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Abstract: This study delves into the integration of analytic hierarchy process (AHP) and geographic
information system (GIS) techniques to identify suitable areas for urban development in six districts
within the Mersin Metropolitan Area of Turkey. The specific aim is to generate an urban land use
suitability map, in order to facilitate informed decision-making for urban development. Drawing on
open Landsat satellite imagery and employing the random forest (RF) algorithm, the study spans a
fifteen-year period, over which land use/land cover (LULC) changes are measured. Furthermore,
a novel approach is introduced by incorporating the urban land use suitability map into an urban
growth simulation model developed using a logistic regression (LR) algorithm. This simulation
forecasts urban growth up to 2027, enabling planners to evaluate potential development areas against
suitability criteria. Findings reveal spatial patterns of land suitability and projected urban growth, aid-
ing decision-makers in selecting optimal areas for development while preserving ecological integrity.
Notably, the study emphasizes the importance of considering various factors such as topography, ac-
cessibility, soil capability, and geology in urban planning processes. The results showcase significant
proportions of the study area as being moderately to highly suitable for urban development, alongside
notable shifts in LULC classes over the years. Additionally, the overlay analysis of simulated urban
growth and land suitability maps highlights areas with contrasting suitability levels, offering valuable
insights for sustainable urban growth strategies. By overlaying the urban land suitability map with a
simulated LULC map for 2027, it is revealed that 2247.3 hectares of potential new urbanization areas
demonstrate very high suitability for settlement, while 7440.12 hectares exhibit very low suitability.
By providing a comprehensive framework for assessing urban land suitability and projecting future
growth, this research offers practical implications for policymakers, urban planners, and stakeholders
involved in Mersin’s development trajectory, ultimately fostering more sustainable and resilient
urban landscapes.

Keywords: analytic hierarchy process; remote sensing; geographic information systems; land use
suitability analysis; urban growth simulation

1. Introduction

Rapid and uncontrolled urbanization puts pressure on rural lands and urban ecosys-
tems, particularly in developing nations [1]. This rapid urbanization often leads to unregu-
lated industrial activities, hastily planned growth, habitat fragmentation, social divides,
increased air and water pollution, and resource depletion [2,3]. To foster sustainable urban
development, effective land use policies must prioritize spatial planning and the utilization
of decision support tools to determine optimal land allocation [4]. The intricate blend of
economic, social, and physical transformations within cities is a response to the demands
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of population growth in developing nations. While various terms like urban expansion,
urban development, and urban land use have been used to conceptualize these changes,
they essentially boil down to the quantitative growth and qualitative differentiation of a
city’s physical space, defined as urban growth and urban change, respectively [5].

In technical terms, growing urban areas trigger significant changes in land use and land
cover (LULC), and predicting future urban growth towards rural areas is a common focus in
the literature, emphasizing the importance of such growth occurring on suitable lands [6,7].
Therefore, land suitability becomes pivotal in determining whether lands, in their current
state or with improvements, can sustain specific land uses. It forms the foundational data
for efficient, safe, and sustainable land use planning [8]. The core objective of land suitability
assessment is to anticipate future land performance by examining land characteristics. This
involves identifying suitable land use types, mapping available land types, and evaluating
their suitability for chosen land use classes [9].

Multi-criteria decision support systems (MCDS) serve as invaluable tools for tackling
intricate decision-making challenges that encompass physical, socio-economic, environ-
mental, and ecological dimensions [10,11]. Often integrated with geographic information
systems (GIS), the synergy significantly enhances efficiency and accuracy, making MCDS
ideal for optimizing land suitability assessment and selecting appropriate locations for var-
ious land uses [12,13]. The literature underscores the necessity of conducting separate land
suitability assessments for each urban area, considering factors such as topography, soil,
geological conditions, and additional elements, such as roads, access to commercial and
industrial areas, and transportation [4]. The criteria and requirements for land suitability
assessments vary across models and objectives, necessitating tailored analyses for specific
situations to ensure the utmost accuracy in urban land use planning. Evaluating land
suitability maps, derived from MCDS methods, alongside LULC maps, provides insights
into the appropriateness of the current urban pattern for settlement [14]. Consequently,
the production of past and present LULC maps for studied cities is required to achieve a
comprehensive understanding.

Among MCDS, the analytical hierarchy process (AHP) method integrated with GIS
has been widely utilized for assessing land suitability. While there has been extensive
research on agricultural land suitability and suitability for specific crops, the number of
existing studies focusing on urban land use suitability is comparatively limited compared
to rural land use analyses. For instance, Mundhe and Jaybhaye [15] utilized AHP–GIS to
classify land suitability for informal settlement areas to be renewed in Pune, India. Their
study incorporated seven criteria, including property value, building density, population
density, slope, transportation network, and LULC. Similarly, Ismaeel and Satish Kumar [16]
applied AHP–GIS to assess the suitability of new urban development areas in Latakia,
Syria. AlFanatseh [17] concentrated on identifying suitable urban development areas
in Akabe, Ethiopia, utilizing AHP–GIS and considering four main criteria: geophysical,
socio-economic, environmental, and administrative. Yang et al. [18] conducted a suitability
analysis for new urban settlement areas in the hilltop regions of Nanjing, China, using
AHP–GIS. Their study included 14 sub-criteria, categorized under four main criteria:
topographic, environmental, socioeconomic, and historical sites. Meanwhile, Ustaoğlu
and Aydınoğlu [14] focused on evaluating the potential suitability of urban development
in Pendik district, Istanbul. Their assessment encompassed criteria such as geophysical
features, accessibility, existing settlements and infrastructure, vegetation cover, and green
areas. Notably, their findings underscored the constraint of northern areas due to their
predominance of agricultural and forested lands, while indicating that southern coastal
areas were more suitable for residential development.

The aforementioned studies have provided valuable insights into the methodologies
used to assess urban land use suitability and identify optimal locations for new devel-
opment areas. However, they primarily focus on current conditions and lack a forward-
looking approach that integrates future urban growth projections with suitability analyses.
Consequently, the existing literature presents limitations in its ability to combine predic-
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tive modeling of future urban land use patterns with assessments of their suitability for
settlement purposes.

Remote sensing products play a crucial role in investigating LULC changes, with
the spectral signatures of satellite images classified to extract land cover information.
LULC maps are derived through image classification, combining software assistance and
visual interpretation. Changes in LULC are determined by calculating differences in pixel
reflectance values from images captured on different dates [19]. Monitoring and predicting
changes in LULC is vital in making informed urban land use decisions. Simulation models,
widely used over the last two decades, help simulate future urban growth based on
historical LULC changes. These predictions aid in preventing environmental degradation
risks when formulating land use plans [20–23].

In Turkey, a significant shift from rural to urban areas, spurred by agricultural modern-
ization since the early 1950s, has led to accelerated urbanization and notable development
in cities. The influx of populations into cities, driven by economic challenges, has resulted
in unplanned settlements, while rural lands on the outskirts of cities have undergone
substantial changes to meet the demand for urban land [24]. The Mersin Metropolitan Area
in Turkey has experienced such growth due to population increases and associated invest-
ments, but uncontrolled urbanization poses threats to rural life and environmental health.
The area faces challenges, particularly in the form of the loss of agricultural lands, especially
those used for citrus cultivation, and uncontrolled construction in pasturelands. This paper
addresses the need for a sustainable urban planning framework to assess potential urban
growth areas in the Mersin Metropolitan Area.

This study primarily aims to utilize the AHP and GIS, in conjunction with selected
environmental, topographic, and locational factors, to identify the most suitable areas
for new urban development around the city of Mersin. This entails generating a urban
land use suitability analysis map for six districts within the Mersin Metropolitan Area. To
enhance the usability of the urban land use suitability analysis, an urban growth simulation
is developed using open data and software. This simulation forecasts urban growth in
Mersin in the coming years, and is evaluated alongside the urban land use suitability map.
This will assist decision-makers and planners in understanding the suitability of potential
urban growth areas in Mersin for development, guiding them in selecting suitable areas for
urban development and avoiding unsuitable ones.

For the purpose of simulation, Landsat satellite images obtained from the Google
Earth engine (GEE) open data access platform are utilized and classified using the random
forest (RF) algorithm to establish a comprehensive LULC inventory spanning a fifteen-year
period for the Mersin Metropolitan area. This inventory facilitates a detailed examination of
LULC transitions over time, allowing for the measurement of the trajectory of LULC classes
in terms of both growth and contraction. Utilizing these observed LULC transitions up to
the year 2022, future LULC scenarios are computed through an urban growth modeling
approach, employing the logistic regression algorithm. Subsequently, these computed
LULC scenarios are juxtaposed with the current urban land use suitability map to discern
which prospective urban growth patterns are indeed conducive to urban settlement. The
incorporation of the urban land use suitability map as an input into the urban growth
simulation represents a novel approach that has not been extensively explored in the
existing literature.

In summary, this study (1) generates a GIS–AHP-based urban land use suitability map,
(2) compiles LULC maps covering a fifteen-year period using Landsat imagery from four
different time points (2007, 2012, 2017, and 2022) and analyzes related LULC transitions,
(3) formulates LULC scenario maps for 2027 through employing urban growth simulation
techniques, and (4) evaluates the suitability of future urban land use by overlaying the
urban land use suitability map with the simulated LULC map of 2027.
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2. Materials and Methods
2.1. Study Area

The study area is located between 34.0 and 35.1◦ E longitude and 36.5 and 37.1◦ N lati-
tude. It has a surface area of 230,675.29 hectares, and is situated within the Mediterranean
climate zone. The study area encompasses the central four metropolitan districts (Akdeniz,
Yenişehir, Toroslar, and Mezitli) of the Mersin Province and two surrounding developing
districts (Tarsus and Erdemli). The selection of these district boundaries was based on the
historical direction of growth and population increase within the Mersin Metropolitan area,
as well as their proximity to each other. Additionally, significant changes in LULC patterns
had been predominantly observed among these districts over time. Administrative district
boundaries were considered when delineating the east–west boundaries of the study area.
For the northern boundary of the area, a distance of 15 km from the coastline was utilized,
disregarding the Taurus Mountains (Figure 1).
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2.2. Step I: Data Set Preparation for Urban Land Use Suitability Analysis

When preparing the datasets for urban land use suitability analysis, criteria were
selected under the categories of topography, land use, accessibility, soil capability, and
geology. Under the topography category, criteria such as slope, elevation, and aspect
were used. For accessibility, distance to highways and primary roads, distance to streams,
distance to bus stops, distance to ports, distance to the coastline, and distance to commercial
and industrial areas were utilized. Additionally, LULC, soil capability, and geology criteria
were included in the analysis, each forming separate groups. The selection of these criteria,
along with their sub-criteria, was based on the location, scale, and characteristics of the
study area, as well as the lessons learned from the literature review and the standards
outlined in the Turkish Spatial Planning Regulation. The geographic data layers used for
these criteria are presented in Table 1, indicating their sources, resolution, and scale. After
determining these factors, the AHP method was employed using the open-source QGIS
platform to determine the weights of the criteria.

The elevation of land plays a significant role in determining urban suitability analysis.
Areas with flat and low elevation have historically witnessed more frequent construction
activities [14]. The northern part of the Mersin Province comprises the Middle Taurus
Mountains. Consequently, the elevation increases as one moves northward from sea
level. Existing settlements have generally developed along the east–west axis or on flat
terrains [25]. Similarly, slope, akin to elevation, is crucial in the evaluation of suitability
for settlement. As slope increases, construction costs rise, and soil stability decreases. This
situation also increases the risk of erosion and landslides [26]. Mersin Province is located
in the Mediterranean region, and is a metropolitan city with a Mediterranean climate.
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Therefore, aspect plays a significant role in slope assessment. Land facing south and east
is considered more suitable for urban development due to its exposure to sunlight and
warmth during winter, compared to land facing north and west [14,26]. For the criteria
of elevation, slope, and aspect, publicly available ALOS PALSAR digital elevation model
(DEM) data with a spatial resolution of 12.5 m were utilized. Using QGIS modules, maps
for slope and aspect criteria were generated from this DEM data, as seen in Figure 2.
The elevation and slope data were classified into five classes each (using natural breaks),
while aspect data, covering all directions and flat areas, were divided into nine classes
and mapped.

Table 1. Geospatial datasets used in urban land use suitability analysis.

Criteria Group Data Source Criteria Data Type Scale/Resolution

Topographical ALOS PALSAR DEM
Elevation (m)

RasterSlope (%) 12.5 m
Aspect

LULC ESA World Cover LULC Raster 10 m

Accessibility Municipal Data

Distance to Roads

Vector 1:25,000

Distance to Trade and
Industrial Zones

Distance to Bus Stops
Distance to Port

Distance to Residential Areas
Distance from Coastline
Distance from Streams

Soil
General Directorate of
Mineral Research and

Exploration (MTA)

Land Use Capability
Classification Raster 25 m

Geology
General Directorate of
Mineral Research and

Exploration (MTA)
Lithological Structure Raster 25 m
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In determining urban development and settlement, numerous attractive forces exist,
and one of these criteria is LULC. LULC changes that contribute to urban development and
non-urban land cover around the city need to be examined in urban suitability analysis [27].
In this context, the inclusion of the current LULC data set is essential for this analysis.
In this study, the ‘World Cover 10 m 2021’ product from the European Space Agency
was utilized. This product provides a global LULC map for the year 2021 with a spatial
resolution of 10 m, based on Sentinel-1 and Sentinel-2 satellite data [28]. The map shown in
Figure 3 illustrates a clipped version of the ESA World Cover data set for our study area,
generalized with five LULC classes. The rationale for this generalization was the need to
produce classes consistent with the satellite image classification work conducted in the
subsequent sub-sections. These five LULC classes include water surfaces, non-agricultural
and non-forest areas, agricultural areas, built-up areas, and forest areas.
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Accessibility to natural and human-made elements possesses a significant power in
determining urban development and suitability [27,29,30]. Distance to roads particularly
delineates the corridors of technical infrastructure and urban development. Additionally,
accessibility to technical infrastructure areas such as trade and industrial zones, bus stops,
and ports, as well as distance to residential areas, should be included in this evaluation. As
the distance to these areas increases, urban suitability decreases. Similarly, as the distance
from coastline increases, urban development suitability decreases. The reason for this
is the influence of the coastline on the development of coastal cities throughout history.
Distance from streams is also important for urban settlement suitability analysis. Studies
have shown that increasing distance from streams decreases suitability for settlement.
Figure 4 illustrates all accessibility criteria prepared in the GIS environment for the study
area. Moreover, the sub-criteria intervals for each criterion were determined through expert
opinions and the relevant literature.

Urban planning is influenced by the condition of soil (land use) capability, which
is one of the fundamental constraints related to site selection. In this study, official ‘Land
Use Capability Classification’ maps were used for the soil capability criterion. These
maps consist of eight separate categories, each indicated by Roman numerals (I, II, . . .,
VIII) Within the framework of the land use capability classification system, classes I to IV
delineate land suitable for agricultural purposes, denoting its capability for crop cultivation.
As the classification ascends from Class I to Class IV, there is a corresponding increase in
the constraints imposed on land use and the requisite conservation measures. Conversely,
Classes V to VIII encompass lands deemed unsuitable for agricultural cultivation. However,
this designation does not imply a lack of land use. Rather, lands classified within these
categories may find application in activities such as pastureland management, urban
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development, recreational pursuits, and aesthetic enhancement [31]. Figure 5 presents
the soil capability map of the study area. In this map legend, soil capability is grouped
into three classes. Classes from I to IV are considered absolute agricultural land, classes
from V to VII are categorized as marginal agricultural land, and Class VIII is classified as
unsuitable for agriculture.
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The lithological structure of land is a significant criterion for suitability analysis
in urban settlement. It influences construction on the land and plays a crucial role in
determining the direction of development [32]. Especially considering the seismic risks in
Turkey, including lithology data in the analyses for identifying suitable lands for urban
settlement can assist in minimizing potential damage in cities prone to experiencing natural
and human-made disasters. Geological data from the General Directorate of Mineral
Research and Exploration (MTA) were used to classify the lithological structure of the
study area. The study area comprised 24 distinct lithological layers categorized into three
groups based on their hardness: soft, medium hard, and hard layers. Soft lithological
structures included tuff, gypsum, olistostrome, shale beach, schist-chalk schist, sand dunes,
alluvial fan, and melange. Medium hard lithological structures encompassed scree-debris,
cones, caliche-terrace, quartzite–quartz system, sandstone–mudstone, and caliche layers.
Hard lithological structures consisted of ophiolitic rock, limestone, marble, sandstone–
mudstone, travertine, clayey limestone, sandstone–mudstone–limestone, conglomerate
sandstone–mudstone, conglomerate limestone, and gravel–sandstone. The classification
process utilized the Mohs hardness scale and expert opinions [33]. Figure 6 presents the
lithological structure map of the study area.
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Subsequently, all criteria maps were resampled to a spatial resolution of 30 m within a
Universal Transverse Mercator WGS84 36-coordinate system. A spatial resolution of 30 m
was chosen to ensure consistent LULC maps derived from satellite image classification, as
discussed in subsequent sub-chapters. These resampled criteria were incorporated into the
AHP model to identify suitable locations for urban land use.
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2.3. Step II: Generating Urban Land Use Suitability Map via AHP

Saaty [34] introduced AHP to assist decision-makers in handling situations involving
numerous conflicting and subjective criteria. Within this method, criteria undergo compar-
isons utilizing a scale ranging from one to nine. These comparisons categorize criteria as
equally important (scaled one), moderately important (scaled three), strongly important
(scaled five), very strongly important (scaled seven), extremely important (scaled nine),
or with intermediate values (scaled two, four, six, or eight). Subsequently, employing the
AHP method, the criteria weights are computed based on the pairwise comparisons matrix.
To assess the logical consistency among decision-makers’ opinions, the consistency rate
(CR) is computed using Equation (1). This equation incorporates the consistency index (CI)
and the random index (RI), with the CI calculated using Equation (2). The CI serves to
evaluate the overall inconsistency of the pairwise comparison matrix, aiming for a value
below the designated threshold of 0.1. The RI consists of values determined by Saaty and
varies based on the number of criteria. In this study, with 13 criteria employed, the RI value
is considered to be 1.56. Revision of the comparison matrix is warranted if the inconsistency
exceeds this threshold [35].

CR = CI/RI (1)

CI =
λmax − n

n − 1
(2)

To assess urban land use suitability via the AHP technique, a survey was conducted
to gather decision-makers’ scorings on the selected criteria. A 16-question survey was
distributed to 25 participants. The first question required participants to allocate scores to
the main criterion groups influencing urban land use suitability analysis, totaling 100 points.
Questions 2 to 13 involved scoring the sub-criteria groups based on relative comparisons.
Question 14 asked about participants’ areas of expertise, while the final question sought
additional expert opinions. Participants included 36.4% urban planners, 27.3% surveying
engineers, 18.4% academic staff at universities, and 18% personnel from public institutions.

After determining factor weights using AHP, the subsequent step involved creating
a combined suitability map. Here, the weighted linear combination (WLC) method was
utilized. This method aims to standardize attribute values for each factor and generate a
suitability index by aggregating normalized criteria values. Each alternative’s normalized
total weight was computed by multiplying its assigned weight with its normalized value
and summing these results. In land suitability studies, factors are termed criteria, with
each assigned a weight indicating its importance. Criteria are spatially represented through
maps or layers and converted into grid file format for integration within a GIS environment.
Equation (3) was employed to combine all criteria using the WLC method.

ULSIi =
n

∑
j=1

Wjxij (3)

ULSIi represents the urban land suitability index for a specific cell i, with n denoting
the number of criteria. Wj signifies the relative importance weight assigned to criterion j,
while xij denotes the standardized score of cell i for criterion j [36].

2.4. Step III: Classifying Satellite Imagery for Generating LULC Maps

The third step of this study aimed to classify satellite images, detect changes in the
built-up area over the years, and utilize the classification results in urban growth simulation.
The methodology for satellite image classification encompassed four main steps: selection
of satellite images, classification of satellite images, accuracy assessment of classified
images, and analysis of LULC area changes. The selection, classification, and accuracy
assessment of satellite images were conducted using the GEE platform. The flowchart
summarizing these four steps is depicted in Figure 7.
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In this study, Landsat 7 images were used for temporal analysis of LULC area changes.
Cloud-free and snow cover-free composite images at five-year intervals (2022, 2017, 2012,
and 2007) for the spring and summer months were compiled from atmospherically corrected
reflectance (SR) Landsat 7 images with a 30 m spatial resolution on the GEE catalog
(Path: 175–174, Row: 35–34). A vector file (.shp) delineating the study area boundaries
was uploaded to the GEE platform. The classification analysis utilized the normalized
difference vegetation index (NDVI), the normalized difference built-up index (NDBI), and
combinations of natural color (RGB) spectral indices, with preliminary findings indicating
the highest classification success from the RGB composite images.

The classification study was conducted considering five primary LULC classes. These
classes, labeled on the images, included: (1) Built-up areas, encompassing artificial surfaces
such as human settlements, developed areas, and concrete-covered areas; (2) agricultural
areas, comprising annual and permanent crops, grasslands, and greenhouses; (3) forest
areas; (4) water surfaces, including rivers and lakes; and (5) non-agricultural non-forest
areas, consisting of areas with sparse vegetation, sandy or rocky terrain.

The classification process aimed to assign each pixel to the appropriate LULC class
automatically. However, for supervised image classification, samples of relevant LULC
classes need to be provided as training data to the classifier algorithm. Marking selected
LULC classes on the images is a prerequisite for training supervised classification algo-
rithms [19]. Therefore, a total of 840 pixels were labeled on images for each year, with
140 pixels randomly distributed for training and 70 pixels for testing per class. These
pixels were equally distributed among the five LULC classes. The selected training pixels
were used to train the classifier, while the remaining test pixels were used to evaluate
the classifier’s performance [37,38]. These pixels were chosen through a visual method
enhanced by high-resolution images from Bing and Google Earth, L7 NDVI profiles, false
color composites, and local LULC maps. Figure 8 displays the training and test pixels
associated with each image composite.

The GEE platform offers built-in functions that allow for the use of classification
algorithms such as support vector machines, RF, Naïve Bayes, and decision trees. In
this study, the RF classifier algorithm was utilized, which has been widely used in the
literature and has been reported to provide higher classification performance [39,40]. The
ee.Classifier.smileRandomForest built-in function in GEE was used to generate the classifier
model, and hyperparameter tuning was performed. The GridSearchCV method was
employed to determine the combination of hyperparameter values of the RF classifier that
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provide the best performance. This hyperparameter optimization was conducted separately
for the classifier model of each image for different years.
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The confusion matrix method has been commonly used to evaluate the performance
of classifiers by comparing the outputs of classified images with test data. Confusion
matrices contain values representing the classified and true class labels. True negative (TN)
represents the number of negative pixels correctly classified; true positive (TP) represents
the number of positive pixels correctly classified; false positive (FP) represents the number
of negative pixels incorrectly classified as positive; and false negative (FN) represents the
number of positive pixels incorrectly classified as negative. One of the most frequently
used criteria in classification is the confusion matrix, along with derived accuracy metrics
such as overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA). The
formulas for these accuracy metrics are provided below. OA provides the ratio of correctly
predicted pixels to the total number of sample pixels. PA represents the ratio of correctly
classified pixels in a specific class to the total number of pixels in the same class. UA
represents the ratio of correctly classified pixels in a specific class to the total number
of pixels classified as ‘belonging’ to that class. The formulas for these accuracy metrics
are provided in Equations (4)–(6). Another performance measure used was the Kappa
coefficient, provided in Equation (7). In the context of classification, this coefficient is
typically used to evaluate the agreement between what is predicted by a model and the
actual class, while also considering the probability of this agreement occurring by chance.
A Kappa coefficient of 1 indicates perfect agreement, 0 indicates agreement that could
occur by chance, and −1 indicates perfect disagreement. In Equation (7), p0 represents the
relative observed agreement in the classifier, and pe represents the expected probability of
chance agreement.

OA = (TP + TN)/(TP + FP + TN + FN) (4)

PAi =
TPi

TPi + FNi
(5)

UAi =
TPi

TPi + FPi
(6)
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κ =
p0 − pe

1 − pe
(7)

To generate LULC maps for four different years, each comprising five classes, the
RF algorithm was employed to run the model that yielded the best prediction results on
composite images. Following the classification of all pixels in the images, the resulting
images in GEOTIFF format generated on the GEE platform were transferred to the desktop
environment and used to create LULC maps for the four years in QGIS 3.34.5 software.
These maps facilitated the analysis and mapping of both the LULC distribution for each
year and the changes in LULC within each period.

2.5. Step IV: Urban Growth Simulation

Simulation models tracking urban growth have been widely employed over the past
two decades, and the predictions derived from these models are utilized to mitigate poten-
tial environmental degradation in urban areas during land use planning processes [22,23].
Cellular automata (CA) models, originating from the 1940s work of physicist Stanislaw
Ulam and further explored by Von Neumann, offer a powerful tool for deriving urban
growth models. They integrate spatial and temporal inputs, allowing for simulation based
on predefined rules [41,42]. Furthermore, Markov chain models have also been used to
predict LULC changes based on transition probabilities, but sudden changes between LULC
states can impact simulation accuracy [43]. Moreover, the SLEUTH model, an open-source
urban simulation application developed by Clarke [21], has been widely used and offers
scalability and flexibility, but lacks socio-economic data integration [44].

Machine learning (ML) methods have also been leveraged for LULC change analysis
and urban growth simulation. Compared to traditional models, ML algorithms offer advan-
tages in handling complex and non-linear relationships in urban dynamics [45]. Among the
most commonly used ML methods are logistic regression (LR), support vector machines
(SVM) [46], and artificial neural networks (ANN) [47]. LR models, for instance, can ex-
press LULC changes mathematically and predict future LULC states based on multiple
dependent variables, making them suitable for binary classification problems [48,49]. While
each ML method has its strengths and weaknesses, LR was chosen as the primary method
for urban growth simulation in this study due to its suitability for binary classification
problems and its ability to predict the presence or absence of urban growth based on a set of
independent variables. LR assumes that the probability of a cell transitioning to urban use
follows a logistic function, with LR coefficients being used to estimate the probability ratios
for each independent variable in the model [44]. By representing urban growth outcomes
as binary values (Yes or No), LR provides a useful tool for analyzing and predicting urban
growth patterns. The probability calculation involves determining how much Y will turn
into 1, as shown in Equation (8).

P(Y = 1|X1, X2, . . . , Xn) =
1

1 + eα+∑n
i=1 βiXi

(8)

Here, P(Y = 1|X1, X2, . . . , Xn) is the probability of Y given the values of Xi(i = 1, 2, . . . , n).
In other words, it is the transformation of non-urban pixel to urban pixel. Additionally,
1 − P represents the probability of non-existence of urban growth. The regression model is
obtained through logistic transformation (Equation (9)).

ln
(

p
1 − p

)
= α + β1X1 + β2X2 + · · ·+ βnXn (9)

The coefficients of the independent variables here can be interpreted as factors influ-
encing urban growth, and the probability of urban growth for the entire study area can be
calculated iteratively [48].

For the creation of urban growth simulation, past data on LULC classes is required.
The input data for urban growth simulation consists of LULC maps from the years 2007,
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2012, 2017, and 2022, along with road network data. The road network map, converted
from vector to raster format with a 30 m resolution, was compatible with the LULC maps.
The reason for using only the road network during simulation is that the analysis of built-
up area changes over the years in Mersin indicated that the road network was the most
significant factor influencing urbanization. Urban growth simulations were generated for
the year 2017 based on the LULC maps from 2007–2012, for 2022 based on the maps from
2012–2017, and for 2027 based on the maps from 2017–2022. The simulation process is
illustrated step by step in Figure 9.
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The MOLUSCE package was utilized to generate urban growth simulations. MO-
LUSCE, an extension used in QGIS 2.0, was developed for examining, modeling, and
simulating changes in cities. This extension encompasses methods such as ANN, LR,
evidence weights, etc., for urban growth simulations [50]. As indicated before, the LR
algorithm was employed for urban growth simulation in this study. In each simulation step,
the simulated LULC map for the respective year was compared with the classified LULC
area map obtained from classification in terms of pixel consistency, and the simulation
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performance was evaluated. Additionally, the changes between LULC classes for each
five-year period were presented graphically and spatially.

2.6. Step V: Assessment of Future Urban Growth in Accordance with the Urban Land
Use Suitability

Following the generation of the simulated LULC map for the year 2027, pixels where
urban growth could be observed for the period between 2022 and 2027 were extracted and
overlaid with the generated urban land use suitability map. This enabled the assessment
of the degree of urban growth in accordance with expected urban land use suitability,
and propositions were made based on the quantitative information obtained from this
overlay analysis.

3. Results
3.1. Generated Urban Land Use Suitability Map

Based on the criteria utilized, a literature review, and survey results, the binary
comparison matrix resulting from the AHP for the suitability analysis of urban land use
within the Mersin Metropolitan Area is presented in Table 2, while the weights of the
criteria and sub-criteria according to their importance are provided in Table 3.

Table 2. The binary comparison matrix resulting from the AHP for the suitability analysis of urban
land use within the Mersin Metropolitan Area.

Criteria S E A SC LULC RE TI ST BS RO P C Li

S 1 1/2 3 1/3 1/7 1/5 1/4 2 1/5 1/6 1/2 1/3 1/4
E 2 1 2 1/2 1/9 1/7 1/5 1 1/5 1/4 1/2 1/4 1/3
A 1/3 1/2 1 1/4 1/9 1/8 1/5 1/2 1/5 1/4 1/3 1/4 1/2
SC 3 2 4 1 1/6 1/7 1/5 1/2 1/4 1/5 2 1/2 1/4

LULC 7 9 9 6 1 5 2 8 1 2 5 3 3
RE 5 7 8 7 1/5 1 2 6 1 1 3 2 2
TI 4 5 5 5 1/2 1/2 1 4 1/3 1/4 2 1 1/3
ST 1/2 1 2 2 1/8 1/6 1/4 1 1/5 1/5 1/2 1/4 1/2
BS 5 5 5 4 1 1 3 5 1 1 3 2 1/5
RO 6 4 4 5 1/2 1 4 5 1 1 3 2 1/4
P 2 2 3 1/2 1/5 1/3 1/2 2 1/3 1/3 1 1/2 1/4
C 3 4 4 2 1/3 1/2 1 4 1/2 1/2 2 1 1/2
Li 4 3 2 4 1/3 1/2 3 2 5 4 4 2 1

S: Slope, E: Elevation, A: Aspect, SC: Soil capability, LULC: Land use land cover, RE: Distance to residential areas,
TI: Distance to trade and industrial zones, ST: Distance from streams, BS: Distance to bus stops, RO: Distance to
roads, P: Distance to port, C: Distance from coastline, Li: Lithological structure.

Consistency analysis was conducted on these results to verify whether the binary
comparison matrix and the weights of the criteria were consistent. As a result of the
calculations, the CR value was obtained as 0.08. Since the CR value was lower than
0.10, it was determined that both the comparison matrix and the criteria weights were
at an acceptable level of consistency. According to the calculated criteria weights, land
use, lithology, and distance to settlement were identified as the most important criteria.
Distance to bus stops and distance to road network were of secondary importance, while
proximity to coastal areas, soil suitability, distance to port, slope, distance to rivers, land
elevation, and aspect were considered to be less important criteria.

Subsequently, each layer was overlaid to obtain the urban land use suitability index
map. In this map, the suitability values of pixels were classified into five categories (very
low, low, marginally, moderately, and highly suitable) using the natural breaks method
(Figure 10).
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Table 3. The weights of the criteria and sub-criteria according to their importance.

Criteria Weight Sub-Criteria Weight

Land Use Land Cover 0.173

Built-up Areas 0.280
Agricultural Areas 0.195

Forest Areas 0.144
Non-Agricultural Non-Forest

Areas 0.343

Water Surfaces 0.039

Lithological Structure 0.122
Hard 0.172

Medium Hard 0.478
Soft 0.350

Distance to Residential Areas
(m) 0.109

0–1000 0.342
1000–2000 0.272
2000–3000 0.175
3000–4000 0.101
4000–5000 0.061

>5000 0.048

Distance to Bus Stops (m) 0.107

0–300 0.298
300–400 0.314
400–800 0.189
800–1000 0.096

1000–2000 0.062
>2000 0.041

Distance to Roads (m) 0.105

0–150 0.339
150–1000 0.227

1000–1500 0.188
1500–2000 0.100
2000–2500 0.067
2500–3000 0.048

>3000 0.031

Distance to Trade and
Industrial Zones (m) 0.071

0–400 0.327
400–800 0.218
800–1500 0.200

1500–2000 0.119
2000–2500 0.071
2500–3000 0.038

>3000 0.027

Distance from Coastline (m) 0.060

0–50 0.319
50–100 0.258

100–300 0.162
300–500 0.125
500–700 0.068
700–1000 0.041

>1000 0.027

Soil Capability 0.034
I–II–III–IV 0.060
V–VI–VII 0.190

VIII 0.750

Distance to Port (m) 0.033

0–1000 0.311
1000–2000 0.214
2000–3000 0.147
3000–4000 0.134
4000–5000 0.085
5000–6000 0.055
6000–7000 0.035

>7000 0.021
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Table 3. Cont.

Criteria Weight Sub-Criteria Weight

Slope (%) 0.021

0–2 0.420
2–5 0.303
5–8 0.158

8–10 0.072
10 0.048

Distance from Streams (m) 0.021

0–50 0.265
50–100 0.270

100–200 0.183
200–500 0.109
500–1000 0.068

1000–1500 0.048
1500–2000 0.033

>2000 0.024

Elevation (m) 0.020

0–50 0.417
50–100 0.248

100–150 0.176
150–200 0.098

>200 0.062

Aspect 0.013

North 0.048
Northeast 0.048
Northwest 0.048

South 0.260
Southeast 0.140
Southwest 0.140

East 0.088
West 0.088
Flat 0.140
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Figure 10. The urban land use suitability index map.

When examining this map, it is understood that the suitability decreased towards the
outskirts from existing settlements, with the suitability index dropping towards the north
of the city. According to the analysis results, it was revealed that areas with very low suit-
ability accounted for the highest proportion in the study area at 30.60% (70,589.34 hectares),
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areas with a low degree of suitability constituted 27.05% (62,387.19 hectares), while those
with a marginal suitability level covered 18.17% (41,922.09 hectares), areas with a moder-
ate suitability level represented 19.50% (44,980.29 hectares), and those identified as high
suitability covered 4.68% (10,788.39 hectares) of the total area.

3.2. Generated LULC Maps

The confusion matrices obtained from the performance evaluation on the test data of
the composite Landsat 7 images classified using the RF algorithm on the GEE platform,
along with the accuracy values, are presented in Tables 4 and 5, respectively. According
to the results, the classification of satellite images for the years 2007, 2012, 2017, and 2022
achieved the desired performance in terms of user accuracy and producer accuracy. Both
the class-specific accuracy and overall accuracy values were greater than 0.80, indicating an
acceptable level of classification performance. The Kappa coefficients for the classification
of images for the years 2007, 2012, 2017, and 2022 were calculated as 0.89, 0.90, 0.86, and
0.88, respectively, while the overall accuracy values were calculated as 0.90, 0.93, 0.88, and
0.89, respectively. The hyperparameters and their values that achieved this performance
with the RF classifier are presented in Table 6.

Table 4. Confusion matrices for each composite image generated from the test data after training the
RF classifier.

Built-Up
Areas

Agricultural
Areas

Forest
Areas

Water
Surfaces

Non-
Agricultural

and
Non-Forest

User’s
Accuracy (%)

2022

Built-up Areas 61 3 0 0 6 96
Agricultural Areas 0 56 14 0 0 80

Forest Areas 0 0 70 0 0 99
Water Surfaces 5 4 0 61 0 87

Non-Agricultural and
Non-Forest 3 1 0 0 66 94

Producer’s Accuracy (%) 96 93 95 97 98

2017

Built-up Areas 56 1 1 0 12 80
Agricultural Areas 2 58 9 1 0 85

Forest Areas 0 0 69 1 0 96
Water Surfaces 3 0 2 65 0 49

Non-Agricultural and
Non-Forest 3 4 0 0 63 90

Producer’s Accuracy (%) 94 96 96 83 80

2012

Built-up Areas 58 4 0 0 8 83
Agricultural Areas 0 68 2 0 0 97

Forest Areas 0 0 69 1 0 99
Water Surfaces 0 1 0 69 0 99

Non-Agricultural and
Non-Forest 4 0 0 0 66 93

Producer’s Accuracy (%) 95 98 99 99 96

2007

Built-up Areas 62 1 0 0 7 89
Agricultural Areas 9 57 3 1 0 81

Forest Areas 0 3 67 67 0 96
Water Surfaces 1 2 0 0 0 96

Non-Agricultural and
Non-Forest 6 2 0 0 62 89

Producer’s Accuracy (%) 93 94 98 98 95
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Table 5. Kappa coefficients and overall accuracies for the classification of each image composite.

2007 2012 2017 2022

Kappa 0.89 0.9 0.86 0.88
Overall Accuracy 0.9 0.93 0.88 0.89

Table 6. The tuned values for the hyperparameters of the RF classifier.

Year of Image
Composite

Number of Decision
Trees in the Forest

The Number of
Variables per Split

The Maximum Number
of Leaf Nodes

2007 100 2 No limit
2012 150 2 No limit
2017 100 2 No limit
2022 100 2 No limit

After demonstrating successful performance on the test samples of the composite
Landsat 7 images for four different years, the trained RF model was employed for predicting
LULC classes for all remaining pixels. Following these prediction processes, a LULC class
was assigned to each pixel, thereby obtaining a LULC map from each image. The spatial
resolution of these LULC maps was consistent with Landsat 7 images, at 30 m. LULC maps
for the four years are depicted in Figure 11.
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Figure 11. LULC maps derived from image classification with RF classifier: 2007 (upper left), 2012
(upper right), 2017 (lower left), and 2021 (lower right).

The proportional distribution of each LULC class in these maps is shown in Figure 12.
Upon examination of these LULC maps, it is observed that the proportion of built-up area
class to the study area decreased from 21.01% in 2007 to 19.15% in 2022. Agricultural land
witnessed an increase over the years, with its proportion rising from 53.40% in 2007 to
60.45% in 2022. Forest area decreased from 15.6% in 2007 to 13.07% in 2022. While the
water surface occupied 0.29% of the area in 2007, it increased to 0.31% in 2022, and the area
excluding agriculture and forest decreased from 9.71% to 0.31% during the same period.
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Figure 12. The proportional distribution (%) of each LULC class in each LULC map.

Separate maps were created to illustrate the changes in LULC classes over the years.
These maps contain a legend of 25 classes representing the transition between five different
LULC classes and no-change conditions. Figure 13 illustrates the LULC changes between
2007 and 2012 (upper left), the changes between 2012 and 2017 (upper right), and the
changes between 2017 and 2022 (lower left). Furthermore, the lower right part provides an
overview of LULC changes spanning the entire study period from 2007 to 2022.
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Figure 13. LULC change maps: From 2007 to 2012 (upper left), from 2012 to 2017 (upper right), from
2017 to 2022 (lower left), and covering the entire study period from 2007 to 2022 (lower right).

Between 2007 and 2022, 91.01% of the built-up areas in the study area remained
built-up. In comparison, 76.72% of agricultural areas were preserved, with 8.60% con-
verting to built-up areas, 10.42% to forest areas, 0.05% to water surfaces, and 4.21% to
non-agricultural/non-forest areas. Of the forest areas, 47.05% were preserved, with 49.34%
converting to agricultural areas, 2.87% to built-up areas, 0.07% to water surfaces, and 0.67%
to non-agricultural/non-forest areas. Of the water surface areas, 95.26% were preserved,
with 1.22% converting to built-up areas, 1.11% to agricultural areas, 2.18% to forest areas,
and 0.23% to non-agricultural/non-forest areas. Of the non-agricultural/non-forest areas,
31.41% were preserved, with 37.55% converting to built-up areas, 30.73% to agricultural
areas, 0.27% to forest areas, and 0.04% to water surfaces. A summary of all these changes is
provided in Figure 14.
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3.3. Urban Growth Simulation Results

As the first step, the simulated LULC map for the year 2017 was obtained using the
LR algorithm learned from the LULC maps of 2007 and 2012. The reason for taking this
step retrospectively related to the need to calculate the consistency between the simulated
LULC map and the LULC map obtained from classification. The overall overlap ratio
between these two maps was calculated as 0.72. It was found that there was a difference of
109.35 hectares in built-up areas, 6913.98 hectares in agricultural areas, 10,227.4 hectares in
forest areas, 373.5 hectares in water surfaces, and 17,405.5 hectares in non-agricultural/non-
forest areas between the simulated LULC map and the classified LULC map. The LULC
map for the year 2017 obtained from classification and simulation is shown in Figure 15.
Table 7 presents the distribution difference of LULC classes between these two maps.
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Table 7. Difference in area class distribution between 2017 classification and simulation LULC maps.

Classified LULC Area (ha) Simulated LULC Area (ha) Difference Difference (%)

Built-up Areas 49,303.26 49,193.91 109.35 0.2%
Agricultural Areas 124,526.34 131,440.32 −6913.98 −5.5%

Forest Areas 35,332.11 45,559.53 −10,227.42 −28.9%
Water Surfaces 1219.05 1592.55 −373.5 −30.6%

Non-Agricultural and Non-Forest 20,296.53 2890.98 17,405.55 85.7%
Sum 230,677.29 230,677.29

Similarly, the LR algorithm trained from the LULC maps of 2012 and 2017 was used to
obtain the simulated LULC map for the year 2022. The overall overlap ratio between these
two maps was calculated as 0.70. It was found that there was a difference of 657.27 hectares
in built-up areas, 5017.23 hectares in agricultural areas, 9918.63 hectares in forest areas,
43.56 hectares in water surfaces, and 5515.11 hectares in non-agricultural/non-forest areas
between the simulated LULC map and the classified LULC map. The LULC map for
the year 2022 obtained from classification and simulation is shown in Figure 16. Table 8
presents the distribution difference of LULC classes between these two maps.
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Figure 16. LULC maps obtained from the 2022 classification (left) and simulation (right).

Table 8. Difference in areal class distribution between 2022 classification and simulation LULC maps.

Classified LULC Area (ha) Simulated LULC Area (ha) Difference Difference (%)

Built-up Areas 44,174.07 43,516.8 657.27 0.014%
Agricultural Areas 139,444.56 144,461.79 −5017.23 −3.5%

Forest Areas 30,141.36 20,222.73 9918.63 32.91%
Water Surfaces 716.58 760.14 −43.56 −6.08%

Non-Agricultural and Non-Forest 16,200.72 21,715.83 −5515.11 −34.04%
Sum 230,677.29 231,677.29

Due to the satisfactory overlap ratio obtained in the step-by-step simulation process,
it was deemed appropriate to generate the LULC simulation for the year 2027 using the
same technique. The LR algorithm trained from the LULC maps of 2017 and 2022 was
used to obtain the simulated LULC map for the year 2027. The objective here was to
quantitatively determine how LULC classes will change over the next five years in the
Mersin Metropolitan Area and to depict urban expansion. The LULC map for the year 2027
obtained from simulation is shown in Figure 17. Table 9 presents the area covered by LULC
simulation classes in 2027 and the proportion of the study area they occupy.
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Table 9. Areal distribution of simulated LULC map for the year 2027.

Total Area (ha) Distribution (%)

Built-up Areas 36,008.28 15.61
Agricultural Areas 163,440.27 70.85

Forest Areas 21,286.44 9.23
Water Surfaces 588.96 0.26

Non-Agricultural and Non-Forest 9353.34 4.05
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3.4. Evaluation of Prospective Urban Growth Considering the Suitability of Urban Land Use

With the acquisition of the simulated LULC map for the year 2027, a simulation of
urban growth in the Mersin Metropolitan Area has been developed. However, the main
research question of this study was to determine the suitability of urban areas where this
urban growth will occur. Therefore, it was necessary to overlay the urban land suitability
map obtained through the AHP method with the 2027 LULC map in a GIS environment.
In this overlaid map, the pixels emerging as newly urbanized areas during the period
2022–2027 were classified in terms of urban land suitability. This map is depicted in
Figure 18. In this map, red pixels indicate the least suitable potential urbanization areas,
while green pixels indicate the most suitable potential urbanization areas. Table 10 displays
the spatial distribution of the areas projected for urbanization according to urban land
suitability classes for the period 2022–2027 simulation. Accordingly, 2247.3 hectares of
potential new urbanization areas demonstrated very suitable suitability for settlement,
while 7440.12 hectares exhibited very low suitability.

Table 10. Urban land use suitability classification of possible development areas for the period
2022–2027.

Suitability Total Area (ha)

Very Low Suitability 7440.12
Low Suitability 11,938.14

Marginally Suitability 6314.49
Moderately Suitability 7561.44

Highly Suitability 2247.3
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4. Discussions

Urban growth and economic development are concepts deeply intertwined yet distinct
in urban studies, often analyzed through various theoretical frameworks. Urban growth,
rooted in urban morphology theories like the concentric zone model by Burgess and the sec-
tor model by Hoyt, primarily pertains to the physical expansion of cities, quantifying spatial
dimensions such as population increase, infrastructure development, and built-up areas.
Economic development, however, is viewed through lenses like modernization theory and
dependency theory, focusing on broader aspects of prosperity and well-being within urban
areas. While urban growth signifies the physical expansion of a city, economic development
assesses improvements in income levels, employment opportunities, and overall economic
productivity. This distinction is crucial as urban growth may occur without commensurate
economic development, leading to challenges like urban sprawl and infrastructure strain,
while robust economic development can transpire in cities without significant physical
expansion, fostering sustainable and inclusive growth. Hence, a nuanced understanding
of these concepts is crucial for formulating effective urban policies aimed at promoting
holistic urban development.

In our study, we aimed to underscore the significance of urban growth in the Mersin
Province following a period of substantial economic advancement. The objective was to
discern whether the current and prospective urban land use patterns are sufficiently aligned
to sustain such economic growth. By investigating the dynamics of urban expansion in
tandem with economic development, we sought to shed light on the spatial implications of
the province’s prosperity and the extent to which existing land use practices can accom-
modate future growth trajectories. This analysis holds pivotal importance in informing
urban planning strategies and policy interventions geared towards fostering sustainable
and resilient urban development in Mersin, ensuring that the province’s economic mo-
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mentum is supported by a robust and adaptive urban landscape. Therefore, in this study,
an analysis of the current situation in Mersin province has been conducted, focusing on
the suitability of urban settlements. Additionally, this study attempted to identify future
potential urbanization areas using remote sensing and GIS technology.

Mersin, which was a small agricultural and fishing town at the end of the Ottoman pe-
riod, became an international strategic trade route after a railway line was established with
the Adana province, the most important agricultural production center of the Çukurova
region in which it is located. These investments prioritized the Adana and Mersin regions
as the primary industrial and commercial zones in the first development plans of the
period, and the morphology of the developing city was planned and implemented by Her-
mann Jansen, one of the important urban planners of the period. Planned to be one of the
modern cities of the young republic, Mersin, with the completion of the port construction
in the 1960s and the industrial investments made in the region, became a growing city.
The inadequacy of the existing housing stock became prominent due to the migration it
received from rural areas of the country. In order to solve the emerging housing problem, a
rapid housing construction policy known as the Build-Sell policy was pursued, and the
city’s growth was built on grid-iron formations parallel to the coastline in the western
direction. However, these policies could not prevent informal urbanization with fractional
parcelization along the belt surrounding the city center, and the formation of a dichotomous
urban form became inevitable. After this point, the city’s population growth rate almost
doubled, and the city gained an important position both in the country and in the global
economy. By the 2000s, the improvement policies in the highway network seen throughout
the country found a response with the opening of the Mersin–Adana highway to traffic.
Industrial investments supported the urban economy through the port-Free Zone-Railway
and Highway transportation network and paved the way for significant investments in the
north of the city. While industrial investments found a place in the north of the city, the
existing housing stock progressed westward along the coastline for more than 15 km, and
the foundation of the city’s current form was shaped with the migration of the neighbor-
hoods on the slopes of the Taurus Mountains, where low-density detached houses were
located, to urban life. The growth and transformation of cities became inevitable to meet
the housing, health, education, and other needs of the increasing population within the city.

The latest development plan of Turkey includes the agricultural sector under the title
“Priority Development Areas”. Under the policies and measures seen in subheadings of
Article 405 of this plan, the aim is to ensure the conservation, efficient use, and management
of agricultural lands. This study shows that through the classification of satellite images
of the current LULC situation and the modeling of future land use and cover through
simulation techniques, analyses can be conducted to assist in regulating and monitoring
measures that will reduce the pressure of non-agricultural land use on agricultural lands.
It will be possible to visually demonstrate in which direction and to what extent the
existing/predicted land use and urban sprawl affect the agricultural lands. Examination of
the results of these analyses with central and local authorities responsible for formulating
land management policies and preparing agricultural land use plans will contribute to the
planning of agricultural land use in Turkey in line with sustainable development goals, the
preservation of agricultural land while observing conservation and utilization principles,
and increasing international branding and competitiveness.

5. Conclusions

This study has demonstrated the efficacy of integrating AHP, GIS, and machine
learning techniques to assess urban land suitability and forecast future urban growth
in the Mersin Metropolitan Area. Through the generation of an urban land use suitability
map and simulation of urban growth scenarios, valuable insights have been gleaned for
sustainable urban development planning.

Key findings reveal spatial patterns of land suitability, highlighting areas with varying
degrees of suitability for urbanization. The analysis underscores the importance of consid-
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ering diverse criteria such as topography, accessibility, soil capability, and geology in urban
planning processes to ensure informed decision-making. Crucially, the study elucidates
the potential impacts of future urban growth on the landscape, facilitating the identifica-
tion of suitable areas for development while minimizing environmental degradation and
preserving natural resources.

GIS and remote sensing technologies play a vital role in urban growth and land use
suitability research. These tools enable researchers to collect, analyze, and visualize spatial
data, providing valuable information on land use patterns, environmental changes, and
demographic trends. By integrating GIS and remote sensing techniques, researchers can
conduct comprehensive spatial analyses and identify suitable areas for urban development.
These technologies also facilitate the monitoring of urban growth over time and support
the formulation of strategic plans for future development.

Despite its contributions, this research has several limitations that should be acknowl-
edged. One limitation is the challenge of data acquisition, particularly in obtaining accurate
and comprehensive datasets for analysis. The resolution of available data sources may also
affect the scale and scope of the research. Additionally, the exclusion of certain criteria, such
as fault line datasets, may limit the comprehensiveness of the analysis. These limitations
underscore the need for continued efforts to improve data quality and accessibility in future
research endeavors.

Future studies in urban growth and land use suitability research should address the
limitations identified in this research and explore new avenues for analysis. Incorporating
additional criteria, such as vertical growth considerations and climate change data, can
enhance the comprehensiveness of future studies. Moreover, expanding the scope of
analysis to include qualitative assessments and societal implications will provide a more
holistic understanding of urbanization processes. Continued advancements in GIS and
remote sensing technologies will also offer opportunities for conducting more detailed and
accurate spatial analyses.
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