin 1,* , Kangqu Zhou 1, Songlin Liu 1 and Tianchuang Liu 2

1 College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China;
ywg6789@cqut.edu.cn (K.Z.); 331904724@stu.cqut.edu.cn (S.L.)

2 College of Intelligent Manufacturing and Automotive, Chongqing Vocational College of Transportation,
Chongqing 402260, China; 17702301650@163.com

* Correspondence: yu_xin@cqut.edu.cn

Featured Application: The roller bearing and the through shaft bearing are the rotating and load-
bearing components of the annealing kiln roller system, which operate at different locations and
under different working conditions. Their health status is significant for maintaining the stable
operation of the glass production line. In order to improve the efficiency of bearing condition
monitoring, this paper proposes a variable-scale attention mechanism guided time-frequency
feature fusion transfer learning method, which is used for bearing fault diagnoses at different
installation locations in the annealing kiln roller system. It effectively achieves the intelligent
diagnosis of roller bearing and through shaft bearing faults in the annealing kiln roller system.

Abstract: Effective real-time health condition monitoring of the roller table and through shaft bear-
ings in the annealing kiln roller system of glass production lines is crucial for maintaining their
operational safety and stability for the quality and production efficiency of glass products. However,
the collected vibration signal of the roller bearing system is affected by the low rotating frequency
and strong mechanical background noise, which shows the width impact interval and non-stationary
multi-component characteristics. Moreover, the distribution characteristics of monitoring data and
probability of fault occurrence of the roller bearing and through shaft bearing improve the diffi-
culty of the fault diagnosis and condition monitoring of the annealing kiln roller system, as well
as the reliance on professional experience and prior knowledge. Therefore, this paper proposes a
variable-scale attention mechanism guided time-frequency feature fusion transfer learning method
for a bearing fault diagnosis at different installation positions in an annealing kiln roller system.
Firstly, the instinct time decomposition method and the Gini–Kurtosis composed index are used to
decompose and reconstruct the signal for noise reduction, wavelet transform with the Morlet basic
function is used to extract the time-frequency features, and histogram equalization is introduced to
reform the time-frequency map for the blur and implicit time-frequency features. Secondly, a variable-
scale attention mechanism guided time-frequency feature fusion framework is established to extract
multiscale time-dependency features from the time-frequency representation for the distinguished
fault diagnosis of roller table bearings. Then, for through shaft bearings, the vibration signal of the
roller table bearing is used as the source domain and the signal of the through shaft bearing is used
as the target domain, based on the feature fusion framework and the multi-kernel maximum mean
differences metric function, and the transfer diagnosis method is proposed to reduce the distribution
differences and extract the across-domain invariant feature to diagnose the through shaft bearing
fault speed under different working conditions, using a small sample. Finally, the effectiveness of
the proposed method is verified based on the vibration signal from the experimental platform and
the roller bearing system of the glass production line. Results show that the proposed method can
effectively diagnose roller table and through shaft bearings’ fault information in the annealing kiln
roller system.
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1. Introduction

The roller system of annealing kilns is a crucial component of the glass production line
for carrying and hauling glass products. The diagram of the annealing kiln roller system is
shown in Figure 1. The bearings of the annealing kiln roller system include two types: roller
and through shaft bearings. Roller and through shaft bearings are SKF-1218K double-row
self-aligning ball bearings, which are seated in bearing seats to ensure the stability and
smooth operation of the annealing kiln roller system. The roller bearings in a production
line are used for loading and pulling glass products at the speed of 16 r/min, and the
through shaft bearing is used to transmit power at the speed of 12 r/min. As the core
components of the roller system, the stable operation and health status of roller and through
shaft bearings significantly affect the quality of glass products [1]. Therefore, the timely
health condition monitoring and abnormal diagnostic of the roller table and through shaft
bearings are essential for intelligently maintaining the operational stability and safety for
the quality and production efficiency of the glass product line. However, the condition
monitoring signal of the roller bearing system is affected by the low rotating frequency
and strong mechanical background noise, which shows the width impact interval and
non-stationary multi-component characteristics. Moreover, the difference in the rotating
speed, load, and working condition between the roller bearing and through shaft bearing
obviously increases the difficulty of the real-time intelligent fault diagnosis and condition
monitoring of the annealing kiln roller system. And the professional knowledge and prior
knowledge of the working condition of the roller bearing system also limit the efficiency
of identifying abnormal states. Thus, exploring new vibration signal preprocessing and
intelligent transfer diagnostic methods is essential for health monitoring and fault detecting
for the annealing kiln roller system.
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Affected by the working environment, the condition monitoring vibration signal of the
bearing the annealing kiln roller system inevitably contains multiple non-stationary compo-
nents and mechanical background noise. Hence, it is a prerequisite for improving the accu-
racy of fault diagnostics and the effectiveness of health monitoring to effectively decompose
and filter out the noise component in the bearing vibration signal. Focused on denoising
and filtering methods based on signal decomposition, classical fault diagnosis methods,
such as ensemble empirical mode decomposition [2,3], local mean decomposition [4], and
variational mode decomposition [5] methods, were wildly used to filter out background
noise from nonlinear and non-stationary vibration signals. However, these methods can-
not adaptively decompose the non-stationary vibration signal for separating meaningful
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information based on the time-scale, and endpoint effects, modal aliasing, and noise in-
terference inevitably affect the decomposition results [6–8]. In order to effectively avoid
these drawbacks, a novel method named intrinsic time scale decomposition (ITD) was
introduced to decompose the vibration signal into several amplitude and frequency de-
modulation proper rotation single components [9,10]. On the basis of linear transform, the
ITD method can decompose the signal into several proper rotation components, which are
mono-components in nature and suitable for calculating the instantaneous frequency and
amplitude. Moreover, ITD defines the instantaneous amplitude and frequency of signals
on the basis of single wave analysis, thus overcoming the limitations of modal aliasing and
noise interference and providing an approach to the decomposition of vibration signals
into several mono-components for further demodulation analysis. Hence, considering
the strong noise interference and low speed and width impact interval characteristics
in the bearing vibration signal of the annealing kiln roller system, the ITD method is
introduced to decompose the signal into several components with different frequencies,
and the composed index with kurtosis [11] and the Gini index [12] are used to select the
demodulation frequency component with the optimal pulse and sparse characteristics of
fault information. The selected components are used to reconstruct the denoised signal
for further identification. To improve the time-frequency representation ability of bearings
under low-speed operating condition information, which have strong nonlinearity and
non-stationary characteristics under complex working conditions, continuous wavelet
transform (CWT) [13] is used to extract the time-frequency representation with different
scales of denoised signals, and histogram equalization is used for processing the time-
frequency image through non-linear straightening, reassigning image pixel values, and
improving the image contrast.

Based on the denoised signal, reducing the reliance on professional experience and
prior knowledge for bearing abnormal detection and intelligent diagnosis have significant
advantages for improving the performance of intelligently maintaining and the condition
monitoring of the glass production line. Deep learning methods have been widely utilized
in the field of mechanical fault diagnosis [14]. Focused on the multi-scale and dependency
characteristics, Li [15] combined Inception with an attention mechanism to extract the multi-
scale features of bearing faults and found that the recognition effect using the Inception
module is significantly better than that using a single CNN. Qiao [16] used CNN and long
short-term memory (LSTM) to extract features under variable load and noise conditions
and found that the recognition accuracy of the proposed method is higher than that using
CNN or LSTM alone. Shi [17] proposed a novel deep neural network based on bidirectional-
convolutional LSTM to determine the type, location, and direction of planetary gearbox
faults by automatically and simultaneously extracting spatial and temporal features from
both vibration and rotational speed measurements. However, these methods focused on
the static data and their features and not so much on time-varying non-stationary data. The
complex deep features in the time dependency, high-dimensional, and noisy real-world
vibration signal cannot be adaptively learned with the shallow model, which constructed
only several numbers of non-linear operations, and it could effectively model such complex
data. Therefore, considering the multi-scale feature-extraction ability of Inception and the
time-state reliance representation ability of LSTM, an variable scale attention mechanism-
guided time-frequency feature fusion was constructed to further extract deep differential
and abnormal features and improve the effectiveness of the bearing fault diagnosis.

As the crucial transmission part, the health condition of the through shaft bearings
can also significantly affect the stability of the glass production line. But, affected by
the rotating speed and working environment, the failure probability and vibration signal
characteristics are apparently different from the roller table bearings. Therefore, when
diagnosing roller bearing faults, how to accurately diagnose the through shaft bearing
faults simultaneously is the key to effectively monitoring the health condition of the roller
table system of the annealing kiln. As an excellent novel deep learning method, transfer
learning aims to apply existing knowledge in evaluating and recognizing similar features
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between source and target domain data with different distribution characteristics [18,19].
As a nonparametric distance metric, MMD maps data to a reproducing Hilbert kernel space
to evaluate the distribution characteristics and distance; therefore, the selection of kernel
functions is crucial [20,21]. And this method not only performs well on data with few or
insufficient samples but also has good identification performance based on cross-domain
distribution difference data of the source and object domain. Therefore, based on the feature
fusion network, considering the similarities and differences between annealing kiln roller
and through shaft bearings, the transfer learning method is adopted to achieve domain
invariant feature extraction and cross domain diagnosis, with the Multi Kernel Maximum
Mean Difference (MK-MMD) as a distance indicator, roller bearing vibration data as the
source domain, and through shaft bearing vibration data as the target domain, and an
intelligent transfer diagnosis model for through shaft bearing faults is constructed.

To monitor and diagnose the real-time health condition of the bearing in the annealing
kiln roller system in glass production lines, this paper proposes a time-scale data-driven
vibration signal adaptive denoising and intelligent transfer diagnosis method based on a
variable-scale attention mechanism-guided time-frequency feature fusion transfer learning
method for the abnormal state detection and fault diagnosis of roller and through shaft
bearings in the annealing kiln roller system. First, the strong mechanical background
noise in the vibration signal is filtered using ITD and the Gini–kurtosis criteria, and the
time-frequency representation of the denoised signal is obtained using CWT, and the
time-frequency images are enhanced through histogram equalization. Then, according to
Inception and LSTM, an intelligent diagnosis network based on a variable-scale attention
mechanism-guided feature fusion framework is constructed to extract multi-scale features
from the time-frequency representations and accurately identify the fault information of
roller bearings. Furthermore, based on the intelligent diagnosis network, an intelligent
transfer diagnosis model for through shaft bearings is constructed using MK-MMD. The
vibration signals of the roller and through shaft bearings are used as the source and target
domains, respectively, to accurately diagnose the operating condition of through shaft
bearings. Finally, two kinds of vibration signal data are conducted to verify the proposed
method for bearing faults in the annealing kiln roller bearing system. The results show
that the proposed method can efficiently extract the bearing fault features and accurately
identify the health condition of the bearings in the annealing kiln roller bearing system.

The rest of this paper is organized as follows. Section 2 reviews the concept of the In-
ception module, LSTM network, and MK-MMD method briefly. In Section 3, the proposed
variable-scale attention mechanism-guided feature fusion module is introduced firstly in
detail; then, the neural network framework and procedure of intelligent fault diagnosis
and transfer diagnosis of the annealing kiln roller bearing system are descripted compre-
hensively. After that, the experiment data from the test rig are used to comprehensively
verify the effectiveness of this proposed neural network framework and fault diagnosis
method in Section 4. And the proposed method is introduced to diagnose measured data
from the plant of the annealing kiln roller bearing system. The discussion and conclusion
are presented in Section 5.

2. Theory Background and Methods
2.1. Inception Module

In GoogLetNet [22], the Inception module was proposed as the optimization module,
with the main idea of using parallel convolutional kernels with different sizes in the
convolutional layer to extract multi-scale features from input images and then fusing
the extracted features to obtain a good image representation. As a milestone design,
the Inception module emerged as a breakthrough for object detection and large-scale
visual-recognition-related tasks. This module encapsulates multiple parallel kernel filters
with different sizes to extract salient features from objects. The remarkable change in the
Inception module is toward increasing the network width, enhancing the adaptability of
the network to the scale, and improving the network performance.
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In the Inception module, the convolutional kernels with different sizes can be per-
ceived as various receptive fields that connect to enrich the information in each layer.
These convolution kernels with different scales (such as 1 × 1, 3 × 3, and 5 × 5) are
used to extract features from the input and then output the uniformly distributed fea-
tures. Among them, the 1 × 1 convolutional kernel is used to extract outstanding features,
the 3 × 3 convolutional kernels can extract feature information and reduce computational
complexity while obtaining feature information on different scales, the 5 × 5 convolu-
tional kernels are used to reduce the number of parameters to be trained and accelerate
the training speed. In each parallel structure, batch normalization and global average
pooling are introduced to improve the effectiveness of features, decrease the number of
parameters, overcome overfitting, and reduce the computational cost. In the output set, the
different features in each branch are concatenated. Consequently, variable-scale features
can be extracted from the input data, and excellent performance can be achieved with low
computational cost. The typical network structure of Inception V2 [23] is shown in Figure 2.
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Figure 2. Structure of the Inception V2 module.

2.2. LSTM Network

The LSTM [24] network designs the forget, input, and output gates in the network
structure to effectively alleviate gradient vanishing and explosion and has a strong ability
to learn the dependency relationship of time-series data. The LSTM network structure is
shown in Figure 3. The LSTM network receives the output and cell state from the previous
step as the current input. The processing expression is as follows:

ft = σ
(

W f · [ht−1, xt] + b f

)
(1)

it = σ(Wi · [ht−1, xt] + bi) (2)

Ot = σ(Wo · [ht−1, xt] + bo) (3)

C̃t = tanh(Wc · [ht−1, xt] + bc) (4)

Ct = ft · Ct−1 + it · C̃t (5)

ht = Ot · tanh(Ct) (6)

where σ represents the activation function, and W and b, respectively, represent the weights
and biases of the corresponding processing operations. In the t-th update step, input gate, i,
forget get f, output gate, O, and cell state, C are updated by input x, and the hidden state of
step n−1, ht−1 is the output of previous layer.
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When calculating the distances of different distributions in Hilbert space, the multiple
kernel functions are used to calculate the MMD [26] as
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∑
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(

xs
i , xt
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(8)

Traditionally, the differentiable Gaussian kernel is used to optimize the gradient
descent for the loss function. Considering the probability distributions in different re-
producing kernel Hilbert spaces [27], the multiple kernel functions in the MMD method,
which can improve the adaptively to the different data and measure the distance between
two different distributions to extract good feature maps, are introduced to guarantee the
optimal performance of the system. The MK-MMD with multiple Gaussian kernels with
different parameters is adopted for superposition calculation and developing a method for
optimal kernel selection and improving its effectiveness.

3. Proposed Method
3.1. Variable-Scale Attention Mechanism-Guided Feature Fusion Framework

To accurately extract multi-scale fault features and the temporal dependency relation-
ship from the time-frequency representation of roller bearing monitoring signals, a novel
neural network framework with Inception and the LSTM model is established to efficiently
diagnose the health of the bearings. The network structure is shown in Figure 4.

First, an enhanced feature fusion module based on Inception V2 is proposed, as shown
in Figure 4a. Convolutional kernels with different scales are used to capture inconspicuous
differential features from the input data, and the LSTM module is joined with each branch
of the Inception module to learn the temporal dependency features. To improve the
generalization and fitting ability of feature fusion, batch normalization is used to improve
the consistency of the learned features, and the ReLU nonlinear function is used to activate
the learned features to prevent the overfitting of the model.



Appl. Sci. 2024, 14, 3434 7 of 20

Appl. Sci. 2024, 14, 3434 7 of 20 
 

efficiently diagnose the health of the bearings. The network structure is shown in Figure 
4. 

First, an enhanced feature fusion module based on Inception V2 is proposed, as 
shown in Figure 4a. Convolutional kernels with different scales are used to capture incon-
spicuous differential features from the input data, and the LSTM module is joined with 
each branch of the Inception module to learn the temporal dependency features. To im-
prove the generalization and fitting ability of feature fusion, batch normalization is used 
to improve the consistency of the learned features, and the ReLU nonlinear function is 
used to activate the learned features to prevent the overfitting of the model. 

Second, based on the variable-scale attention mechanism-guided feature fusion mod-
ule, a novel intelligent fault diagnosis framework for roller bearing is proposed, as shown 
in Figure 4b. A convolutional layer with 3 × 3 small kernels is used to extract coarse 
grained features from the time-frequency map to increase the nonlinear expression ability 
of the network. The optimal activation function and batch normalization are introduced 
to modify the output. Two stacked feature fusion modules are used as the multi-scale re-
fined feature extractor to further extract differentiation deep representation features, 
which can increase the overall nonlinear expression ability of the network and reduce net-
work complexity. After each feature fusion module, mean pooling is introduced to reduce 
the feature dimension. The parameters of the constructed neural network are shown in Table 
1. 

Then, after extracting refined features, the LSTM layer is used to receive the features 
and further learn the temporal dependencies between them. Subsequently, the Softmax 
function [28] is introduced to map the learned features into the probability space and select 
the corresponding labels. Meanwhile, the improved cross entropy function is used as the loss 
function to train the networks and accelerate the convergence speed of the network. 

 
(a) 

 
(b) 

Figure 4. Intelligent fault diagnosis framework for roller bearing based on the variable-scale atten-
tion mechanism-guided time-frequency feature fusion module. (a) Typical structure of the variable-
scale attention mechanism-guided feature fusion module based on Inception and LSTM. (b) The 

Conv2D
(1×1) 

Conv2D
(1×1)

Conv2D
(3×3) 

Conv2D
(1×1) 

Conv2D
(3×3)

Conv2D
(3×3)

Pool2D
(3×3)

Conv2D
(1×1)

LSTM
(1×1) 

LSTM
(1×1)

LSTM
(1×1)

LSTM
(1×1) 

Filter 
Concat

+

Base

Output

Figure 4. Intelligent fault diagnosis framework for roller bearing based on the variable-scale attention
mechanism-guided time-frequency feature fusion module. (a) Typical structure of the variable-
scale attention mechanism-guided feature fusion module based on Inception and LSTM. (b) The
intelligent fault diagnosis framework based on the variable-scale attention mechanism-guided feature
fusion module.

Second, based on the variable-scale attention mechanism-guided feature fusion mod-
ule, a novel intelligent fault diagnosis framework for roller bearing is proposed, as shown
in Figure 4b. A convolutional layer with 3 × 3 small kernels is used to extract coarse
grained features from the time-frequency map to increase the nonlinear expression ability
of the network. The optimal activation function and batch normalization are introduced to
modify the output. Two stacked feature fusion modules are used as the multi-scale refined
feature extractor to further extract differentiation deep representation features, which can
increase the overall nonlinear expression ability of the network and reduce network com-
plexity. After each feature fusion module, mean pooling is introduced to reduce the feature
dimension. The parameters of the constructed neural network are shown in Table 1.

Table 1. The parameters of the constructed neural network framework for intelligent fault diagnosis.

Layer Parameter Name Parameter Size Output Size

Input layer / / Batch size × 128 × 128
Conv Kernels 3 × 3 Batch size × 3 × 128 × 128

Feature fusion module 1 Kernel As in Figure 4a Batch size × 16 × 64 × 64
Mean Pooling Mean pooling size 2 × 2 Batch size × 64 × 32 × 32

Feature fusion module 2 Kernels As in Figure 4a Batch size × 128 × 16 × 16
Mean pooling Mean pooling size 2 × 2 Batch size × 256 × 8 × 8

Then, after extracting refined features, the LSTM layer is used to receive the features
and further learn the temporal dependencies between them. Subsequently, the Softmax
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function [28] is introduced to map the learned features into the probability space and select
the corresponding labels. Meanwhile, the improved cross entropy function is used as the
loss function to train the networks and accelerate the convergence speed of the network.

3.2. Variable-Scale Attention Mechanism-Guided Feature Transfer Learning Framework

On the basis of the feature fusion framework and the transfer learning method and
taking the vibration signal of the roller bearing as the source domain and the vibration signal
of the through shaft bearings as the target domain, an intelligent transfer diagnosis model
for through shaft bearings is constructed. The network structure is shown in Figure 5. MK-
MMD utilizes the kernel function to map the source and target domain features obtained
from the LSTM layer to the reproduced Hilbert space, solving for the distribution distance
between the two domains. The modified cross-entropy function is the loss function for
the gradient backpropagation and the object optimization and reduces the distribution
differences between the source and target domains. Then, under the cross-condition and
using fault label samples, the fault diagnosis of through shaft bearings can be achieved.
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3.3. Fault Diagnosis Procedure of Roller Table Bearing System of the Annealing Kiln

Based on variable-scale attention mechanism-guided time-frequency feature fusion
module and transfer learning, the fault diagnosis procedure of the roller table bearing
system in the annealing kiln is as shown in Figure 6.

(1) Accelerometers are used to collect the vibration signal from the bearings in the roller
table system of the annealing kiln. The collected vibration signal is decomposed
into several CPFs via ITD, and the effective components are selected using the Gini–
kurtosis criterion, as shown in Equation (9). Then, the denoised bearing vibration
signal can be reconstructed for further analysis. GI can not only measure the impul-
siveness of the signal but has a strong robustness against the random impulse noise,
which is a great concern for signal processing methods based on other sparsity indexes.
Impulsiveness is important but not the exclusive feature of the fault components in the
measured fault signal. GI, which is a rare statistical index that can highlight repetitive
fault components without prior knowledge, is not fully utilized.

For signal x(t), because Gini and kurtosis are dimensionless indicators, the Gini–
kurtosis criterion is defined as

IndexGini−Kurtosis =

[
1− 2

N

∑
n=1

x(n)
‖→x ‖

(
N − n + 0.5

N

)]
·
[ 〈

x4(t, f )
〉

〈X2(t, f )〉2
− 2

]
(9)

where x(t,f ) is the time-frequency envelope of the filtered signal x(t) around f, and 〈 · 〉 repre-
sents the time-frequency averaging operator. The effective components can be determined
based on whether the Gini–kurtosis index is larger than parameter η.
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(2) The time-frequency representation of the denoised signals is obtained using the CWT
method with the Morlet wavelet basis function; then, histogram equalization can
enhance the time-frequency map.

(3) The time-frequency maps are organized as roller bearing datasets and input into
the variable-scale attention mechanism-guided time frequency feature fusion neural
network of the roller bearing to intelligently diagnose, train, and obtain the optimal
hyperparameters of this network.

(4) Based on the optimal neural network and hyper-parameters, training is completed
and the roller bearing intelligent diagnosis network is saved, accurately identifying
the health condition of the roller bearing.

(5) Combining the MK-MMD method, an intelligent transfer diagnosis network for
through shaft bearings is established, and the parameters of the trained optimal
feature fusion intelligent diagnosis network are loaded.
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(6) Using the roller and through shaft bearing datasets as the source and target domains,
respectively, the roller and labeled through shaft bearing data as the training set, and
the unlabeled through shaft bearing data as the test set, the transfer network is trained,
the network parameters are fine-tuned by repressing part of the layer, and the through
shaft bearing diagnosis results finally generated.

4. Case Study and Verification
4.1. Introduction to Experiment

The experimental data are from a rolling bearing fault experimental platform, as
shown in Figure 7a, and the bearing used for testing is an N205EM cylindrical roller
bearing. The single point faults were processed on the bearing using electric discharge
technology, including the inner ring, outer ring, and roller element faults, as shown in
Figure 7b–e. The fault diameters were 0.3, 0.6, and 1 mm, respectively. The tested bearing
is installed inside the bearing seat, and three-axis acceleration sensors 1A313E are installed
on the seat, as shown in Figure 7. The sampling frequency of the vibration signals is
20 kHz. To simulate the different working conditions, the tested bearing load was set to
0, 30, and 60 kg, and the driving motor speed was set to 800, 1200, and 1500 r/min. The
vibration signal of each fault diameter was collected by our vibration testing equipment.
According to the speed conditions, datasets A, B, and C are used to verify the effectiveness
of intelligent transfer learning.
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In this test, the bearing’s rotation frequency ranged from 800 to 1500 r/min. Between
800 and 1500 points were sampled in each revolution. To better illustrate the vibration
characteristics of each revolution, 1200 points were selected as one sample with a step size
of 256. Furthermore, in order to improve and enhance the effectiveness and resolution of the
time-frequency analysis, each sample has 1200 points, which provides better time-frequency
characteristics. Four hundred samples were collected from each fault vibration signal, and
a total of 5200 samples were obtained. Considering the cross-validation experiment, each
dataset was divided into the training and testing sets at a 3:1 ratio. Thus, the training set
has a total of 3900 samples, and the testing set has a total of 1300 samples. The detailed
information of this experimental data is shown in Table 1. As an example, the fault vibration
signals with a damage diameter of 0.3 mm and 800 r/min on different components are
shown in Figure 8a–d. According to the proposed signal decomposition and reconstruct
method, the denoised vibration signals of different faults are shown in Figure 8e–h. The
comparison of the signal-to-noise (SNR) ratio of the signals in Table 2 shows that the SNR
is 12.45, and the root mean square is 0.44, indicating a good noise-reduction effect. Then,
after applying the CWT and histogram equalization methods, 400 enhanced time-frequency
maps were obtained for each state. The time-frequency representations before and after the
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enhancement of the bearing signal are shown in Figure 9. The enhanced time-frequency
maps have good clustering and a strong local feature prominence. Here, the computer
configuration is the Inter Intel (R) Core (TM) i7-10510U CPU and 16GB RAM in window 11
and Matlab 2022b.
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Figure 8. Vibration signal of roller table bearing under different health conditions. (a) Normal−condition
vibration signal of roller table. (b) Original vibration signal of inner race fault with 1 mm. (c) Original
vibration signal of ball fault with 1 mm. (d) Original vibration signal of out race fault with 1 mm.
(e) Denoised normal−condition vibration signal of roller table. (f) Denoised original vibration signal
of inner race fault with 1 mm. (g) Denoised original vibration signal of ball fault with 1 mm.
(h) Denoised original vibration signal of out race fault with 1 mm.
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Table 2. Organization of experimental dataset.

Dataset Healthy
Condition Fault Diameter/mm Training Samples Testing Samples Label

A/B/C
800 r/min/

1200 r/min/1500 r/min

Normal state 0 300/300/300 100/100/100 1

0.3 300/300/300 100/100/100 2

ball faults
0.6 300/300/300 100/100/100 3
1.0 300/300/300 100/100/100 4
1.5 300/300/300 100/100/100 5

0.3 300/300/300 100/100/100 6

Inner race fault
0.6 300/300/300 100/100/100 7
1.0 300/300/300 100/100/100 8
1.5 300/300/300 100/100/100 9

0.3 300/300/300 100/100/100 10

Outer race fault
0.6 300/300/300 100/100/100 11
1.0 300/300/300 100/100/100 12
1.5 300/300/300 100/100/100 13
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Figure 9. Time-frequency representation and their histogram equalization for the roller table bearing
under different health conditions.

4.2. Experimental Parameter Configuration

For the proposed intelligent fault diagnosis framework, the optimal hyperparam-
eters, the batch size, the learning rate, and the dropout rate greatly affect the training
speed, the effectiveness of extracted features, the classification accuracy, and the model
robustness [20]. To select the optimal hyperparameters, the impact on the classification ac-
curacy and time consumption of this model under different minimum numbers of batches,
the initial learning rate and the dropout rate are shown in Figure 10, and the optimal model
parameter configuration was determined. The adaptive moment estimation method is used
to optimize the cross-entropy loss function and train the neural network framework. The
average recognition accuracy and training time are taken as evaluation indicators, and the
results are shown in Figure 10.
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Figure 10. Influence of hyperparameters on model accuracy.

Figure 10 shows that the batch size has the greatest impact on the accuracy of this
model, followed by the learning rate, and the maximum dropout rate has the smallest
effect. In Figure 10a, the accuracy and training times decrease as the minimum batch size
increases. When the minimum number of batches increases from 16 to 32, the accuracy
remains unchanged, although the training time decreases significantly. Therefore, 16 is
selected as the optimal batch size. In Figure 10b, the accuracy first increases and then
decreases due to the increase in the learning rate, and the training time shows no significant
change. The optimal effect is achieved when the learning rate is 0.01. In Figure 10c, the
accuracy is decreased when the dropout rate is increased, but the training time has no
significant effect on the result. The optimal dropout rate is 0.3.

Hence, the proposed neural network was trained with the optimal hyperparameters,
and the typical training curve of the loss function and the training accuracy are shown
in Figure 11, with stable fluctuations and network convergence. The fault diagnosis’
average accuracy for the roller table bearing reaches 99.90%, and the training error is 0.13%.
The confusion matrices of the training and validation sets are shown in Figure 12. The
horizontal axis represents the real label, and the vertical axis represents the predicted label.
Few samples were misjudged in each of the rolling element and inner circle fault states,
and the rest were accurately identified, verifying the recognition accuracy of the proposed
variable-scale attention mechanism-guided time-frequency feature fusion network.

In order to verify the anti-noise interference ability and robustness of this proposed
method, Gaussian white noise with different decibels is added into the experimental
signal. Furthermore, considering to further illustrate the effectiveness of the proposed data
preprocessing method in this paper, time-domain, frequency-domain, CWT time-frequency
domain data, and the proposed preprocessing data are used to train the constructed neural
network, respectively. The results are shown in Figure 13a, the diagnostic accuracies of
the proposed method are above 98% under different noise interferences, and they have
lower error. Therefore, compared with other input data, the proposed data preprocessing
method shows better effectiveness and robustness under different strong background noise
environments.
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Figure 11. Training process of loss function and accuracy curve.
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Figure 12. Confusion matrix of training and testing set. (a) Confusion matrix of training dataset.
(b) Confusion matrix of testing dataset.

Appl. Sci. 2024, 14, 3434 14 of 20 
 

  
(a) (b) 

Figure 12. Confusion matrix of training and testing set. (a) Confusion matrix of training dataset. (b) 
Confusion matrix of testing dataset. 

In order to verify the anti-noise interference ability and robustness of this proposed 
method, Gaussian white noise with different decibels is added into the experimental sig-
nal. Furthermore, considering to further illustrate the effectiveness of the proposed data 
preprocessing method in this paper, time-domain, frequency-domain, CWT time-fre-
quency domain data, and the proposed preprocessing data are used to train the con-
structed neural network, respectively. The results are shown in Figure 13a, the diagnostic 
accuracies of the proposed method are above 98% under different noise interferences, and 
they have lower error. Therefore, compared with other input data, the proposed data pre-
processing method shows better effectiveness and robustness under different strong back-
ground noise environments. 

To evaluate the anti-noise interference ability of the proposed neural network, we 
added Gaussian white noise with varying decibels to the collected fault signal. We com-
pared the performance of the CNN [29], LSTM [16], and proposed methods in identifying 
fault features, as shown in Figure 13b. The results demonstrate that the proposed method 
outperforms the CNN and LSTM methods under different levels of noise interference dur-
ing the 10 training sessions. This highlights the superior anti-noise interference capabili-
ties and robustness of the proposed method. Due to the characteristics of the input data, 
framework, and parameters of the neural network, the LSTM has better identification per-
formance than the CNN for the noise-added input signal. 

  
(a) (b) 

Figure 13. The verification of fault diagnosis effectiveness under different noise interferences. (a) 
The accuracy and error of fault diagnosis for different input data under different noise interferences. 
(b) The accuracy and error of fault diagnosis for different neural network under different noise in-
terferences. 

−10−8 −6 −4 −2 0 2 4 6 8 10

100

96

88

 Time  Frequency 
 CWT  Proposed method

A
cc

ur
ac

y

Noise(dB)

92

−10−8 −6 −4 −2 0 2 4 6 8 10

100

96

98

 CNN  LSTM 
 Inception-LSTM 

A
cc

ur
ac

y

Noise(dB)

94

Figure 13. The verification of fault diagnosis effectiveness under different noise interferences.
(a) The accuracy and error of fault diagnosis for different input data under different noise inter-
ferences. (b) The accuracy and error of fault diagnosis for different neural network under different
noise interferences.

To evaluate the anti-noise interference ability of the proposed neural network, we
added Gaussian white noise with varying decibels to the collected fault signal. We com-
pared the performance of the CNN [29], LSTM [16], and proposed methods in identifying
fault features, as shown in Figure 13b. The results demonstrate that the proposed method
outperforms the CNN and LSTM methods under different levels of noise interference
during the 10 training sessions. This highlights the superior anti-noise interference capa-
bilities and robustness of the proposed method. Due to the characteristics of the input
data, framework, and parameters of the neural network, the LSTM has better identification
performance than the CNN for the noise-added input signal.

4.3. Analysis of Intelligent Transfer Diagnostic Method

To verify the effectiveness of the proposed transfer learning model, the feature fusion
network was used as the basic framework, and datasets A, B, and C were selected as the ex-
perimental datasets. Using one of datasets A, B, and C as the source domain and the others
as the as the target domain, two sets of transfer experiments were transferred from A to B
and A to C. Each group was randomly trained 10 times. The average identification accuracy
was taken as the evaluation index. Six sets of transfer experiments were conducted.

For Experiment 1, the CNN-LSTM network [30] was selected. For Experiment 2, the
DCORAL method was adopted, using Coral as the metric function [27]. For Experiment 3,



Appl. Sci. 2024, 14, 3434 15 of 20

the dynamic distribution adaptation (DDA) method was adopted, using a Gaussian kernel
MMD [31] as the metric function. For Experiment 4, the proposed intelligent transfer
method was adopted, using MK-MMD as the metric function. The experimental results
are shown in Table 3 and Figure 14. In Experiment 1, the transfer diagnostic displayed the
poorest effectiveness. In Experiment 2, the accuracy of transfer diagnosis was 90.52%, and
the error was 3.54%. In Experiment 3, the average accuracy was 94.23%, and error was
1.95%. In Experiment 4, using the multi-kernel MMD method, the average accuracy was
99.11%, and a negligible error was obtained. Moreover, the calculation time of the proposed
method is slightly longer than other methods. Hence, the proposed method shows good
robustness and is more effective than the other methods.

Table 3. Experimental average diagnostic results.

Experiment Experiment Method Average Accuracy/% Error/% Time/min

Experiment 1 CNN-LSTM 85.67 3.53 86.15
Experiment 2 DCORAL 90.52 3.54 82.46
Experiment 3 DDA 94.23 1.95 92.65
Experiment 4 The proposed method 99.11 0.86 97.92
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Figure 14. Accuracy rate of fault transfer diagnosis of rolling bearing.

4.4. Fault Diagnosis of Bearings in the Roller Table System of the Annealing Kiln

Here, the proposed method is introduced to diagnose the health condition of the
roller and through shaft bearings in the roller table system of the annealing kiln. In a glass
production plant, vibration signals of the annealing kiln roller system were collected, as
shown in Figure 15. The collected bearing vibration signals were divided into two states:
normal and fault. The sampling frequency was 12 KHz, and vibration signals of the roller
bearing system were collected using a three-axis acceleration sensor and an NI 9234 data
acquisition card.

The collected vibration signals under the normal and fault conditions of the bearings
are shown in Figure 16. According to the proposed method, the original signal was
decomposed, and the effective component was selected to filter the noise interference.
Then, the SNR of the roller bearing vibration signal was 23.11, and the mean square error
was 0.52. The SNR of the through shaft bearing vibration signal was 24.63, and the mean
square error was 0.96. According to the CWT method, the time-frequency representations
are shown in Figure 17, and on the basis of the histogram equalization method, the local
features of the enhanced time-frequency map are clear and prominent.
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Figure 15. Healthy condition monitoring for the roller system of the annealing kiln. (a) Vibration
signal collection of the roller table bearing (In the red box) (b). Vibration signal acquisition of the
through shaft bearing (In the red box).
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Figure 16. Vibration signals of the roller table system of the annealing kiln. (a) Vibration signal of
normal roller table bearing. (b) Vibration signal of fault roller table bearing. (c) Vibration signal
of normal through shaft bearing. (d) Vibration signal of fault through shaft bearing. (e) Denoised
vibration signal of normal roller table bearing. (f) Denoised vibration signal of fault roller table
bearing. (g) Denoised vibration signal of normal through shaft bearing. (h) Denoised vibration signal
of fault through shaft bearing.
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Figure 17. Time-frequency representation and their histogram equalization of roller table and through
shaft bearing. (a) Normal condition of roller table bearing. (b) Fault condition of roller table
bearing. (c) Normal condition of through shaft bearing. (d) Fault condition of through shaft bearing.
(e) Normal condition of roller table bearing. (f) Fault condition of roller table bearing. (g) Normal
condition of through shaft bearing. (h) Fault condition of through shaft bearing.

According to the proposed method, the roller table bearing datasets were organized
into 400 labeled samples and divided into the training and testing sets in a 9:1 ratio. The
datasets were inputted into the roller bearing intelligent diagnosis network and trained
10 times. The average accuracy of the model reached 99.65%, and the loss function and
accuracy curve of roller table dataset is shown in Figure 18. After 500 training iterations,
the fluctuation of the accuracy and loss curve converged, and the network was completely
trained. Using the roller table bearing datasets as the source domain and the through-shaft
bearing dataset as the target domain, the roller table bearing data and 80 unlabeled through
shaft bearing data were used as the training set, and 40 labeled through shaft bearing
data were used as the test set. The intelligent transfer diagnosis network for through-axis
bearings was introduced and trained 10 times. The average accuracy of the model for
the through shaft bearing was 99.20%. The training curve is shown in Figure 19, which
shows that the accuracy and loss curve fluctuates steadily and ultimately converges. This
curve indicates that the proposed diagnostic model is effective and feasible and has high a
recognition accuracy. Furthermore, the confusion matrix of the bearing conditions is shown
in Figure 20. Few normal and fault roller table bearings were misjudged as normal and fault
through shaft bearings, respectively. Comprehensively, the transfer model can effectively
identify the fault condition for the bearings in the roller system of the annealing kiln.
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Figure 18. Loss function and accuracy curve of training process.
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Figure 19. Loss function and accuracy curve of transfer learning training process.
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Figure 20. Identification confusion matrix of the bearings for the intelligent transfer diagnostic model.
(a) Confusion matrix of training data of through shaft bearing. (b) Confusion matrix of the testing
data of through shaft bearing.

Furthermore, the collected monitoring data from the bearing system of the annealing
kiln were put into CNN-LSTM, DCORAL, and DDA neural network to identify the working
condition. The results in Table 4 show that identification accuracy of the proposed method
for the intelligent fault transfer diagnosis of the bearing system in the annealing kiln is
99.85%, and the mean error is 0.08%. Compared to other method, the result is better.

Table 4. Comparison of intelligent fault transfer diagnosis for bearing system in annealing kiln.

Method CNN-LSTM DCORAL DDA The Proposed Method

Accuracy/% 86.30769 ± 0.05015 91.84615 ± 0.02794 93.84615 ± 0.01738 99.84615 ± 0.08406
Time/min 45.53 37.23 48.61 72.53

5. Conclusions

This work proposes an intelligent transfer diagnosis method for bearing faults in the
annealing kiln roller system on the basis of the Inception and LSTM modules to monitor
the condition and diagnose the faults of the roller table and through shaft bearings under
different working conditions. This method can overcome the influence of strong mechanical
background noise interference and inconspicuous sample features and efficiently and
accurately determine the health condition of bearings. The main conclusions of the paper
are as follows:

(1) Considering the sparsity and kurtosis of vibration signals, the decomposed compo-
nents using the ITD method can select and denoise strong mechanical noise, and CWT
and histogram equalization can obviously enhance the time-frequency representa-
tions, clearly displaying the differentiated feature information on the time-frequency
maps and promoting intelligent identification.
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(2) By combining Inception’s multi-scale feature extraction and the LSTM’s temporal
relationship learning ability, an intelligent diagnosis framework for the roller table
bearing is established to learn fusion features from the time-frequency representation.
The experimental results of the measured data indicate that the proposed framework
has excellent feature-extraction ability and can effectively and accurately identify the
health condition of roller bearings.

(3) By combining the MK-MMD method, an intelligent transfer diagnostic framework is
established to identify the health condition using cross-domain condition samples.
This method can reduce the distribution differences in vibration data and achieve the
intelligent transfer diagnosis of roller table and through shaft bearings under different
speed conditions in the annealing kiln roller system. Considering the plant scene
and operation condition of the glass product line, the verification results from the
experimental and measured data show that the intelligent transfer diagnostic model
established in this work has high recognition accuracy for the health condition and
fault characteristics of roller and through shaft bearings.
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