
Citation: Liu, S.; Zhong, H.; Li, Y.; Liu,

K. Fast and Highly Accurate Zonal

Wavefront Reconstruction from

Multi-Directional Slope and

Curvature Information Using

Subregion Cancelation. Appl. Sci.

2024, 14, 3476. https://doi.org/

10.3390/app14083476

Received: 9 March 2024

Revised: 8 April 2024

Accepted: 10 April 2024

Published: 20 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Fast and Highly Accurate Zonal Wavefront Reconstruction from
Multi-Directional Slope and Curvature Information Using
Subregion Cancelation
Shuhao Liu , Hui Zhong, Yanqiu Li and Ke Liu *

Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China,
School of Optics and Photonics, Beijing Institute of Technology, 5 South Zhongguancun Street,
Beijing 100081, China
* Correspondence: liuke@bit.edu.cn

Abstract: The wavefront reconstruction is a crucial step in determining the performance of wavefront
detection instruments. The wavefront reconstruction algorithm is primarily evaluated in three dimen-
sions: accuracy, speed, and noise immunity. In this paper, we propose a hybrid zonal reconstruction
algorithm that introduces slope and curvature information in the diagonal, anti-diagonal, horizontal,
and vertical directions by dividing the neighbor sampling points into subregions in groups of four.
By canceling the same parameters in integration equations, an algorithm using multi-directional
slope–curvature information is achieved with only two sets of integration equations in each subre-
gion, reducing the processing time. Simulation experiments show that the relative root-mean-square
reconstruction error of this algorithm is improved by about 4 orders of magnitude compared with
existing algorithms that use multi-directional slope information or slope–curvature information alone.
Compared with the hybrid multi-directional slope–curvature algorithm, the proposed algorithm can
reduce computation time by about 50% as well as provide better noise immunity and reconstruction
accuracy. Finally, the validity of the proposed algorithm is verified by the null test experiment.

Keywords: wavefront reconstruction; wavefront sensor; truncation error; least-squares method

1. Introduction

The Shack–Hartmann wavefront sensor is one of the most widely used wavefront
sensors because of its great energy utilization, fast real-time sensing, and strong anti-noise
ability [1]. It is widely employed in the detection of human eye aberrations [2,3], astronom-
ical observation [4,5], laser beam purification [6,7], optical element identification [8,9], and
other fields. To enhance detection performance, researchers have modified the instrument
structure to introduce more information and proposed slope and curvature hybrid sensors,
which have significant research value. The selection of the reconstruction algorithm is of
great importance to the performance of wavefront sensors in various application areas. To
meet the practical engineering requirements, the reconstruction time should be shortened
as much as possible while satisfying the reconstruction accuracy requirements and ensuring
good noise resistance to adapt to various measurement environments [10–17].

Researchers have modified the classic zonal reconstruction method to improve the
performance of the reconstruction method even further. On the one hand, a breakthrough
point may be the discovery of a novel difference operator creation approach using mathe-
matical methods. For example, Li et al. [18] employed the one-dimensional Taylor’s law
to integrate the relationship among wavefront value, slope, and curvature, with smaller
truncation errors. However, the arrangement of sample points affects reconstruction accu-
racy and noise immunity. Viegers et al. [19] enhanced the approximation accuracy of the
difference operator in the interpolation process by inserting a spline function. Nonetheless,
this approach is solved using an iterative method that requires a long computing time
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and shows relatively poor noise immunity. On the other hand, increasing the amount
of measurement information in the reconstruction algorithm can improve reconstruction
accuracy and noise immunity. For example, Barwick et al. [20] proposed the least-squares
reconstruction method, which utilizes slope, Laplacian curvature, and torsional curvature
information comprehensively. This method effectively improves the noise resistance, and
the calculation speed is relatively fast, but the reconstruction accuracy could be improved
further. To obtain additional data for reconstruction, Pathak et al. [21] incorporated the
diagonal phase and slope into the zonal reconstruction. Based on the work of Li et al. [18],
Zhong et al. [22] modified the method using the difference operator by introducing more
information into the reconstruction process, which could not only increase the accuracy of
the reconstruction algorithm but also improved its noise immunity. However, the algorithm
increased the reconstruction time due to the addition of a new set of integral equations, and
the error of the diagonal integration equation increased due to the increase in sampling
point interval, both of which have the potential for further improvement.

As a result, to better meet the three criteria of the reconstruction algorithm indicated
above, this paper proposes a fast slope–curvature hybrid reconstruction algorithm. By
dividing the surroundings of the reconstruction point into multiple subregions, an integra-
tion equation with the minimum truncation error can be constructed for each subregion.
This can be achieved using the Taylor expansion method. The integration equations of adja-
cent subregions are pairwise canceled to introduce first-order and second-order derivative
information in the horizontal, vertical, diagonal, and anti-diagonal directions. Through the
cancelation, more wavefront reconstruction information can be introduced while ensuring
that the computational complexity remains unchanged, thereby improving the accuracy
of wavefront estimation. By following the above steps, the fast slope–curvature hybrid
reconstruction algorithm based on the subregion method proposed in this paper not only
reduces the reconstruction time but also enhances the accuracy and noise resistance of
wavefront estimation. This means that higher-order aberrations can be measured more
accurately, enabling more precise optical measurement or image reconstruction.

The remaining parts of this paper are arranged as follows. Section 2 provides a
detailed introduction to the Southwell operator, the geometric model, and the fast slope–
curvature hybrid reconstruction algorithm based on the subregion method process. It also
includes mathematical derivations of the formulas involved in the algorithm. Furthermore,
error analysis is conducted to theoretically demonstrate the advantages of the proposed
algorithm by introducing multiple pieces of information through subregion cancelation. In
Section 3, the specific performance of the algorithm is simulated and compared with the
currently prevailing hybrid reconstruction algorithms. The results are then discussed. In
Section 4, the null test experiment of the four-hole amplitude-modulated wavefront sensor
is completed, and the effectiveness of the proposed algorithm is verified. Finally, Section 5
provides a summary of the whole paper.

2. Principle of the Proposed Algorithm and Analysis of Its Residual Errors
2.1. Principle and Process of the Proposed Algorithm

The zonal method represents the recovered wavefront through a linear combination of
gradient information near each sampling point, and the least-squares solution is obtained
by solving a linear system of equations. Take the most widely used Southwell model as an
example, shown in Figure 1.

Using Newtonian interpolation integrals at two adjacent points, two sets of integration
equations in the horizontal and vertical directions are obtained as follows:

W2 − W1 = h (
S x

1 +S x
2 )

2 ,

W3 − W1 = h (
S y

1 +S y
3 )

2 ,

(1)
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where Wn represents the wavefront value at position n of the sampling point, h is the
sampling interval, and Sn

x and Sn
y represent the slope values of the wavefront in the x and

y directions.

Figure 1. Geometric schematic of the Southwell model.

To further introduce more reconstruction information and thus improve the reconstruc-
tion package accuracy, Zhong et al. [22] used Taylor expansion to introduce second-order
curvature information based on the Southwell model, which only utilizes first-order gra-
dient information in the horizontal and vertical directions, to improve the reconstruction
accuracy. Meanwhile, sampling points in the diagonal and anti-diagonal directions are also
introduced to improve the reconstruction noise immunity.

As shown in Figure 2, the XY coordinate system is rotated by 45° to obtain the
integration equations in the diagonal and anti-diagonal directions using a typical nine-
sample point as an example as follows:

W5 − W0 = h × (S5
x+S0

x)
2 + h2 × (C5

xx+C0
xx)

12 ,
W7 − W0 = h × (S7

y+S0
y)

2 + h2 × (C7
yy+C0

yy)
12 ,

W3 − W0 =
√

2h × (S3
++S0

+)
2 + 2h2 × (C3

++C0
+)

12 ,

W8 − W0 =
√

2h × (S8
−+S0

−)
2 + 2h2 × (C3

−+C0
−)

12 ,

(2)

where

Sn
+ = (Sx

n+Sn
y)√

2
,

Sn
− = (Sx

n−Sn
y)√

2
,

Cn
+ = Cxx

n
2 + Cxy

n + Cyy
n
2 ,

Cn
− = Cxx

n
2 − Cxy

n + Cyy
n
2 ,

(3)

Cn
xx represents the curvature in the x direction, Cn

yy represents the curvature in the y
direction, and Cn

xy represents the twist curvature term at position n of the sampling
point. The first two equations in Equation (2) represent the reconfiguration relationships
in the horizontal and vertical directions, and the second two equations represent the
reconfiguration relationships in the diagonal and anti-diagonal directions.

By comparing Equations (1) and (2), we can see that the algorithm increases the number
of integration equations compared to the traditional Southwell method, thus increasing the
number of operations and computation time. The integration equations in the diagonal and
anti-diagonal directions improve the noise immunity but increase the sampling interval,
which affects the reconstruction accuracy.

To solve the above problems, based on the above two models, this paper proposes
a new way of constructing the difference operator. By dividing the sampling area into
subregions in groups of four points, the first- and second-order derivative information
in the diagonal and antagonistic directions is introduced in the integration equations by
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canceling the same parameters, thus shortening the sampling interval in the reconstruction
process in the diagonal and antagonistic directions, as shown in Figure 3.

Figure 2. Geometric schematic of the hybrid wavefront reconstruction algorithm using multi-
directional slope and curvature information.

Figure 3. Geometric schematic of proposed algorithm.

Firstly, a Taylor expansion is used in the horizontal and vertical directions in the di-
vided subregions to obtain a relationship between the wavefront with minimum truncation
error and the first- and second-order derivatives of the sampling points, as derived below.

AW1 + BW2 = h × (ES1 + FS2) + h2 × (GC1 + HC2), (4)

where Wn represents the estimated wavefront at the sample location, Sn represents the
first-order derivative at location n along the adjacent sampling direction, Cn represents
the second-order derivative at location n along the adjacent sampling direction, expands
both sides of Equation (4) at the same time at the sample midpoint Taylor location, and lets
the coefficients of the same terms corresponding to both sides of the equation be equal to
solve for the following:

W2 − W1 =
h
2
× (S1 + S2) +

h2

12
× (C1 − C2), (5)

Secondly, to introduce information on sampled points in the diagonal and anti-
diagonal directions, four sets of reconstruction relations are obtained in turn using
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Equation (5) within the subregions consisting of the four points divided as described
in Figure 3.

Wi,j+1 − Wi,j =
h
2

(
Sx

i,j+1 + Sx
i,j

)
+ h2

24

(
Cxx

i,j − Cxx
i,j+1

)
,

Wi+1,j+1 − Wi+1,j =
h
2

(
Sx

i+1,j+1 + Sx
i+1,j

)
+ h2

12

(
Cxx

i+1,j − Cxx
i+1,j+1

)
,

Wi+1,j − Wi,j =
h
2

(
Sy

i+1,j + Sy
i,j

)
+ h2

12

(
Cyy

i,j − Cyy
i+1,j

)
,

Wi+1,j+1 − Wi,j+1 = h
2

(
Sy

i+1,j+1 + Sy
i,j+1

)
+ h2

12

(
Cyy

i,j+1 − Cyy
i+1,j+1

)
,

(6)

where i represents the row position of the sampled point, and j represents the column
position of the sampled point. Add the four equations in Equation (6) and divide by two to
obtain the first equation in Equation (7). Add the first and third equations in Equation (6)
and subtract the second and fourth equations and divide by 2 to obtain the second equation
in Equation (7).

Wi+1,j+1 − Wi,j =
h
4


Sx

i,j+1 + Sx
i,j

+Sx
i+1,j+1 + Sx

i+1,j
+Sy

i+1,j + Sy
i,j

+Sy
i+1,j+1 + Sy

i,j+1

+ h2

24


Cx

i,j − Cx
i,j+1

+Cx
i+1,j − Cxx

i+1,j+1
+Cy

i,j+1 − Cy
i+1,j+1

+Cy
i,j − Cy

i+1,j

,

Wi,j+1 − Wi+1,j =
h
4


Sx

i,j+1 + Sx
i,j

+Sx
i+1,j+1 + Sx

i+1,j
−Sy

i+1,j − Sy
i,j

−Sy
i+1,j+1 − Sy

i,j+1

+ h2

24


Cx

i,j − Cx
i,j+1

+Cx
i+1,j − Cx

i+1,j+1
−Cy

i,j+1 + Cy
i+1,j+1

−Cy
i,j + Cy

i+1,j

,

(7)

Equation (7) is the newly constructed difference operator in each subregion. By com-
paring with Equation (2), it can be seen that the algorithm proposed in this paper introduces
sampling information in four directions using only two sets of equations, reducing the
computational effort while ensuring the introduction of the same amount of information.

After obtaining the newly reconstructed difference operator, Equation (7) is extended
to all sampling points and, written in the form of a matrix, yields

UW = V, (8)

where U is the coefficient matrix, W is the wavefront matrix, and V is the slope and
curvature matrix in the form of

U =



A1 A2
A1 A2

. . . . . .
A1 A2

B1 B2
B1 B2

· · · · · ·
B1 B2


2(N−1)×N

A2 = −B1 =
[

O IN−1
]
,

B2 = −A1 =
[

IN−1 O
]
,

W =
[

W1,1 W2,1 . . . WN,1 W1,2 . . . WN,2 . . . W1,N . . . WN,N
]T
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V =



h
4


Sx

1,1 + Sx
1,2

+Sx
2,1 + Sx

2,2
+Sy

1,1 + Sy
1,2

+Sy
2,1 + Sy

2,2

+ h2

24


Cxx

1,1 − Cxx
1,2

+Cxx
2,1 − Cxx

2,2
+Cyy

1,2 − Cyy
2,2

+Cyy
1,1 − Cyy

2,1


...

h
4


Sx

N,1 + Sx
N,2

+Sx
N+1,1 + Sx

N+1,2
+Sy

N,1 + Sy
N,2

+Sy
N+1,1 + Sy

N+1,2

+ h2

24


Cxx

N,1 − Cxx
N,2

+Cxx
N+1,1 − Cxx

N+1,2
+Cyy

N,2 − Cyy
N+1,2

+Cyy
N,1 − Cyy

N+1,1


...

h
4


Sx

1,N + Sx
1,N+1

+Sx
2,N + Sx

2,N+1
+Sy

1,N + Sy
1,N+1

+Sy
2,N + Sy

2,N+1

+ h2

24


Cxx

1,N − Cxx
1,N+1

+Cxx
2,N − Cxx

2,N+1
+Cyy

1,N+1 − Cyy
2,N+1

+Cyy
1,N − Cyy

2,N


...

h
4


Sx

N,N + Sx
N,N+1

+Sx
N+1,N + Sx

N+1,N+1
+Sy

N,N + Sy
N,N+1

+Sy
N+1,N + Sy

N+1,N+1

+ h2

24


Cxx

N,N − Cxx
N,N+1

+Cxx
N+1,N − Cxx

N+1,N+1
+Cyy

N,N+1 − Cyy
N+1,N+1

+Cyy
N,N − Cyy

N+1,N


h
4


Sx

1,1 + Sx
1,2

+Sx
2,1 + Sx

2,2
−Sy

1,1 − Sy
1,2

−Sy
2,1 − Sy

2,2

+ h2

24


Cxx

1,1 − Cxx
1,2

+Cxx
2,1 − Cxx

2,2
−Cyy

1,2 + Cyy
2,2

−Cyy
1,1 + Cyy

2,1


...

h
4


Sx

N,1 + Sx
N,2

+Sx
N+1,1 + Sx

N+1,2
−Sy

N,1 − Sy
N,2

−Sy
N+1,1 − Sy

N+1,2

+ h2

24


Cxx

N,1 − Cxx
N,2

+Cxx
N+1,1 − Cxx

N+1,2
−Cyy

N,2 + Cyy
N+1,2

−Cyy
N,1 + Cyy

N+1,1


...

h
4


Sx

1,N + Sx
1,N+1

+Sx
2,N + Sx

2,N+1
−Sy

1,N − Sy
1,N+1

−Sy
2,N − Sy

2,N+1

+ h2

24


Cxx

1,N − Cxx
1,N+1

+Cxx
2,N − Cxx

2,N+1
−Cyy

1,N+1 + Cyy
2,N+1

−Cyy
1,N + Cyy

2,N


...

h
4


Sx

N,N + Sx
N,N+1

+Sx
N+1,N + Sx

N+1,N+1
−Sy

N,N − Sy
N,N+1

−Sy
N+1,N − Sy

N+1,N+1

+ h2

24


Cxx

N,N − Cxx
N,N+1

+Cxx
N+1,N − Cxx

N+1,N+1
−Cyy

N,N+1 + Cyy
N+1,N+1

−Cyy
N,N + Cyy

N+1,N





(9)

where N is the number of points sampled per side, O is the 0 matrix, and I is the unit matrix.
The wavefront values for the super definite linear equation, using least-squares estimation
to solve the above equation, are as follows:

W = (UTU+)UTV. (10)

2.2. Analysis for the Error of the Algorithm

In this section, the Taylor expansion residue term of the proposed difference operator
is approximated theoretically to compare the error magnitude of the proposed algorithm in
this paper with the hybrid slope–curvature reconstruction algorithm proposed by Zhong
et al. [22]. It follows from Taylor’s median theorem that, if a function f has derivatives of
order n + 1 in the neighborhood of f (x), then, for any x belonging to that neighborhood,
we have
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f (x) = f (x0) + f (1)(x0)(x − x0) +
f (2)(x0)

2!
(x − x0)

2 + . . . +
f (n)(x0)

n!
(x − x0)

n + Rn(x), (11)

where Rn is the expansion residual error, which is obtained by Lagrange residual term
expansion as follows:

Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x − x0)

n+1, (12)

Here, ξ is a value between x and x0.
Figure 4 shows the Taylor expansions on both sides of the equation for the recon-

structed difference operator using the Lagrange residue term form for the methods in this
paper and those produced by Zhong et al., respectively, with Zhong et al.’s x0 being chosen
to expand at the midpoint of the diagonal position. The value of x − x0 is therefore

√
2h
2 .

The error brought into Equation (2) can be expressed as

Re1 = h5(
W(5)(ξ)×

√
2

5

5! × 24 − W(4)(ξ)×
√

2
5

4! × 24 +
W(3)(ξ)×

√
2

5

3 × 3! × 24 ), (13)

where Wn is the nth-order derivative of the wavefront. Similarly, the method x0 proposed
in this paper is chosen to expand at the midpoint of the horizontal and vertical positions so
that the value of x − x0 is h

2 with the following error of the form:

Re2 = 2h5(
W(5)(ξ)

5! × 24 − W(4)(ξ)

4! × 24 +
W(3)(ξ)

3 × 3! × 24 ). (14)

By comparing the two equations, it can be seen that the method proposed in this
paper effectively shortens the reconstruction interval by splitting the subregion to introduce
the diagonal information of the reconstruction method, which reduces the reconstruction
error of the differential operator and improves the reconstruction accuracy compared with
previous studies.

Figure 4. Schematic diagram of residual error analysis: (a) Zhong’s algorithm, (b) the proposed
algorithm.

3. Numerical Simulation Analysis

This section compares the Pathak algorithm (PA) [21], the Barwick algorithm (BA) [20],
the Zhong algorithm (ZA) [22], and the fast slope–curvature hybrid reconstruction algo-
rithm (FA) of the subregion type proposed in this paper. The PA is a multi-directional
slope algorithm, the BA is an existing classical slope–curvature hybrid algorithm, and
the ZA is a multi-directional slope–curvature hybrid algorithm, and all four algorithms
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are solved using least-squares estimation. The simulations compare the reconstruction
accuracy, reconstruction time, and noise immunity of each algorithm.

3.1. Algorithm Accuracy

This section focuses on comparing the reconstruction error of the different algorithms
in the absence of noise. Legendre polynomials are a complete set of orthogonal polynomials
that describe a rectangular surface. The first to the 90th Legendre polynomials are used as
the basis functions to simulate the wavefront. In each simulation process, the simulated
wavefront is represented by only one Legendre polynomial with a coefficient of 1. The
reconstruction range of the entire region is a square region with dimensions ranging from
1 to 1 mm in the x and y dimensions, discretized into a 100 × 100 sub-aperture grid. The
reconstructed wavefront W contains the following reconstruction errors:

∆W = W − W0, (15)

where W0 is the ideal wavefront value. The relative root-mean-square reconstruction error
R is applied to evaluate the algorithm error. R is defined as

R =

√
∆W2

W0
2 . (16)

Figure 5 shows a comparison of the reconstruction errors between the proposed
method (FA) and traditional wavefront reconstruction methods (PA, BA, ZA) without
considering noise. Due to the relatively simple surface shape represented by the first
15 terms of the Legendre polynomial expansion, the three improved algorithms (FA, BA,
ZA) have similar relative reconstruction errors R. However, beyond the 15th term, the FA,
based on truncated Taylor expansion, has a smaller truncation error, resulting in higher
reconstruction accuracy. From the simulation results, it can be seen that, compared with
existing hybrid reconstruction methods or the multi-directional reconstruction algorithm
(BA), the relative reconstruction error value R of the proposed subregion multi-directional
slope and curvature mixed wavefront reconstruction method (FA) is reduced by about
4 orders of magnitude. Compared with the ZA, it also has significant advantages in accu-
racy for certain types of reconstructed surfaces, and the reconstruction accuracy for other
surface types is at least comparable to that of the existing algorithms.

Figure 5. Comparison of relative reconstruction errors among methods for 1–90th term Legendre
polynomials in the ideal case.
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3.2. Reconstruction Speed

Real-time performance is a key metric for the application of reconstruction algorithms
in practical engineering, and Table 1 compares the processing times of the four algorithms
(FA, ZA, PA, BA). The number of one-dimensional sampling points is set to 100 and 200
and 300 in turn. Each runtime result is the average of 20 repetitions. A comparison of the
reconstruction time between the proposed reconstruction algorithm (FA) and the existing
multi-directional slope–curvature hybrid reconstruction algorithm (ZA) for different sample
intervals is shown in Figure 6, which shows that the reconstruction time increases with the
increase in the sample points. This study reduces the reconstruction time by fifty percent
by reducing the number of integration equations while ensuring accuracy as compared to
the previous section.

Table 1. Reconstruction time for different reconstruction algorithms.

LP17 Computational Time (s)

Algorithm 100 × 100 200 × 200 300 × 300

FA 0.02869 0.10363 0.24451
BA 0.05532 0.29948 0.79579
PA 0.04897 0.14419 0.39198
ZA 0.04248 0.19756 0.58311

Figure 6. Plot of speed of slope–curvature hybrid reconstruction algorithms.

3.3. Noise Immunity of Algorithm

Gaussian noise is introduced to the ideal slope and curvature using the same simu-
lation conditions as described in Section 3.1. This is carried out to compare the relative
reconstruction errors of each algorithm when considering the presence of noise. The level
of noise is quantified using the signal-to-noise ratio (SNR), which is defined as the ratio of
the root mean square (RMS) of the ideal slope or curvature to the RMS of the added noise
as follows:

SNR =

√
ν02

n2 , (17)

where is the ideal slope curvature information, and n is the introduced Gaussian noise
that satisfies the analogue noise with mean 0 and variance 1 and satisfies the Gaussian
distribution. The reconstructed information is as follows:

ν = ν0 + n0/SNR. (18)

Wavefront reconstruction simulations are performed at signal-to-noise ratios of 10 and
30. The simulation results are repeated 20 times for each algorithm and then averaged to
reduce the effect of randomness.
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A comparison of the wavefront recovery reconstruction results for a signal-to-noise
ratio of 10 considering noise is shown in Figure 7. As can be seen from the simulation
results in Figure 7, in the presence of measurement noise, the present method introduces
more integral loop points compared to existing algorithms in that there is a smaller relative
reconstruction error for higher-order aberrations, as well as a stronger noise immunity.
Compared to the PA and BA, the present algorithm introduces more reconstruction infor-
mation, resulting in better noise immunity, and, compared to the ZA, the noise immunity
remains basically the same due to the same amount of information being introduced.

Figure 7. Comparison of the reconstruction error of each reconstruction algorithm for a signal-to-noise
ratio (SNR) of 10: (a) PA and FA, (b) BA and FA, (c) ZA and FA.

Figure 8 shows the comparison between the wavefront recovery reconstruction results
of the method described in this study and the conventional method when the signal-to-
noise ratio is 30, considering noise. From the simulation results of Figure 8, we can see that,
as the signal-to-noise ratio increases from 10 to 30, the relative reconstruction errors of the
Barwick algorithm and the Pathak algorithm do not change significantly, while the relative
reconstruction errors of this algorithm are significantly reduced and have a strong noise
immunity. For the low-order polynomials, the reconstruction surface type is relatively
simple, and the reconstruction noise immunity advantage of the FA over the BA and PA is
not obvious, and several methods have good reconstruction accuracy. As the number of
polynomial terms increases, the reconstructed surface pattern becomes complex, and the
noise immunity advantage of the FA begins to show. Compared with the ZA, it also has
some accuracy advantages in some face shapes.
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Figure 8. Comparison of the reconstruction error of each reconstruction algorithm for a signal-to-noise
ratio (SNR) of 30: (a) PA and FA, (b) BA and FA, (c) ZA and FA.

4. Experimental Application

To further substantiate the efficacy and applicability of the algorithm proposed in
this paper, this section employs both the ZA and FA methods to reconstruct the collected
information from a hybrid wavefront sensor via a null test experiment. The primary
objective of this experiment is to ascertain whether the wavefront reconstruction algorithm
can accurately recover the known wavefront shape from measured data, particularly under
no aberration or ideal wavefront conditions.

This experiment is based on the innovative four-hole amplitude-modulated wavefront
sensor (FHAM-WS) [23] proposed by our research group, shown in Figure 9. Building upon
the Shack–Hartmann sensor, this sensor modulates the incident wavefront by depositing a
chrome layer on the front surface of the microlens array and incorporating four specifically
arranged light-transmitting circular apertures within the chrome layer corresponding
to each sub-aperture. Based on the far-field optical intensity distribution, the structure
can simultaneously measure slope information and curvature information through scalar
diffraction theory. This technology utilizes the collection of focal plane spot arrays for
wavefront detection, and it has advantages such as a large dynamic range. It holds broad
prospects for applications in areas such as high-order aberration measurement.

The specific experimental procedure is as follows. As shown in Figure 10, a single-
mode laser source with wavelength of 635 nm is used to generate an approximately ideal
spherical wave, and the FHAM-WS, composed of a microlens array and CCD, is placed
1 m away from the light source, which can be considered as an ideal plane wave incident,
and the light spot diagram is collected. In this case, the true value of the measurement
result of FHAM-WS should be zero, and the closer the actual measurement result is to zero,
the smaller the measurement error. Firstly, the slope and curvature extraction algorithm of
our research group is used to obtain the complete slope and curvature information of each
sub-aperture from the spot pattern. After obtaining the complete mixed data of slope and



Appl. Sci. 2024, 14, 3476 12 of 15

curvature, the extracted data are processed twice to obtain the slope and curvature data
matrix, which is suitable for wavefront reconstruction. Finally, the measured wavefront
is reconstructed by using the hybrid slope and curvature algorithm. The experiment
reduces random errors by averaging multiple measurements. Focal plane spot arrays are
collected every minute, and this process is repeated 10 times. The ideal wavefront slope
and curvature information matrices extracted by the experimental setup are reconstructed
using the ZA and FA.

Figure 9. Schematic diagram of the null test experiment using FHAM-WS.

Figure 10. Experimental setup of the null test experiment using FHAM-WS.

The reconstruction results of 10 groups of FHAM-WS measurements produced by
the two algorithms are shown in Figure 11. In terms of reconstruction accuracy, the FA
algorithm maintains consistency with established, mature algorithms. This is attributable
to the simple structure of the reconstructed wavefront under null test conditions. As
the complexity of the waveform increases, the precision advantages of the FA algorithm
become progressively apparent. Regarding reconstruction time, the FA algorithm exhibits
a significant advantage over existing hybrid slope–curvature algorithms. Moreover, the
average reconstructed wavefront of the 10 repeated measurements produced using the
FA algorithm is shown in Figure 11. It is evident that, under the experimental conditions,
the proposed FA algorithm can accurately process slope and curvature information to
reconstruct the test wavefront, thereby further validating the effectiveness of the algorithm.
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Figure 11. The reconstruction results of 10 groups of FHAM-WS measurements produced by the two
algorithms: (a) reconstruction accuracy, (b) reconstruction time, (c) reconstructed wavefronts under
FA algorithm.

5. Conclusions and Discussion

In this paper, we propose a fast slope–curvature hybrid reconstruction algorithm (FA)
and compare it with conventional wavefront reconstruction methods. Through simula-
tion experiments, we find that the FA algorithm has higher reconstruction accuracy in
the ideal case and stronger noise immunity in the presence of noise. Compared with the
traditional slope–curvature hybrid algorithm and the multi-directional slope–curvature
hybrid algorithm, the FA algorithm has a significant advantage in reconstruction accuracy.
By introducing slope and curvature information in the diagonal, anti-diagonal, horizon-
tal, and vertical directions with smaller truncation errors, the FA algorithm can provide
more accurate reconstruction results. Compared with hybrid reconstruction algorithms
that directly introduce information about the diagonal direction, the FA algorithm has a
significant accuracy advantage for some reconstructed surface types and provides recon-
struction accuracy comparable to existing algorithms for other surface types. In addition,
when measurement noise exists, the FA algorithm has smaller reconstruction errors and
stronger noise immunity compared to conventional algorithms. In the case of higher-
order aberrations, the FA algorithm provides more accurate reconstruction results and
introduces more integration loop points to reduce the effect of noise. The null test ex-
periment based on the FHAM-WS has verified the effectiveness of the FA algorithm in
practical measurements.

In summary, the FA algorithm proposed in this paper provides higher reconstruction
accuracy and stronger noise immunity compared to traditional wavefront reconstruction
methods. This algorithm is of great practical significance for wavefront reconstruction and
other optical imaging applications.
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