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Abstract: Laboratory incubators are used to maintain and cultivate microbial and cell cultures. In
order to ensure suitable growing conditions and to avoid cell injuries and fast rise and settling times,
minimum overshoot and undershoot performance indexes should be considered in the controller
design for incubators. Therefore, it is important to build proper models to evaluate the performance
of the controllers before implementation. In this study, we propose an approach to build a model for
a laboratory incubator. In this approach, the incubator is considered a linear time-invariant single-
input, single-output system. Four different model structures, namely auto-regressive exogenous,
auto-regressive moving average exogenous, output error and Box—Jenkins, are applied for modeling
the system. The parameters of the model structures are estimated by using prediction error methods.
The performances of the model structures are evaluated in terms of mean squared error, mean
absolute error and goodness of fit. Additionally, residue analysis including auto-correlation and
cross-correlation plots is provided. Experiments are carried out in two scenarios. In the first scenario,
the identification dataset is collected from the unit-step response, while in the second scenario, it
is collected from the pseudorandom binary sequence response. The experimental study shows
that the Box-Jenkins model achieves an over 90% fit percentage for the first scenario and an over
95% fit percentage for the second scenario. Based on the experimental results, it is concluded that the
Box-Jenkins model can be used as a successful model for laboratory incubators.

Keywords: system identification; prediction error methods; laboratory incubator

1. Introduction

Laboratory incubators provide controlled-environment conditions for microorganisms.
Biological materials have specific temperature requirements for cultivation and growth
processes [1]. Despite the fact that incubators are insulated and enclosed, the material
loading processes can cause significant thermal disturbances in the incubator chambers.
This effect is called the door-opening effect, and the recovery from this effect is one of the
most challenging problems in the design of high-performance laboratory incubators [2—4].

System identification methods are used to construct mathematical models for dynamic
systems from collected input-output data [5]. These methods have been used in a wide va-
riety of research fields, from material science to biomedical engineering and neuroscience to
automatic control for linear and nonlinear systems, e.g., [6-13]. In [6], system identification
methods are used to obtain the behavior of the entire molten salt electrolysis process. In [7],
a sleep stage classification method is proposed. The method employs a system identification
model, which is the state-space model, to obtain a basic model giving the discrimination
features for the further classification stage. In [8,9], the identification problems in nonlinear
systems by using nonlinear system identification models are examined in detail. In [10],
the sample complexity of linear system identification using input-output data is analyzed.
In [11], the potential to successfully use nonlinear system identification for nonlinear neural
circuits is demonstrated. In [12], two model predictive control algorithms are compared to
each other, and it is shown that the algorithm employing the system identification method
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outperforms the other. In [13], an open-source system identification software package is
presented. The package includes system identification methods for input—output transfer
function models and state-space models.

Prediction error methods (PEM) are one of the most popular families of system iden-
tification methods in the community. They have been applied successfully in the context
of system modeling in the literature, e.g., [14-18]. In [14], a linear system identification
procedure based on a full Bayesian framework is proposed. The procedure is applied
for neural activity prediction and temperature prediction purposes. In [15], a study of
model identification for two electrical vehicle battery types is presented. The equivalent
circuit battery model is parameterized by PEM. In [16], a heat exchange system is pa-
rameterized through system identification. The task of parameter estimation for applied
model structures is made by using PEM. In [17], the development of a flight dynamics
model for an unmanned aerial vehicle is considered. System identification is applied to
actual flight data, and various models with different structures are examined. In [18], the
identification of a quadcopter autopilot system is presented. It is demonstrated that the
proposed method has the ability to capture the autopilot dynamics and predict the outputs
accurately. In [19], short-term room temperature models are obtained by using PEM. It is
shown that k-step-ahead prediction gives successful performance results.

The dynamics of systems can be modeled by using previous experiences and physical
knowledge that are derived from similar systems. To the best of the authors” knowledge, no
research has been found in the published literature to conduct the modeling of laboratory
incubators. Besides, the multi-layered structure of laboratory incubators makes it difficult
to perform mathematical modeling based on physical equations. Therefore, the studies
targeting the modeling of laboratory incubators using system identification methods will
make a significant contribution to the literature.

In this study, we aim to find a model for a laboratory incubator. We propose an
approach based on the system identification methods for modeling the incubator by using
the relationship between the input and output data. In this approach, the incubator is
considered a linear time-invariant single-input, single-output system. We apply four model
structures, namely auto-regressive exogenous, auto-regressive moving average exogenous,
output error and Box-Jenkins, for modeling the system. The parameters of the models are
estimated by using PEM. The performances of the model structures are evaluated in terms
of mean squared error, mean absolute error and goodness of fit.

The rest of the paper is organized as follows. In Section 2, the physical appearance of
the incubator and the technical specifications of the control system are provided. Addition-
ally, the data collected from the incubator and the theoretical background of the applied
methods are presented. Section 3 gives the experimental setup and the results. In Section 4,
we discuss the experimental results. Finally, we present the conclusions of the research in
Section 5.

2. Materials and Methods
2.1. Laboratory Incubator

In this study, a laboratory incubator (Ntive, Ankara, Turkey), which is shown in
Figure 1, was used. We modified the incubator for data acquisition by adding an external
DIN/EN 60751 [20] Class B Pt-100 temperature sensor and a 1/16 DIN standard single-loop
PID controller. The thermal sensitivity of the temperature sensor was 0.1 °C/37 °C, and the
PID controller had a serial communication interface, with 10 readings per second.

2.2. Data Collection

The data acquisition framework used in the study is shown in Figure 2. The system
was considered at steady-state when the data collection process was started. In order to
minimize the communication delay between the PID controller and the PC, we applied a
Serial to Ethernet converter. We collected the input—output data of the PID controller by
using the Modbus protocol. The control signal output of the PID controller was sent to the
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incubator by using the pulse-width modulation (PWM) technique. The period of the PWM
signal was set to 1 s, and the duty cycle was chosen as 0.1% of the period. The reading
sensitivity of the temperature sensor was configured to 0.1 °C.

(a) (b)

Figure 1. Laboratory incubator used in the study. (a) Front view with the closed door. (b) Interior

view of the incubator.

PID Controller
RSé32r<E2lrlf§:et RS232 I
e PWM  ADC
h{{gi‘;ﬁf ¢ Heaterl T Temperature
PC Incubator Chamber

Figure 2. Data acquisition framework.

Three separate datasets, identification dataset-1, identification dataset-2 and the ver-
ification dataset, were obtained by using the data acquisition framework within a 0.1 s
sampling time. Identification dataset-1 was collected from the unit-step response for
300 min, when the set and the hysteresis values were chosen as 75 °C and 40 °C, respec-
tively. Identification dataset-2 was collected from the pseudorandom binary sequence
(PRBS) response for 300 min. The verification dataset was generated from the PID tuning
process for 100 min. Figure 3 illustrates the input-output graphs for the identification and
verification data.

2.3. Data Preprocessing

There was a delay between the input and output samples of the datasets of about 60 s.
Therefore, first of all, the output data of the datasets was shifted by the amount of latency.
Then, all the data was normalized by using Equation (1) and scaled to the interval [0, 1].
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Figure 3. Input—output graphs for step response, PRBS signal and PID tuning process.

Xnorm = o—————
Xmax - Xmin

2.4. System Identification

A mathematical model is a description of the properties of a real system that is suit-
able for a certain purpose. System identification is an analytical process aiming to derive
mathematical models of dynamic systems for specific usage areas. System identification
methods are used to construct mathematical models for dynamic systems using the col-
lected input-output data from the actual system [5]. The classical system identification
cycle is shown in Figure 4. The tasks represented by the rectangular boxes are executed by
the computer, while the ovals are executed manually by the user [21].

A\
Prior

Knowledge

v

Experiment

Design

v

Data
Collection

v 3

Rev1se Data H Filter Data }—V Present Data

v
Revise Choose
Model Model
Model Model Calculation | | Validation

Structure Structure

A

Figure 4. Classical system identification cycle [21].
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System identification aims to find a model for a system with a finite number of numer-
ical values, or coefficients. Generally, all of the coefficients cannot be directly determined
from the physical mechanisms of the system’s behavior. Some coefficients should be
included in the mathematical model as unknown parameters of model structures.

2.5. Model Structures

The basic description of a linear system with additive disturbance can be represented
by Equation (2) and is shown in Figure 5.

y(#) = G(g)u(t) + H(q)e(t) 2

where y(t) € R and u(t) € R are the output and input signals, respectively, and e(t) is the
zero mean white noise signal. All the signals are scalar-valued functions, and t € Z is the
discrete-time sample index, G(q), is the transfer function for the linear system model, and
H(q) is the transfer function for the disturbance model. g and g~ ! represent the forward
and backward shift operators.

e(t)

l

H(g)

u(t)y—> G(g) ‘ y(t)

Figure 5. LTI system with an additive disturbance signal.

If we show the parameter vector as 6, then the model description for Equation (2) can
be rearranged, as in Equation (3):

y(t) = G(q,0)u(t) + H(q,0)e(t) )

A generalized parametric black box model structure is defined as in Equation (4) [21]

Alq,0)y(t) = u(t) + e(t) (4)

In this study, a laboratory incubator was considered a linear time-invariant (LTI)
single-input, single-output (SISO) system. We applied four different model structures,
ARX, ARMAX, OE and Box-Jenkins, for modeling the incubator. These structures are
summarized in the following subsections [21].

2.5.1. Auto-Regressive Exogenous (ARX) Model

The input—output relationship of a system can be described by using a linear difference
equation, as in Equation (5):

y() +ay(t—1) 4+ +apy(t —ng) =bu(t —1) + -+ byu(t —ny) +e(t)  (5)
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The linear difference equation, Equation (5), has autoregressive and exogenous parts.
A model structure having these two parts is called an ARX model and is represented in
Equation (6):
A(q)y(t) = B(q)u(t) +e(t) (6)
If the parameters in Equation (4) are written with the polynomial functions given in
Equations (7) and (8):
Alq) =1+ag '+ +apqg ™ 7)

B(q) =b1g '+ +bng ™ t)
then Equation (4) corresponds to Equation (3) with the use of Equation (9):

G(g,6) = ﬁ((‘;)) H(q,0) = Aiq) ©)

Therefore, the predictor for the system output can be written as the following equation,
Equation (10):
9(¢18) = B(q)u(t) +[1 - A(g)ly(t) (10)

2.5.2. Auto Regressive Moving Average Exogenous (ARMAX) Model

The ARMAX model includes a moving average part, which makes it more flexible
than the ARX model. The moving average part is added by describing the equation error
in Equation (4) as the moving average of white noise. The linear difference equation is
rearranged by using this moving average part, as in Equation (11):

y(t)—FEll]/(t—l) —|-"'+(1na]/(t—1’lu> = blu(t—l) + .-

11
+bp,u(t —np) +e(t) +cre(t —1) +--- +cpe(t —ne) (1)

A polynomial function for the new parameters is shown in Equation (12):
Clg)=1+cg '+ +eng ™ (12)

Therefore, the ARMAX model, including autoregressive, exogenous, and moving
average parts, is described in Equation (13):

Alq)y(t) = B(q)u(t) + C(q)e(t) (13)

Equation (13) corresponds to Equation (3) with the use of Equation (14):

G(g,0) = ff(?) H(q,6) = f\g 19)

where the parameter vector 0 is given by Equation (15):

0= [ar...anb...baycr...cn]” (15)

The predictor for the ARMAX model can be described by Equation (16):

glelt=1) = y(t) (16)
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2.5.3. Output Error (OE) Model

An OE model is generally used for problems that do not need to estimate the noise
model [17]. In the OE model structure, a linear difference equation between the input u ()
and the undisturbed output w(t) can be written as in Equation (17):

w(t)+f1w(t—1)+'-'+fnfw(f—”f) (17)
=bu(t—1)+ -+ byu(t —ny)

The output signal having the white measurement noise can be represented by Equation (18):
y(t) = w(t) +e(t) (18)

A polynomial function of F for the parameters is written as in Equation (19):
F(q)=1+fig '+ 4 faq ™ (19)
Then, the OE model can be written as in Equation (20):
y(t) = zsult) +e(t) (20)
The parameter vector 6 is arranged as in Equation (21):

ez[bl by...bu,fo fz...fnf]T (1)

The predictor for the OE model can be described by Equation (22):

gt £=1) = Z B 22)

2.5.4. Box—Jenkins (B]) Model

In the B] model, the system and noise are modeled separately [17]. The properties of the
output error in Equation (20) are described as an ARMA model, as shown in Equation (23):

y(t) = 2@y 1 €W i) @3

A polynomial function of D for the parameters is written as in Equation (24):
D(q) =1+ "+ +dng ™ (24)

The parameter vector 6 is arranged as in Equation (25):

T
ez[bl by...bn,fi fz...fnfcl...cncdl...dnd} (25)

The predictor for the B] model can be described by Equation (26):

glt[t=1) = <=5 y(t) (26)

2.6. Estimating the Parameter Vector (6)

Parameter estimation is the searching process for estimating the parameter vector 0
of the model structures to give the best model. In this study, we used the prediction error
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identification method (PEM) to estimate the parameter vector 6. If an input—output data of
the system is written as in Equation (27) [22].

zZN ={y(1), u(1), y(2), u2), ..., y(N), u(N)} (27)

The fitting criterion can be written as in Equation (28), which is the prediction error
between the actual output of the system and the predicted output of the model.

Vn(8) = Y (y(t) — (¢ ] 8))? (28)

™M=

t=1

Then, for the PEM, the estimate of 6 is defined by the minimization of Equation (28),
as shown in Equation (29)

Oy = Oy (zN ) - agganAinvN (9, ZN ) (29)

The minimization of (28) defines a nonlinear least squares (NLS) problem when the
relationship between the parameters and the predictions is nonlinear. Iterative search
methods and the gradient descent, Gauss—Newton, and Levenberg-Marquardt algorithms
can be used to solve this problem iteratively [21,23,24].

2.7. Performance Evaluation

The performances of the model structures are evaluated using three measures, which
are mean squared error (MSE), mean absolute error (MAE) and goodness of fit (G). The
definitions of these measures are given in Equations (30)—(32) [19,22,25].

Mean Squared Error (MSE):

1Y .
MSE = =Y (yi — ;) (30)
Ni:l
Mean Absolute Error (MAE):
1 N
MAE = =3 [yi = Jil (31)
Ni:l
Goodness of fit (G):
N NPV
G=(1- VB UV )09 (32)
VEN (-4 v)

where N represents dataset size, and y and f represent the actual and predicted outputs.

2.8. System Overview for Estimating the Parameter Vector (6)

The system overview is summarized in Figure 6. The parameter vector (0) is estimated
on the identification dataset by using the gradient descent and Gauss—Newton methods
in sequential, two-stage processes for four different model structures. The performances
of the model structures are evaluated on the verification dataset by using MSE, MAE and
G measures. The orders of the model structures are determined by using the well-known
grid search algorithm for the best prediction results.
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Figure 6. System overview for estimating the parameter vector (6).

3. Experiments
3.1. Experiment Setup

The experiments were made in C++ for the laboratory incubator. In the experiments,
four different model structures, ARX, ARMAX, OE and B]J, were used for modeling the
incubator. The laboratory incubator was considered an LTI SISO system.

In the experiments, two scenarios were carried out. In the first scenario, the training
dataset was collected from the step response of the system while it was collected from the
PRBS response of the system for the second scenario.

The model order selection for all the model structures in both scenarios was made
by using the well-known grid search algorithm. The orders of polynomials in the model
structures were selected by performing a grid search on the intervals [1,10]. The best orders
of the polynomials for the model structures were determined on the basis of the goodness
of fit (G) measure.

The parameter vector (6) of the model structures was estimated by using PEM for
both scenarios. The minimization of Vi (#) was made numerically in sequential two-stage
processes. In the first stage, the parameters were estimated by using the gradient-descent
method. In the second stage, the values of the parameters were used as initial values for
the Gauss—Newton method, and the final values for the parameters were estimated [24].

The responses of the model structures having the estimated parameter vectors (6) were
computed for the verification dataset, which was collected from the PID-tuning process of
the laboratory incubator. In the experiments, k-step-ahead prediction responses for 2, 10
and 20 steps were computed. Additionally, the simulation response of the model structure
was provided, which was the infinite horizon prediction response, in other words, the
response of an open-loop simulation model.

The performances of the model structures were examined and compared to each other
in terms of the MSE, MAE, G measures and residue correlations.

3.2. Experimental Results

The experimental results for two scenarios in the study are summarized in the follow-
ing subsections.
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3.2.1. Results for the ARX Model

The model order of the ARX model was determined as n, = 2 and n; = 2 for the
first scenario, and the parameter vector 6 of ARX [2 2] was estimated on the identification

dataset-1. The polynomials for the ARX model in the first scenario were obtained as in
Equations (33) and (34).

A(q) =1—0.830947 " —0.168837 2, (33)

B(q) = 4.02159 x 10>~ ! — 0.168839 2, (34)

For the second scenario, the model order of the ARX model was also determined
as n, = 2 and n, = 2, and the parameter vector § of ARX [2 2] was estimated on the
identification dataset-2. The polynomials for the ARX model in the second scenario were
obtained as in Equations (35) and (36).

A(q) =1—1.98769 1 +0.98687 2, (35)

B(q) = 4474 x 10~5g~1 —3.785%10 57 2, (36)
q q q

In order to make a performance evaluation of the model, the same verification dataset
was used in both scenarios. The 2-step-, 10-step- and 20-step-ahead prediction and simula-
tion responses of the model were computed for the verification dataset. The responses for
both scenarios were compared with the actual output of the incubator and are visualized in
Figure 7 for the first scenario and in Figure 8 for the second scenario.

80
70 - /?l {INN
o i
< 60 a
" 7
2 F
3 50 7
g' //
g l_;:f —— Incubator
401 3 ARX k=2
M ARX k=10
304 /A I R — ARX k=20
2/ ARX Simulation
0 16 33 50 66 83 100

Time (minutes)

Figure 7. Comparison of the responses for ARX [2 2] in the first scenario.

80

™
70 /
o /
— 60 - 7
[ y
/
501 /.
g /
@ / —— Incubator
40 1 / ‘ ARX k=2
] ARX k=10
30 4 / ARX k=20
Y ARX Simulation
0 16 33 50 66 83 100

Time (minutes)

Figure 8. Comparison of the responses for ARX [2 2] in the second scenario.
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In order to analyze the results of the model in more detail, the MSE, MAE and G
measures were computed for k-step predictions (k = 2, 10 and 20) and simulation. The
results of both scenarios for the model are represented in Table 1.

Table 1. ARX [2 2] results for the first and the second scenarios.

G MSE MAE
Validation Criteria
Step PRBS Step PRBS Step PRBS
Prediction k: 2 95.6526 98.7377 5.47874 x 1075 5.0382 x 107 0.00494216 0.0016
Prediction k: 10 86.1103 94.1006 0.00055925 0.00011005 0.0175226 0.0074
Prediction k: 20 80.7099 88.3159 0.00107867 0.00043167 0.0244397 0.0145
Simulation 77.2656 85.1858 0.00149826 0.00069394 0.0289541 0.0211

Additionally, the residue correlations, auto-correlation and cross-correlation for the
model are represented in Figures 9 and 10 for the first and the second scenarios, respectively.

Residue Correlation
AutoCorr XCor (Input [%])

Amplitude
e@Output [°C]

h 525 20 15 ‘10 ‘5 0 5 10 15 20 25 -25 20 ‘15 10 5 0 5 10 15 2‘0 25
Lag
Figure 9. Residue correlations for ARX [2 2] in the first scenario.

Residue Correlation
AutoCorr XCorr (Input [%])

Amplitude
e@Output [°C]

—08 L L " L .
-25 -20 -15 -10 -5 0 5 10 15 20 25 -26 -20 -15 -10 -5 0 5 10 15 20 25
Lag

Figure 10. Residue correlations for ARX [2 2] in the second scenario.

3.2.2. Results for the ARMAX Model

For the first scenario, the orders of the polynomials in the ARMAX model were
determined as n, = 2, n, = 2 and n, = 2. The parameter vector § of ARMAX [2 2 2] was
estimated on the identification dataset-1, and the polynomials for ARMAX model for the
first scenario were obtained as in Equations (37)—(39).

A(q) =1-1.99366q " —0.9936637 2, (37)
B(q) = —6.32413 x 107°¢~" — 6.62595 x 107242, (38)
C(q) =1—1325387 1 —0.3289719 2, (39)

The orders of polynomials in the ARMAX model were also determined as n, = 2,
ny = 2 and n. = 2 for the second scenario, and the parameter vector 6 of ARMAX [22 2]
was estimated on the identification dataset-2. The polynomials for the ARMAX model in
the second scenario were obtained as in Equations (40)-(42).

A(g) =1—1.9947q7" + 099474772, (40)

B(q) = —3.7203 x 10 °¢ " +3.9892 x 10 %72, (41)
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C(q) =1—1.03469"" + 0.0844992, (42)

The performance evaluation of the model was made by using the same verification
dataset for both scenarios. The 2-step-, 10-step- and 20-step-ahead prediction and simula-
tion responses of the ARMAX [2 2 2] model were computed. The responses were compared
with the actual output of the incubator and are visualized in Figures 11 and 12 for the first
and the second scenarios, respectively.

80 1 A
7\
70 4
]
< 60 A
g
2
o
o 504
£
] Incubator
40 4
ARMAX k=2
ARMAX k=10
30 4 ARMAX k=20
ARMAX Simulation

0 16 33 50 66 83 100
Time (minutes)

Figure 11. Comparison of the responses for ARMAX [2 2 2] in the first scenario.

80
70
—~ /
(&) /:
< 60 A /:
o /
= J
5 50 /
:
@ F —— Incubator
401 ff ARMAX k=2
/ ARMAX k=10
30 !/ ARMAX k=20
J ARMAX Simulation
16 33 50 66 83 100

Time (minutes)

Figure 12. Comparison of the responses for ARMAX [2 2 2] in the second scenario.

MSE, MAE and G measures for the ARMAX [2 2 2] model were computed for k-step

predictions (k = 2, 10 and 20) and simulation. The results of both scenarios for the model
are represented in Table 2.

Table 2. ARMAX [2 2 2] results for the first and second scenarios.

G MSE MAE
Validation Criteria
Step PRBS Step PRBS Step PRBS
Prediction k: 2 94.9755 98.5564 7.3182 x 107° 6.638 x 107° 0.00645041 0.0020
Prediction k: 10 87.8214 95.2388 0.000429946 7.2225 x 1075 0.0167575 0.0065
Prediction k: 20 86.247 92.2919 0.000548299 0.00018899 0.0189746 0.0105
Simulation 86.1957 90.5396 0.000552393 0.00028334 0.0191662 0.0128

Residue correlations for the model are provided in Figures 13 and 14 for both scenarios.
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Residue Correlation
AutaCorr XCorr (Input [%])

Amplitude
e@Output [°C]

-05 n ]
-25 20 -15 -10 -5 0 5 10 15 20 25 -25 20 -15 -10 -5 0 5 10 15 20 25
Lag

Figure 13. Residue correlations for ARMAX [2 2 2] in the first scenario.

Residue Correlation
AutoCorr XCorr (Input [%)])

Amplitude
e@Output [°C]

25 20 15 10 5 0 5 10 15 20 25 -25 20 15 10 5 0 5 10 15 20 25
Lag

Figure 14. Residue correlations for ARMAX [2 2 2] in the second scenario.

3.2.3. Results for the Output-Error Model

The order of polynomials in the OE model was determined as 1, = 2 and ny = 2 for
the first scenario. The parameter vector 6 of OE [2 2] was estimated on the identification
dataset-1, and the polynomials for the model for the first scenario were obtained as in
Equations (43) and (44).

B(q) = —5.54454 x 1075371 4 5.89843 x 107°2, (43)

F(q) =1-1.992529" ! +0.99252q72, (44)

For the second scenario, the model order of the OE model was determined as n;, = 2
and ny = 2, and the parameter vector 6 of OE [2 2] was estimated on the identification
dataset-2. The polynomials for the model in the second scenario were obtained as in
Equations (45) and (46).

B(q) = —3.086 x 10757 ' +3.409 x 10592, (45)

F(q) =1 —1.993¢g" 4 0.992942, (46)

The same verification dataset was used for both scenarios. Because the OE model is a
simulation model, only the simulation response of the OE [2 2] model was compared with
the actual output of the incubator, as visualized in Figures 15 and 16 for the first and second
scenarios, respectively. It can be seen that the error between the simulation response and
the actual output is very sensitive to the changes in input because the OE model does not
use the past outputs.

MSE, MAE and G measures for the model were computed for the simulation response.
The results of both scenarios are shown in Table 3.

Table 3. Output-error [2 2] results for the first and second scenarios.

G MSE MAE
Step PRBS Step PRBS Step PRBS
Simulation 83.0517  84.0369  0.000856901 0.00080505 0.0240122  0.0235

Validation Criteria
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Figure 15. Comparison of the responses for OE [2 2] in the first scenario.
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Figure 16. Comparison of the responses for OE [2 2] in the second scenario.
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Residue correlations for the model are represented in Figure 17, and in Figure 18 for

scenarios.
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Figure 17. Residue correlations for OE [2 2] in the first scenario.
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Figure 18. Residue correlations for OE [2 2] in the second scenario.
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3.2.4. Results for the Box—Jenkins Model

The order of the B] model was determined as n, = 2, n. = 2, n; = 2and n =2
for the first scenario. The parameter vector ¢ of B] [2 2 2 2] was estimated on the identi-
fication dataset-1. The polynomials of the B] model for this scenario were obtained as in
Equations (47)—(50).

B(q) = —5.36891 x 10791 — 5.66662 x 107772, (47)
q q q

C(q) =1—0.6637587 ' —0.332299 2, (48)

D(q) = 1—0.00392447 " — 0.9955529 2, (49)

F(q) =1—1.993769~" +0.993759 2, (50)

For the second scenario, the order for the model was determined as n;, = 2, n, = 2,
ng = 2and ny = 2. The parameter vector 6 of BJ [22 2 2] was estimated on the identification
dataset-2. The polynomials for the B] model were obtained as in Equations (51)—(54).

B(q) = 0.00013337~! — 0.00013129 2, (51)
C(q) =1+0.13087 ! — 0.8659 2, (52)
D(q) =1 - 129651 +0.29675 2, (53)
F(g) =1-1.99q " + 09957772, (54)

The 2-step-, 10-step- and 20-step-ahead prediction and simulation responses of the
BJ [2 2 2 2] model for both scenarios were computed by using the verification dataset.
The responses were compared with the actual output of the incubator and visualized in
Figure 19, and in Figure 20 for the first and the second scenarios, respectively.

80 1 7 *\\
70 - ":‘T.\\
< 60 1 R
g / T
2 /
M
5 50 /
:
K| Incubator
40
B) k=2
/i B) k=10
30 - 7 B) k=20
J B) Simulation
0 16 33 50 66 83 100

Time (minutes)

Figure 19. Comparison of the responses for BJ [2 2 2 2] in the first scenario.

MSE, MAE and G measures were computed for k-step predictions (k = 2, 10 and 20)
and simulation. The results for the model are represented in Table 4.

Table 4. Box—Jenkins [2 2 2 2] results for the first and second scenarios.

G MSE MAE
Validation Criteria
Step PRBS Step PRBS Step PRBS
Prediction k: 2 96.2799 99.4335 401182 x 107° 9.1998 x 10~7 0.0041233 0.0007
Prediction k: 10 91.4721 98.1200 0.000210816 1.0131 x 1075 0.0108614 0.0021
Prediction k: 20 90.4577 96.4682 0.000263956 3.5756 x 107> 0.0124288 0.0040
Simulation 90.3288 95.0771 0.000271132 7.0355 x 107> 0.0123917 0.0074
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Figure 20. Comparison of the responses for BJ [2 2 2 2] in the second scenario.

Residue correlations for the model are shown in Figure 21, and in Figure 22 for both
scenarios.

Residue Correlation
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Figure 21. Residue correlations for BJ [2 2 2 2] in the first scenario.
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Figure 22. Residue correlations for BJ [2 2 2 2] in the second scenario.

4. Discussions

In order to make a comparative analysis of the performances of the models determined
in the study, the results for both scenarios are represented in one table, as shown in Table 5.

It can be seen clearly from Table 5 that the best responses for all the k-step-ahead
predictions and the simulation responses are achieved by the B] model for both scenarios.

Additionally, we provide G vs. prediction horizon graphs in Figure 23, and in Figure 24
for both scenarios, to make visual interpretation. Due to the fact that the simulation
response corresponds to an infinite horizon prediction, it is placed to the far right on the
prediction horizon axis of the figures.
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Table 5. Comparison of the models in the study.
G MSE MAE
Validation Criteria
Step PRBS Step PRBS Step PRBS
ARX[22]
Prediction k: 2 95.6526 98.7377 5.47874 x 107° 5.0382 x 107®  0.00494216 0.0016
Prediction k: 10 86.1103 94.1006 0.00055925 0.00011005 0.0175226 0.0074
Prediction k: 20 80.7099 88.3159 0.00107867 0.00043167 0.0244397 0.0145
Simulation 77.2656 85.1858 0.00149826 0.00069394 0.0289541 0.0211
ARMAX [222]
Prediction k: 2 94.9755 98.5564 7.3182 x 107° 6.638 x 107° 0.00645041 0.0020
Prediction k: 10 87.8214 95.2388 0.000429946 7.2225 x 107° 0.0167575 0.0065
Prediction k: 20 86.247 92.2919 0.000548299 0.00018899 0.0189746 0.0105
Simulation 86.1957 90.5396 0.000552393 0.00028334 0.0191662 0.0128
OE[22]
Simulation 83.0517 84.0369 0.000856901 0.00080505 0.0240122 0.0235
BJ[2222]

Prediction k: 2 96.2799 * 99.4335 4.01182 x 10—° 9.1998 X 107  0.0041233 0.0007
Prediction k: 10 91.4721 98.1200 0.000210816 1.0131 X 10~5  0.0108614 0.0021
Prediction k: 20 90.4577 96.4682 0.000263956 3.5756 X 1075 0.0124288 0.0040
Simulation 90.3288 95.0771 0.000271132 7.0355 X 1075 0.0123917 0.0074

* The best values in terms of the three measures among the models are marked in bold font.
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Figure 23. G vs. prediction horizon for the first scenario.
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Figure 24. G vs. prediction horizon for the second scenario.

From Figure 23, for the first scenario, the following can be concluded: ARX has a
better G value than ARMAX for k = 2, while ARMAX has better G values for k = 10 and
20 step-ahead-predictions and simulation. Although the G value of OE for simulation is
greater than ARX, it is not a suitable model for the incubators used in practical applications.
This is because OE has high deviations between the simulation and actual output, caused
by changes in the input signal. BJ has the best G values for all the k-step-ahead predictions,
including simulation.

From Figure 24, for the second scenario, the following can be concluded: ARX, ARMAX
and BJ have similar G values for k = 2, while ARMAX has better G values than ARX for
k =10 and 20 step-ahead-predictions and simulation. BJ has the best G values for all
responses, and the worst G value for simulation belongs to OE.

Residue analysis for both scenarios represents that all the models except OE have a
good confidence level. The cross-correlation plots of the ARX, ARMAX and BJ models
show that the cross-correlations between the residuals and input are within the confidence
region, which is set to 99% for the study:.
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5. Conclusions

In this study, we propose an approach based on system identification methods for
modeling a laboratory incubator by using input-output data. We consider the incubator an
LTI SISO system. We apply four model structures, which are ARX, ARMAX, OE and B]J, for
modeling the system. The parameters of these models are estimated on the identification
datasets obtained in two scenarios by using PEM. The performances of the model structures
are evaluated on the verification dataset in terms of mean squared error, mean absolute
error and goodness of fit. Additionally, residue analysis including auto-correlation and
cross-correlation plots is provided.

The experimental results show that the B] model achieves the best responses among
the models in terms of MSE, MAE and G measures for both scenarios. As mentioned,
the BJ model has an over 90% fit percentage for the first scenario and an over 95% fit
percentage for the second scenario for all the k-step-ahead predictions including simulation.
In addition, residue analysis shows that the B] model has a remarkable confidence level for
both scenarios.

Based on the results of this study, it can be concluded that the B] model determined
in the study can be used as a successful model for laboratory incubators with similar
configurations. In addition, it can also be used as a simulation model in the design phase
of the control systems of the laboratory incubators.

The future research direction of this study is to use the B] model in the study as a
simulation model for the control system design of the laboratory incubators having wider
temperature scales.
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