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Abstract: In this paper, we propose a method for establishing if a variable is capable of modifying the
Macroscopic Fundamental Diagram (MFD) of a street network. The variables have many different
configurations, and a simulation is performed for each one. Then, based on the output data of
each simulation, the representative speed, density, and flow of the network are calculated. We use
three metrics to establish if a variable affects the MFD: the first establishes a distance between the
compared density and speed patterns, the second establishes a distance between capacities, and the
third establishes a distance between critical densities. We select four variables to test our method: the
precision of driving, the vehicles’ top speeds distribution, the procedure for selecting routes, and the
procedure for selecting destinations; we determine whether each of these variables can modify the
MFD shape. Additionally, we detect which configurations of a variable are able to reach and exceed
the critical density (causing congestion) so we can establish which configurations are sustainable
and which are not. The novelties of this work are twofold: (1) we introduce a method to detect if a
variable modifies the MFD; (2) we establish if the selected variables modify the MFD.

Keywords: MFD shape; capacity; critical density; driving imperfection; vehicles top speeds distribution;
selecting routes; origin–destination table; density vs. speed pattern

1. Introduction

The traffic performance of a network, based on traffic metrics that describe the whole
network, is investigated via the macroscopic fundamental diagram (MFD). Proof of its
existence (independently of the demand) is described in [1]. Some important findings of
references [1–3] are that the MFD is a property of the network itself (i.e., its control and
infrastructure) and not of the demand, and that the maximum flow is associated with a
density value (the critical density) independently of the origin–destination table. In [3], the
network MFD presents less scatter than the one that focuses on individual links. Also, the
MFD reveals a well-defined, smoothly declining curve, considering the speeds and densi-
ties observed at different times of day and between multiple days. In [4], it was observed
that when the flow vs. speed data of individual fixed detectors were aggregated, the scatter
nearly disappeared in the resultant plot (a well-defined curve). Also, regularity conditions
were proposed (though they were determined to be not necessary) in relation to the exis-
tence of the MFD. These included (i) slow-varying and distributed demand, (ii) a redundant
network (with several route options), (iii) a homogeneous network (with similar links), and
(iv) links with an approximate fundamental diagram. The relationship between production
(average flow) with accumulation (average density) and the spatial inhomogeneity of
density is presented in [5]. In this paper, the authors explain the nucleation effect (in which
congestion concentrates in the bottlenecks that first appear and then propagates from these
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bottlenecks) and presents the relation of the standard deviation of density to production
and with accumulation. If simulations start with homogeneous distribution of vehicles,
uniform demand, and the same control for traffic lights, different spatial distribution of
congestion can be observed due to the randomized turning of vehicles at intersections [6].
A sufficient condition for the existence of low-scatter MFD in arterial networks is described
in [7]: if the spatial distribution of link density is the same for two time intervals with
the same number of vehicles in the network, then the average flows should also be the
same; nevertheless, no well-defined MFD was observed for the freeway network study
case. Freeway networks do not have well-defined MFDs (density vs. flow) [8]. Freeway
networks are different from arterial networks because they do not have traffic signals, are
not redundant, and because of their transient states. The identified causes for freeways
being hysteretic and path-dependent were different spatial heterogeneity in vehicle density
in the onset and offset of congestion and capacity drop phenomena during the congestion
offset (with lower flows at occupancy values near the critical point). The MFD on freeways
was investigated in [9]. the relationship between vehicle hours traveled (VHT) and vehicle
kilometers traveled (VKT) presents a well-defined shape (with no scatter) if all the links,
and all the lanes of each link, are in the same regime (congested or uncongested); as the
best performance (the higher VHT) on a freeway happens when all links (and all lanes)
are under the same regime, policies to homogeneously spread congestion can be useful
for maximizing the number of completed trips. The existence of well-defined MFDs was
observed through clustering the zone under study in [10]. The partitioning mechanism con-
sisted of applying three algorithms: segmenting, merging, and boundary adjustment. The
resultant clusters had low density variation in the links and high spatial compactness. The
time-varying nature of travel demands can induce scattering in the MFD, and appropriate
boundary conditions (adjustments in the rationing of travel demand) are required to obtain
a well-defined MDF, as demonstrated in [11]. In another study, two stochastic fundamental
diagram (SFD) models with lognormal and skew-normal distributions were developed to
account for the scattering effect during traffic state variations [12].

The MFD describes the behavior of a network in terms of its density, speed, and flow; if
a network has a MDF (i.e., the relationships between traffic indicators present well-defined
shapes), it can be used to identify the current conditions, to project future conditions, and
to implement (control) actions that benefit the network’s traffic performance. Nevertheless,
a network does not always present a well-defined MFD, and a hysteresis effect may be
observed. An event that leads drivers to use unfamiliar routes can cause a hysteresis loop
in the MFD [13]; during congestion recovery, a lesser flow is experienced compared to that
observed during the congestion stage, since the more congested areas recover more slowly
than those that are less congested. The effects of the hysteresis loop can be mitigated if
drivers adaptively select routes. An incident originating a non-homogeneous congestion
evolution in the network space can produce a hysteresis-like effect [14]. If an incident
occurs in the centermost part of the surface streets, the hysteresis effect will not be visible
in the MFD, but incidents that occur at other locations in the surface streets will be visible.
Therefore, it was found to be convenient to separate surface streets (which were separated
by the centermost streets and the rest) and highways (which were separated by penetrating
roads and ring roads) in order to obtain MFDs with low scatter. The hysteresis phenomenon
is explained as a consequence of departure time choices and user equilibrium in [15].

The MFD shape has been described using different methods. The MFDs obtained using
the analytical method, the production method (based on the vehicles’ trajectories), and
using loop detectors were compared in [16]. An algorithm that combines the data obtained
with loop detector data (LDD) and floating car data (FCD) to estimate the MFD is presented
in [17]. The problem of defining the MFD with probe vehicles when the penetration market
rate of these varies regionally within a network was solved in [18]. Methods to estimate
the MFD were compared and presented in [19]. The analytical method is suitable for
an urban corridor and homogeneous loadings, and the typical route method was found
to be adequate to obtain the network MFD in a grid network. A comparison between
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the method of cuts (MoC) and the stochastic approximation (SA) was implemented to
analytically obtain the MFD in [20]. The MoC (a deterministic method) accurately found the
upper bound of the MFD, whereas the SA (a stochastic method) provided a more accurate
approximation of the MFD free-flow branch. A validity domain (and the inaccuracies)
of the accumulation-based model when demand varied rapidly is described in [21]. The
production with the accumulation and the spatial spread of density was modeled in [22].
The model describes the so-called generalized macroscopic fundamental diagram (GMFD).
A functional form of the MFD called the uMFD (a smooth approximation of an upper
bound of technologically feasible traffic states) was introduced in [23]; the uMFD fits the
MFD’s empirical data through a trapezoidal shape, with four parameters considered to
be physically meaningful. A novelty of this method is its use of the smoothing parameter,
which allows quantification of the flow-reducing factors (infrastructure effects, vehicles
interaction, and traffic heterogeneity). A two-step MFD calibration framework was used to
select the form and to estimate parameters in [24].

Recently, the study of the MFD has been complemented by identifying the variables
that modify the shape of the MFD. Interesting conclusions about the factors that affect the
MFD shape were drawn in [25], which stated that ramp metering affects the MFD. When
ramp metering was implemented, higher flows were observed for accumulation values after
capacity, and without it, higher accumulation values were reached. The onset and offset of
congestion can produce loops (even more than one), and rapid changes in demand affect the
MFD. When the demand decreased sharply, lower flows were observed in the congestion
recovery than during the congestion evolution (when accumulation was increasing). A
bifurcation in the MFD (average network density vs. average network flow) was detected
(considering weekdays) in [26]; in the MFD, a pattern in the morning peak and a different
pattern in the evening peak could be distinguished. The identified cause of the bifurcation
was that in the morning, drivers follow an efficient path (likely because they are going to
work), and in the evening drivers take detours. In an arterial signalized intersection, a
different capacity value was observed in the AM peak than in the PM peak [27]. The reasons
for this were the ratio between green time and the traffic cycle time, signal coordination,
and turning movements. Also, it was found that the scatter in the arterial fundamental
diagram (AFD, represented as occupancy vs. flow) disappears if the Queue-Over-Detector
(QOD, which is the phenomenon in which a vehicle is over the detector because the queue
formed during the red time) is removed. In the absence of QOD, a stable AFD appears with
three identifiable regimes: under-saturation, saturation, and over-saturation. The result of
modifying the cycle length (or the offset) is that the MFD capacity changes [28]. The relation
between accumulation and the trip completion rate was investigated in [29], an analytically
derived Markov Chain framework was proposed to explain aggregate network dynamics,
which was capable of accounting for uncertainties. The shape of an MFD (traffic density per
unit of area vs. space mean speed over a time period) depends on the network’ topologies,
as was evidenced in [30] with 63 networks; the space mean speed was explained with the
macroscopic Underwood model, which has as parameters the free-flow space mean speed
and the optimal traffic density per unit of area. These are explained in turn with the average
number of junctions per unit distance (which captures the stop-and-go frequency of the
vehicles) and with the degree density normalized by the trafficable area (which captures
the intensity of conflicts between vehicles), respectively. The relation between the MFD
properties and the structure of the road network is described [31]. The effects of signal
coordination on the MFD were investigated in [32], which stated that the impacts of the
strategies were sensitive to the signal cycle length chosen (60 s, 90 s, 120 s), and a poor
signal coordination reduces the network capacity and the free-flow speed. Other variables
that affect the MFD include junction regulation [33], traffic signals [34–36], network spatial
characteristics [37], buses [38], large-scale activities [39], autonomous vehicles [40–43],
turning traffic [44], rainfall [45], ride pooling [46], bicycle traffic [47], traffic incidents [48],
the position of the loop detectors [49], and network heterogeneity [50].
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As presented in the literature above, there are a lot of variables that can impact the
MFD. However, a method to establish if a variable has impacts on the MFD is lacking.
Moreover, it has yet to be determined which variables from a selected set affect the MFD.
Thus, the aim of this work is to design a method to determine if a proposed variable
modifies the MFD shape. A brief introduction of the method is as follows. For each variable
selected, an experiment is conducted. During each experiment, a simulation is performed
for each value (or configuration) the variable takes, and a MFD model is constructed with
the aggregated data from each simulation. We compare the simulations by establishing
a metric distance between density vs. speed patterns, between capacities, and between
critical densities. The metrics are compared with thresholds values (these can be adjusted
in order to increase or decrease the level of similarity pursued) and based on the global
results, it can be concluded if a variable affects the MFD or not. If the latter applies, it means
that (approximately) a unique MFD exists (density vs. speed, speed vs. flow, and density
vs. flow) with the aggregated data from simulations (each performed with a different
configuration of the variable) and that it can be used to describe the traffic.

Research Questions

As the study of the MFD is still underway, it has yet to be completely determined
which variables affect the MFD shape of a network. Therefore, it becomes important to
establish a method which allows us to analyze if a variable modifies the MFD shape. Thus,
our research questions are as follows:

1. What method can be used to analyze if a variable modifies the MFD shape of a street
network?

2. Are the precision of driving, the vehicles’ top speeds distribution, the procedure for
selecting routes, and the procedure for selecting destinations variables that modify
the MFD shape?

2. Materials and Methods
2.1. Simulator

In this study, we perform four experiments. In each experiment, a specific variable
takes different values, and one simulation is performed for each value. To carry out the
simulation, we use the Simulation of Urban Mobility (SUMO) version 1.15.0, a software
which allows us to continuously simulate vehicular traffic at the microscopic level. We chose
SUMO because it is a software that is open-source, free, and supports a space-continuous,
time-discrete approach. In [51], the authors present simulations from three simulators
(SUMO, VISSIM, and TRANSIMS), and the advantages and disadvantages of each are
described. SUMO is used to create scenarios with different demand variations and supply
disruptions in [52], in which the authors propose new indicators derived from the MFD to
assess the traffic resilience in light of transportation system disruptions.

2.1.1. Vehicles Parameters

The default values of the vehicles’ parameters within the simulations are described in
this section. By default, sigma = 0.5 which is the driver imperfection. It varies in the range of
0 to 1, with 0 indicating perfect driving and 1 indicating the opposite. By default, speedFac-
tor = “normc(mean,deviation,lowerCutOff,upperCutOff)” = “normc(1,0.1,0.7,1.3)”, where
speedFactor is a value that comes from a normal distribution with mean = 1, standard
deviation = 0.1, lowerCutOff = 0.7, and upperCutOff = 1.3. The top speed of a vehicle is
calculated as top_speed = normal_speed × speedFactor, with normal_speed = 16.6666 m/s,
and speedFactor being a value in the range 0.7 to 1.3. In this study, the parameters sigma
and speedFactor are selected and an experiment is performed for each. Thus, sigma is
associated with the precision of driving in one experiment and speedFactor is associated
with the vehicles’ top speeds distribution in other. These variables take different values in
the simulations of their respective experiments.
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The default values of the following parameters never change: vClass = “passenger”,
length = 5 m (the vehicle length), minGap = 2.5 m (the minimum gap between vehicles
at rest), accel = 2.6 m/s2 (acceleration ability), decel = 4.5 m/s2 (deceleration ability),
emergencyDecel = 9 m/s2 (emergency deceleration), and tau = 1 s (the driver’s desired
minimum time headway). The parameter vClass = “passenger” indicates that the default
SUMO parameters’ values for a passenger car (presented above) will be used; sigma and
tau are parameters of the Krauß Car-following model (with modifications), which is the
default Car-following model in SUMO.

Our intention is to select the parameters’ values so likely traffic conditions can emerge.
For this reason, we choose the default SUMO parameters’ values as the base configuration
for the simulations. Nevertheless, the parameters can be adjusted with empirical data for
modeling observed traffic.

2.1.2. Routes and Destinations

By default, in a simulation, the vehicles’ routes are selected by considering the links’
travel times, which are calculated using the speed measurements of the previous period
(1 period = 90 s). SUMO uses the Dijkstra algorithm to calculate the route with the shortest
travel time. Also, by default, the origin–destination (OD) table is generated considering
that each destination has the same probability of occurring, and it is guaranteed that each
destination will be selected the same number of times. We consider the procedures for
selecting routes and destinations as variables based upon which to perform experiments.
Then, in one experiment, we manipulate the procedure for generating routes, i.e., we
change the configuration of this variable, and in another we manipulate the procedure for
generating destinations.

2.1.3. Network Speed

In a simulation, every 90 s (considering steps of 1 s to acquire data), we compute the
network speed, density, and the flow of each link to build the network’s MFD. The speed
on link x at time t is calculated using Equation (1),

INST_speedx
t =

1
Nx

t
∑i=Nx

t
i=1 veh_speedt

i (1)

where Nx
t is the number of vehicles on link x at time t and veh_speedt

i is the speed of the i
vehicle at time t. The representative speed of link x at period T is named PER_speedx

T and
is calculated using Equation (2) (expressed as pseudocode),

PER_speedx
T = 0; k = 0

For t = t1 to t = t2 :
if Nx

t > 0 :
PER_speedx

T = PER_speedx
T + INST_speedx

t
k = k + 1

PER_speedx
T = PER_speedx

T/k (2)

where k is the number of INST_speedx
t measurements in the period T (ranging from t1

to t2) for which Nx
t > 0. When a simulation starts, the time is initiated at 0 s. The first

period (T = 1) considers the period of time in the range [1 s, 90 s], the second period (T = 2)
considers the period of time in the range [91 s, 180 s], and so on (units in seconds). Any
period considers 90 steps of 1 s. Each 1 s (a time step) is attempted to calculate INST_speedx

t ,
and therefore the maximum value of k can be 90. Finally, the network’s speed at period T is
calculated using Equation (3),

NET_speedT =
1
M∑x=M

x=1 PER_speedx
T (3)
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where M is the number of links considered for the analysis. The network speed, i.e.,
NET_speedT, is the representative speed of the network at period T.

2.1.4. Network Density

The density on link x at time t is calculated using Equation (4),

MEAS_densityx
t = Nx

t /(link_lanesx ∗ link_lengthx) (4)

where Nx
t is the number of vehicles on link x at time t, link_lanesx is the number of lanes of

link x, and link_lengthx is the length of link x. The density of link x at period T is named
PER_densityx

T and is calculated using Equation (5) (expressed as pseudocode):

PER_densityx
T = 0; k = 0

For t = t1 to t = t2 :
if Nx

t > 0 :
PER_densityx

T = PER_densityx
T + MEAS_densityx

t
k = k + 1

PER_densityx
T = PER_densityx

T/k (5)

where k is the number of MEAS_densityx
t measurements in the period T for which Nx

t > 0.
The network density at period T is calculated using Equation (6),

NET_densityT =
1
M∑x=M

x=1 PER_densityx
T (6)

2.1.5. Network Flow

The flow of link x at period T is calculated using Equation (7),

PER_flowx
T =

1
90∑t=90

t=1 MEAS_flowx
t (7)

where MEAS_flowx
t is the number of vehicles on link x at time t that were not on link x at

time t − 1. The network flow at period T is calculated using Equation (8),

NET_flowT =
1
M∑x=M

x=1 PER_flowx
T (8)

2.2. Experiments

We perform four experiments. For each one, a variable is selected to determine
if the variable affects the shape of the MFD. In each experiment, the selected variable
takes a different value (or configuration) for each simulation and the output data of the
simulations are prepared for comparison. In the simulations of any experiment, there is
an input flow during 5 h (or 200 periods, since a period = 90 s, and 5 h = 200 periods);
from period 1 to period 40 (phase one), every 10 s, a vehicle arrives at each network
entrance (low_flow = 0.1 veh/s per entrance); from period 41 to period 80 (phase two),
every 8 s, a vehicle arrives at each entrance (medium_flow = 0.125 veh/s per entrance);
from period 81 to period 200 (phase three), every 6 s, a vehicle arrives at each entrance
(high_flow = 0.1666 veh/s per entrance). The output data of a simulation are modeled with
a linear equation for the network density vs. network speed pattern and with a second-
degree polynomial for the network speed vs. network flow and for the network density
vs. network flow patterns, the equations are solved using the least squares technique. In
the Supplementary Materials section, it can be found the link to the data and codes to
reproduce our experiments.
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2.2.1. Experiment 1: The Precision for Driving

In this experiment, we performed three simulations. In simulation 1, the parameter
sigma = 0; in simulation 2 sigma = 0.5; in simulation 3, sigma = 1. At this point, it should
be mentioned that sigma = 0.5 (in between perfect driving and the most imperfect driving)
is comparable with human driving behavior [41]. The network density vs. network speed
pattern (for any simulation) was modeled with a linear equation of the form y = ax + b
and solved with regression analysis, where a and b are parameters, x = network density
and y = network speed; the network speed vs. network flow pattern (for any simulation)
was modeled with a polynomial equation of the second degree, i.e., y = x2a+ xb+ c which
was solved with regression analysis, where a, b, and c are parameters, x = network speed
and y = network flow. The network density vs. network flow pattern (for any simulation)
was modeled with a polynomial equation of the second degree, i.e., y = x2a+ xb+ c which
was solved with regression analysis, where a, b, and c are parameters, x = network density
and y = network flow. To model the three patterns for any simulation, we considered a
range of periods [3, 202], since at the beginning of a simulation, links are starting to fill up,
whereas they become empty towards the end.

Hereafter, simulation 1 is abbreviated as S1, simulation 2 is S2, and simulation 3 is
S3. We establish if network density vs. network speed (DS) patterns are similar using
Equation (9), which is presented with the example for calculating the distance between the
modeled DS patterns of simulation 1 and simulation 2,

DS1S2
speed =

1
N∑i=N

i=1

∣∣∣yS2
i − yS1

i

∣∣∣ (9)

where N is the number of points selected in the x-axis (network density values), i is the
index for N values, superscripts S1, S2, and S3 stands for simulation 1, simulation 2,
and simulation 3, respectively; then DS1S2

speed is the speed distance between the modeled
DS patterns of S1 and S2. In Equation (9), we can see the absolute value of the difference
between the modeled network speed values of S1 and S2 for a certain network density value.
As we are comparing S1 and S2, the x-axis values set of S1 is RS1 =

{
xS1

1 , xS1
2 , . . . xS1

N1
}

and
the x-axis values set of S2 is RS2 =

{
xS2

1 , xS2
2 , . . . xS2

N2
}

. With N1, for the number of network
density values of S1 and N2 the number of network density values of S2, the values of
these sets are ordered from the lowest to the highest. The x-axis set of values for comparing
the y-axis values of S1 and S2 is {x1, x3, . . . , xN} =

{
x : x ∈ RS1 ∪ RS2 and x1 ≤ x ≤ xN

}
,

where x1 = max
(
xS1

1 , xS2
1
)

and xN = min
(
xS1

N1, xS2
N2

)
.

Based on Equation (9), we compare the DS patterns of two simulations. We compare
S1 with S2, S2 with S3, and S1 with S3. When comparing the DS patterns of two simulations,
a condition rule is established that depends on a threshold value. This value is intended
to be flexible so it can be set according to the needs of an investigation (providing the
rigor needed to distinguish DS patterns). We establish that if Dspeed ≤ 1 m/s (in this
example, the threshold value is 6% of the normal_speed, i.e., 16.66 m

s ∗ 0.06 ∼= 1 m
s ) the

following is true: there is no significant difference between the patterns. If Dspeed > 1 m/s,
there is a significant difference between the patterns. In addition, we define the differ-
ence in capacities between two simulations as DS1S2

flow =
∣∣∣capacityS2 − capacityS1

∣∣∣ and the

difference in critical densities as DS1S2
density =

∣∣∣critical_densityS2 − critical_densityS1
∣∣∣, where

capacityS is the maximum network flow from the modeled data of simulation S and
cricital_densityS is the corresponding network density at capacity, with S = {S1, S2, S3}.
We define two additional rules and select the threshold values. If Dflow ≤ 0.01 veh/s,
there is no significant difference between the capacities of the simulations compared.
The opposite is true if Dflow > 0.01 veh/s; in this case, the threshold value is the 6% of
high_flow, i.e., 1 veh

6 s × 0.06 ∼= 0.01 veh
s . If Ddensity ≤ 0.002 veh/m, there is no significant

difference between the critical densities of the simulations compared. The opposite is true
if Ddensity > 0.002 veh/m; in this case, the threshold value is 20% of the high_flow divided
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by the normal_speed, i.e.,
(

1 veh
6 s /16.66 m

s

)
× 0.2 ∼= 0.002 veh

m . We establish that the MFDs of
the compared simulations are dissimilar if at least two of the following three conditions are
true: Dspeed > 1 m/s, Dflow > 0.01 veh/s, and Ddensity > 0.002 veh/m.

2.2.2. Experiment 2: The Vehicles’ Top Speeds Distribution

In this experiment, we performed three simulations. In the first simulation, the pa-
rameter speedFactor was set at “normc(1.15,0.05,1,1.3)”; in the second simulation, it was
set at speedFactor=“normc(1,0.1,0.7,1.3)”; in the third simulation, it was set at speedFac-
tor=“normc(0.85,0.05,0.7,1)”. S2 includes the widest range of top speeds, thus delivering a
realistic situation for traffic conditions.

2.2.3. Experiment 3: The Procedure for Selecting Routes

In this experiment, we performed three simulations. In the first simulation, the
vehicles routes were chosen with the links’ travel times calculated every 90 s based on
the links speeds of the previous period, i.e., travel_timex

T = link_lengthx/PER_speedx
T−1,

with travel_timex
T being the representative travel time of segment x at any time t be-

longing to period T. In the second simulation, the links’ travel times were calculated
every 90 s considering the links’ speeds of the previous two periods, i.e., travel_timex

T =
link_lengthx/

(
(PER_speedx

T−1 + PER_speedx
T−2

)
/2). In the third simulation, the travel

time of each segment was a constant, so travel_timex
T = link_lengthx/normal_speed for

any T. For all simulations, the route of a vehicle was computed using the Dijkstra algorithm,
which selects the route with the shortest travel time.

2.2.4. Experiment 4: The Procedure for Selecting Destinations

In this experiment, we performed three simulations. In S1, each destination had the
same likelihood of being selected and it was guaranteed that each destination would be
selected the same number of times. In S2, each destination had the same likelihood of
being selected but it was not guaranteed that each destination would be selected the same
number of times. Destinations with the same probability of being selected could favor (to
some extent) the uniform distribution of vehicles in the network links (a desirable traffic
situation). In S3, we randomly selected, in the range [0.5, 1], the probability of occurrence
of each destination (i.e., a destination with a probability = 0.5 has the half of likelihood of
occurring when compared to a destination with a probability = 1), so the probabilities of
the destinations with ID 0 to ID 14 were 0.7, 0.7, 1.0, 0.6, 0.6, 1.0, 1.0, 0.8, 0.9, 0.8, 1.0, 0.7,
0.8, 0.5, 0.5, respectively. Then, the vehicles were assigned a destination according to the
probabilities we set for that simulation.

3. Results and Discussion
3.1. Results and Discussion of Experiment 1

Figures 1–3 present the period index vs. network speed, period index vs. network
density, and period index vs. network flow, respectively; in these Figures, the black dots
represent the data from simulation 1, the blue circles represent the data from simulation 2,
and the red crosses represent the data from simulation 3.

Figures 4–6 show the network density vs. network speed, network speed vs. network
flow, and network density vs. network flow, respectively. These Figures present the data of
each simulation. In addition, green dots represent the modeled pattern with the data of
simulation 1, green circles represent the modeled pattern with the data of simulation 2, and
green crosses represent the modeled pattern with the data of simulation 3.

We obtain DS1S2
speed = 0.6592 m/s, DS2S3

speed = 0.7956 m/s, and DS1S3
speed = 1.4486 m/s, and

therefore a sigma difference of 0.5 does not modify the DS pattern, but a sigma difference
of 1 modifies the DS pattern. The DS patterns between S1 and S2 are similar, the DS pat-
terns between S2 and S3 are similar, and the DS patterns between S1 (with sigma = 0) and
S3 (with sigma = 1) are dissimilar. DS1S2

flow = |0.138787− 0.134236| = 0.00455 veh/s, DS2S3
flow =

|0.134236− 0.119678| = 0.014557 veh/s, and DS1S3
flow|0.138787− 0.119678| = 0.019108 veh/s,
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hence the capacities of S1 and S2 are similar, the capacities of S2 and S3 are dissimilar, and the
capacities of S1 and S3 are dissimilar. DS1S2

density = |0.018376− 0.0202025| = 0.001826 veh/m,

DS2S3
density = |0.0202025− 0.0258002| = 0.005597 veh/m, and DS1S3

density|0.018376− 0.0258002| =
0.007424 veh/m, hence the critical densities of S1 and S2 are similar, the critical densities of
S2 and S3 are dissimilar, and the critical densities of S1 and S3 are dissimilar. The results
presented above are summarized in Table 1. According to these results, the precision for
driving (sigma) is a variable that can affect the MFD; the MFDs between S2 and S3, and
between S1 and S3, are dissimilar.
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In Table 2, the mean (AVG) and standard deviation (STD) of the network speed,
network density, and network flow for simulations S1, S2, and S3 in experiment 1 are
presented across three phases.

In Figure 4, it can be observed that as the driving imperfection is set higher (i.e., as its
value is increased from simulation 1 to simulation 3), a greater maximum density is reached,
which also implies a lower minimum speed. Then, a simulation with a higher sigma value
than other presents a lower minimum speed and a higher maximum density. In simulation
1, the maximum observed density is 0.0184 veh/m, in simulation 2, it is 0.024 veh/m,
and in simulation 3, it is 0.0388 veh/m. In simulation 1, the minimum observed speed
is 7.4179 m/s, in simulation 2, it is 6.0352 m/s, and in simulation 3, it is 3.526 m/s. The
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network density vs. network speed pattern of S1 is above the DS pattern of S2, and the
DS pattern of S2 is above the DS pattern of S3, which indicates that for the density value,
higher speed occurred in S1, followed by S2 and then S3.
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Table 1. Comparing simulations with metrics: experiment 1.

Compared
Simulations

Comparing the Speed
in a Density Range

(m/s)

Comparing Capacity
(veh/s)

Comparing
Critical Density

(veh/m)

MFDs
Comparison Verdict

S1 and S2
DS1S2

speed = 0.6592
(similar)

DS1S2
flow = 0.00455

(similar)
DS1S2

density = 0.001826
(similar)

Similar

S2 and S3
DS2S3

speed = 0.7956
(similar)

DS2S3
flow = 0.014557
(dissimilar)

DS2S3
density = 0.005597

(dissimilar)
Dissimilar

S1 and S3
DS1S3

speed = 1.4486
(dissimilar)

DS1S3
flow = 0.019108
(dissimilar)

DS1S3
density = 0.007424

(dissimilar)
Dissimilar

Table 2. Traffic indicators’ AVG and STD of S1, S2, and S3 in each phase: experiment 1.

Sim Period 1 to 40 Period 41 to 80 Period 80 to 204

Si
m

ul
at

io
n

1 AVG speed (m/s) 8.94926718872254 8.51797706960548 8.28313045186715
STD speed (m/s) 0.509450884198832 0.396801577211994 0.661450465348051
AVG density (veh/m) 0.0109832325877089 0.0129306974086639 0.0166717482607360
STD density (veh/m) 0.000890871263263841 0.000600500246470353 0.00145233179687904
AVG flow (veh/s) 0.0768888888888889 0.0995185185185185 0.130195329230631
STD flow (veh/s) 0.0132393012187418 0.00659889579912034 0.0181354198974069

Si
m

ul
at

io
n

2 AVG speed (m/s) 8.28993901306706 7.97190484356544 7.15742558895287
STD speed (m/s) 0.524544738286513 0.289676483985101 0.641752021714726
AVG density (veh/m) 0.0111114429629568 0.0132940390041025 0.0194440957389438
STD density (veh/m) 0.000932282443886002 0.000697463548430562 0.00223166553880638
AVG flow (veh/s) 0.0767777777777778 0.0993148148148148 0.130292712066906
STD flow (veh/s) 0.0133750008423410 0.00715306455474556 0.0179194442178534

Si
m

ul
at

io
n

3 AVG speed (m/s) 7.47604877652992 6.96968513152068 5.78687086950815
STD speed (m/s) 0.477964209633950 0.331662461188288 1.67627926136163
AVG density (veh/m) 0.0114605066447026 0.0145884916986345 0.0254291591795365
STD density (veh/m) 0.00105492450138108 0.000798070643991101 0.00903979438586012
AVG flow (veh/s) 0.0764259259259259 0.0988888888888889 0.0909404910528506
STD flow (veh/s) 0.0141203692027462 0.00652912889373503 0.0359795272430116

The duration of simulations 1 and 2 was from period 1 to 204, whereas for simulation
3 it took place from period 1 to 258. During the simulations, we generated vehicles during
the first 5 h (5 h = 200 periods, since 1 period = 90 s). In simulations 1 and 2, from period
200, it took an additional 4 periods (6 min) for the vehicles still circulating in the network
to leave it, whereas in simulation 3, an additional 58 periods were required (87 min), since
S3 experiences congestion (i.e., it reaches the critical density from which flow decreases;
see Figure 6). This implies that queues are formed at the entry links (not all vehicles are
able to enter the network at the time when are spawned, as dictated by the input flow)
and that the network flow goes up and down during the congestion (in a period range
when input flow = high_flow; see Figure 3). In Figure 6, it is appreciated that in S3, the
critical density is reached at 0.0258 veh/m (according to the modeled data); Figure 2 shows
that from approximately period 97 to 204 in S3, the critical density is surpassed (in that
range, if density increases, flow decreases). From period 81 (i.e., since the input flow at
each network entrance is equal to high_flow) it takes around 25.5 min (the time that elapses
between period 81 and period 97) for the congestion to emerge; in the range of periods
described in [97, 204], the speed is notoriously lower in S3 than in S1 and S2 (see Figure 1),
the density is higher (see Figure 2), and the flow is (repeatedly) lower (see Figure 3).

3.2. Results and Discussion of Experiment 2

Figures 7–9 present period index vs. network speed, period index vs. network density,
and period index vs. network flow, respectively.
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Figures 10–12 show the network density vs. network speed, network speed vs. net-
work flow, and network density vs. network flow, respectively.

The distance between the network density vs. network speed pattern of simulation 1 (in
green dots) and the pattern of simulation 2 (in green circles) is DS1S2

speed = 0.8842 m/s; between

simulation 2 and simulation 3 (in green crosses), it is DS2S3
speed = 0.6974 m/s; and between S1

and S3, it is DS1S3
speed = 1.5998 m/s. Therefore, the DS patterns of S1 and S2 are similar, the DS

patterns of S2 and S3 are similar, and the DS patterns of S1 and S3 are dissimilar. DS1S2
flow =

|0.134169− 0.134236| = 6.6999× 10−5 veh/s, DS2S3
flow = |0.134236− 0.133416| = 0.000819 veh/s,

and DS1S3
flow|0.134169− 0.133416| = 0.000753 veh/s, hence the capacities of S1 and S2 are
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similar, the capacities of S2 and S3 are similar, and the capacities of S1 and S3 are similar.
DS1S2

density = |0.018634− 0.0202025| = 0.0015685 veh/m, DS2S3
density = |0.0202025− 0.0215532| =

0.00135069 veh/m, and DS1S3
density|0.018634− 0.0215532| = 0.0029192 veh/m, hence the critical

densities of S1 and S2 are similar, the critical densities of S2 and S3 are similar, and the critical
densities of S1 and S3 are dissimilar. The results presented above are summarized in Table 3.
According to these results, the vehicles’ top speeds distribution is a variable that can affect the
MFD; the MFDs between S1 and S3 are dissimilar.
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In Table 4, the mean and standard deviation of the network speed, network density,
and network flow for simulations S1, S2, and S3 in experiment 2 are presented across
three phases.

The distribution (set with speedFactor) producing the greater percentage of higher
top speed values (greater than or equal to 16.66 m/s) is the one used in S1, followed by
S2 and finally S3. In Figure 10, it can be observed that the DS pattern of S1 is above the
DS pattern of S2, and that the DS pattern of S2 is above the DS pattern of S3. Thus, for
an x-axis value (network density) the higher y-axis value (network speed) is presented by
S1, followed by S2 and then S3. The observed maximum density value is similar for S2
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and S3. For S1, it is 0.0211 veh/m; for S2, it is 0.024 veh/m; and for S3, it is 0.0236 veh/m.
From period 200 (the last period in which vehicles were generated), in S1 it takes 3 more
periods for the network to be empty, in S2 it takes 4 more periods, and in S3 it takes 9 more
periods. Figure 12 shows that the critical density is not (clearly) reached and surpassed in
any simulation, so there is no congestion. Another indicator that no significative congestion
occurs in any simulation is that links are cleared a few periods after the last period in which
vehicles were generated. In addition, Figure 11 shows that the speed does not decrease
along the flow. Figure 8 shows that the difference in the network density is evident in a
range of phase three between S1 and S2 and between S1 and S3.

Table 3. Comparing simulations with metrics: experiment 2.

Compared
Simulations

Comparing the Speed
in a Density Range

(m/s)

Comparing Capacity
(veh/s)

Comparing
Critical Density

(veh/m)

MFDs
Comparison

Verdict

S1 and S2
DS1S2

speed = 0.8842
(similar)

DS1S2
flow = 6.6999 × 10−5

(similar)
DS1S2

density = 0.0015685
(similar)

similar

S2 and S3
DS2S3

speed = 0.6974
(similar)

DS2S3
flow = 0.000819

(similar)
DS2S3

density = 0.00135069
(similar)

similar

S1 and S3
DS1S3

speed = 1.5998
(dissimilar)

DS1S3
flow = 0.000753

(similar)
DS1S3

density =0.0029192
(dissimilar)

dissimilar

Table 4. Traffic indicators’ AVG and STD of S1, S2, and S3 in each phase: experiment 2.

Sim Period 1 to 40 Period 41 to 80 Period 80 to 204

Si
m

ul
at

io
n

1 AVG speed (m/s) 9.35050128724719 8.89142040370806 8.28024642035679
STD speed (m/s) 0.466549565573507 0.423831941155333 0.504159093708479
AVG density (veh/m) 0.0109099221463288 0.0129753982150057 0.0172793705795613
STD density (veh/m) 0.000839329091942084 0.000717677349017735 0.00146621720293243
AVG flow (veh/s) 0.0769814814814815 0.0995185185185186 0.131219512195122
STD flow (veh/s) 0.0132469370342726 0.00703438746540672 0.0136851259645213

Si
m

ul
at

io
n

2 AVG speed (m/s) 8.28993901306706 7.97190484356544 7.15742558895287
STD speed (m/s) 0.524544738286513 0.289676483985101 0.641752021714726
AVG density (veh/m) 0.0111114429629568 0.0132940390041025 0.0194440957389438
STD density (veh/m) 0.000932282443886002 0.000697463548430562 0.00223166553880638
AVG flow (veh/s) 0.0767777777777778 0.0993148148148148 0.130292712066906
STD flow (veh/s) 0.0133750008423410 0.00715306455474556 0.0179194442178534

Si
m

ul
at

io
n

3 AVG speed (m/s) 7.37120338900777 7.09977336233612 6.54055947585004
STD speed (m/s) 0.328959847402521 0.225631777202890 0.697265619111160
AVG density (veh/m) 0.0114936820090785 0.0139873139380832 0.0195262771948510
STD density (veh/m) 0.00103012428827062 0.000672305495134622 0.00252594419001813
AVG flow (veh/s) 0.0764074074074074 0.0992777777777778 0.125368934826299
STD flow (veh/s) 0.0143395269199754 0.00767510122302774 0.0276419566831086

3.3. Results and Discussion of Experiment 3

Figures 13–15 present the period index vs. network speed, period index vs. network
density, and period index vs. network flow, respectively.

Figures 16–18 show the network density vs. network speed, network speed vs. net-
work flow, and network density vs. network flow, respectively.

The distance between the network density vs. network speed pattern of simulation
1 (green dots) and the pattern of simulation 2 (green circles) is DS1S2

speed = 0.0348 m/s, be-

tween simulation 2 and simulation 3 (green crosses) is DS2S3
speed = 0.3265 m/s, and between

S1 and S3 is DS1S3
speed = 0.3663 m/s. Therefore, the DS patterns of S1 and S2 are similar,

the DS patterns of S2 and S3 are similar, and the DS patterns of S1 and S3 are similar.
DS1S2

flow = |0.13424− 0.13352| = 0.000719 veh/s, DS2S3
flow = |0.13352− 0.12374| = 0.009779 veh/s,
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and DS1S3
flow|0.13424− 0.12374| = 0.01049 veh/s, hence the capacities of S1 and S2 are simi-

lar, the capacities of S2 and S3 are similar, and the capacities of S1 and S3 are dissimilar.
DS1S2

density = |0.020203− 0.020109| = 9.4 × 10−5 veh/m, DS2S3
density = |0.020109− 0.021582| =

0.001473 veh/m, and DS1S3
density|0.020203− 0.021582| = 0.001379 veh/m, hence the critical den-

sities of S1 and S2 are similar, the critical densities of S2 and S3 are similar, and the critical
densities of S1 and S3 are similar. The results presented above are summarized in Table 5.
According to these results, the procedures we presented for route selection do not affect
the MFD.
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In Table 6, the mean and standard deviation of the network speed, network density,
and network flow for simulations S1, S2, and S3 in experiment 3 are presented across
three phases.

The DS patterns of S1 and S2 are similar, as shown by DS1S2
speed = 0.0348 m/s. In both

simulations, similar procedures were used to forecast the travel times for selecting routes;
in S3, the routes were selected based on fixed travel times (calculated based on the links
lengths and a constant speed). This explains DS1S2

speed < DS1S3
speed and DS1S2

speed < DS2S3
speed; as the

DS patterns of S1 and S2 are so close (see Figure 16), it follows that DS1S3
speed and DS2S3

speed are
close values.
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Figure 13 shows that in S3, most of the speed observations greater than 9 m/s occurred
in the periods in which the links were filling up with cars (periods 1 and 2) and emptying
of cars (period 203 and above). Figure 16 shows that in the density range [0.01, 0.015], the
modeled DS pattern of S3 is slightly higher than the modeled DS patterns of S1 and S2
(meaning that in this density range, choosing routes with links that add shorter distances is
favorable in terms of a greater speed than the procedures used to select the routes chosen
in S1 and S2). Nevertheless, S3 achieved higher density values (from 0.0227veh/m and
above) that were not reached in S1 and S2. Despite this, in Figure 16, the modeled DS
pattern of S3 looks promising compared to those exhibited by S1 and S2, in S3 is reached
(and exceeded) the critical density (congestion appears, queues are formed at the network’
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entrances and network flow drops), so in S3, since the input flow at the network entrances
is zero, more time is required for the network to empty than in S1 or S2. From period
200, in S1, it takes 4 periods for the network to empty, in S2 it takes 5 periods, and in
S3 it takes 37 periods (an indicator that congestion happened). The critical density is
reached in S3 at 0.021582veh/m (beyond this point, as density increases, flow decreases),
which corresponds with a maximum flow of 0.123737 veh/s. The congestion occurs from
approximately period 92 to period 202, then after period 81 (from this period and until
period 200, the input flow is 0.16666 veh/s per entrance) it takes 0.3 h for the congestion
to appears. Concerning the periods range [92, 202], Figure 14 shows that S3 frequently
presents higher densities than S1 and S2, and Figure 15 shows that S3 frequently presents a
lower flow than S1 and S2. This is a consequence of the poor procedure used to estimate
the links’ travel times when selecting routes in S3. Therefore, in Figure 16, the DS pattern
of S3 is extended to the right in comparison with the DS patterns of S1 and S2; in S1, the
density range is [0.0063, 0.0240] and the corresponding speed range is [11.8664, 6.0352];
in S2, the density range is [0.0063, 0.0226] and the corresponding speed range is [10.7580,
5.9230]; in S3 the density range is [0.0040, 0.0259] and the corresponding speed range is
[12.1548, 6.2501].

Table 5. Comparing simulations with metrics: experiment 3.

Compared
Simulations

Comparing the Speed
in a Density Range

(m/s)

Comparing Capacity
(veh/s)

Comparing
Critical Density

(veh/m)

MFDs
Comparison

Verdict

S1 and S2
DS1S2

speed = 0.0348
(similar)

DS1S2
flow = 0.000719

(similar)
DS1S2

density = 9.4 × 10−5

(similar)
similar

S2 and S3
DS2S3

speed = 0.3265
(similar)

DS2S3
flow = 0.009779

(similar)
DS2S3

density = 0.001473
(similar)

similar

S1 and S3
DS1S3

speed = 0.3663
(similar)

DS1S3
flow = 0.01049
(dissimilar)

DS1S3
density = 0.001379

(similar)
similar

Table 6. Traffic indicators’ AVG and STD of S1, S2, and S3 in each phase: experiment 3.

Sim Period 1 to 40 Period 41 to 80 Period 80 to 204

Si
m

ul
at

io
n

1 AVG speed (m/s) 8.28993901306706 7.97190484356544 7.15742558895287
STD speed (m/s) 0.524544738286513 0.289676483985101 0.641752021714726
AVG density (veh/m) 0.0111114429629568 0.0132940390041025 0.0194440957389438
STD density (veh/m) 0.000932282443886002 0.000697463548430562 0.00223166553880638
AVG flow (veh/s) 0.0767777777777778 0.0993148148148148 0.130292712066906
STD flow (veh/s) 0.0133750008423410 0.00715306455474556 0.0179194442178534

Si
m

ul
at

io
n

2 AVG speed (m/s) 8.34310374944693 7.97988960970434 7.22821569693514
STD speed (m/s) 0.519499305892122 0.299156717742752 0.430849652674755
AVG density (veh/m) 0.0110956542291498 0.0133085596436959 0.0188506139463945
STD density (veh/m) 0.000955763191478367 0.000652230560457439 0.00176989176081025
AVG flow (veh/s) 0.0767777777777778 0.0993518518518519 0.129249831649832
STD flow (veh/s) 0.0133022218012759 0.00675406987045520 0.0204049945990145

Si
m

ul
at

io
n

3 AVG speed (m/s) 8.63998792899571 8.26089687207102 7.65444766931574
STD speed (m/s) 0.460279980728090 0.354637393143680 1.35645102183749
AVG density (veh/m) 0.0112617260009285 0.0134435085052547 0.0211000452115824
STD density (veh/m) 0.000956092124985010 0.000722842868850955 0.00497485862375620
AVG flow (veh/s) 0.0767407407407407 0.0993888888888889 0.102908367876521
STD flow (veh/s) 0.0133941842417871 0.00676385317875720 0.0349866106840570

3.4. Results and Discussion of Experiment 4

Figures 19–21 present the period index vs. network speed, period index vs. network
density, and period index vs. network flow, respectively.
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The distance between the network density vs. network speed pattern of simulation
1 (green dots) and the pattern of simulation 2 (green circles) is DS1S2

speed = 0.0446 m/s; be-

tween simulation 2 and simulation 3 (green crosses), it is DS2S3
speed = 0.0298 m/s; and between

S1 and S3, it is DS1S3
speed = 0.024 m/s. Therefore, the DS patterns of S1 and S2 are simi-

lar, the DS patterns of S2 and S3 are similar, and the DS patterns of S1 and S3 are similar.
DS1S2

flow = |0.13424− 0.13556| = 0.00132 veh/s, DS2S3
flow = |0.13556− 0.12923| = 0.00633 veh/s,

and DS1S3
flow|0.13424− 0.12923| = 0.005009 veh/s, hence the capacities of S1 and S2 are sim-

ilar, the capacities of S2 and S3 are similar, and the capacities of S1 and S3 are similar.
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DS1S2
density = |0.020203− 0.022451| = 0.002248 veh/m, DS2S3

density = |0.022451− 0.026724| =

0.004273 veh/m, and DS1S3
density|0.020203− 0.026724| = 0.006521 veh/m, hence the critical den-

sities of S1 and S2 are dissimilar, the critical densities of S2 and S3 are dissimilar, and the
critical densities of S1 and S3 are dissimilar. The results presented above are summarized in
Table 7. According to these results, the procedures we use to generate the OD table cannot
affect the MFD.
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In Table 8, the mean and standard deviation of the network speed, network density,
and network flow for simulations S1, S2, and S3 in experiment 4 are presented across
three phases.
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Table 7. Comparing simulations through metrics: experiment 4.

Compared
Simulations

Comparing the Speed
in a Density
Range(m/s)

Comparing Capacity
(veh/s)

Comparing
Critical Density

(veh/m)

MFDs
Comparison

Verdict

S1 and S2
DS1S2

speed = 0.0446
(similar)

DS1S2
flow = 0.00132

(similar)
DS1S2

density = 0.002248
(dissimilar)

similar

S2 and S3
DS2S3

speed = 0.0298
(similar)

DS2S3
flow = 0.00633

(similar)
DS2S3

density = 0.004273
(dissimilar)

similar

S1 and S3
DS1S3

speed = 0.024
(similar)

DS1S3
flow = 0.005009

(similar)
DS1S3

density = 0.006521
(dissimilar)

similar

Table 8. Traffic indicators’ AVG and STD of S1, S2, and S3 in each phase: experiment 4.

Sim Period 1 to 40 Period 41 to 80 Period 80 to 204

Si
m

ul
at

io
n

1 AVG speed (m/s) 8.28993901306706 7.97190484356544 7.15742558895287
STD speed (m/s) 0.524544738286513 0.289676483985101 0.641752021714726
AVG density (veh/m) 0.0111114429629568 0.0132940390041025 0.0194440957389438
STD density (veh/m) 0.000932282443886002 0.000697463548430562 0.00223166553880638
AVG flow (veh/s) 0.0767777777777778 0.0993148148148148 0.130292712066906
STD flow (veh/s) 0.0133750008423410 0.00715306455474556 0.0179194442178534

Si
m

ul
at

io
n

2 AVG speed (m/s) 8.35960156351202 8.00875473025073 6.84922325115296
STD speed (m/s) 0.455383866453208 0.298362250229538 0.582962372909101
AVG density (veh/m) 0.0113455608718256 0.0131355403889100 0.0214684386827731
STD density (veh/m) 0.000919633996887478 0.000724596007482746 0.00325555495583336
AVG flow (veh/s) 0.0769259259259259 0.0990740740740741 0.127262425530142
STD flow (veh/s) 0.0152385276698918 0.00895472610933983 0.0242789582091662

Si
m

ul
at

io
n

3 AVG speed (m/s) 8.33934458778191 7.94105059392780 5.96746605642204
STD speed (m/s) 0.582481020123256 0.298370698490872 1.47407999966981
AVG density (veh/m) 0.0112932341346887 0.0135834144700789 0.0286943998651298
STD density (veh/m) 0.000964173802362247 0.000722963111892472 0.00943621369034405
AVG flow (veh/s) 0.0768333333333333 0.0989629629629630 0.102325363338022
STD flow (veh/s) 0.0145493669016776 0.00755373048363112 0.0286069642982910

The DSs patterns between any possible pair (S1 and S2, S2 and S3, and S1 and S3) are
similar, as can be visually corroborated in Figure 22. In this Figure, it is observed that from
period 3, the network densities and the corresponding network speeds of S1, S2, and S3
share similar values. However, the maximum densities and the corresponding minimum
speeds differ; in S1, the maximum density is 0.0240 veh/m and the corresponding minimum
speed is 6.0352 m/s; in S2, the maximum density is 0.0277 veh/m and the corresponding
minimum speed is 5.4318 m/s; in S3, the maximum density is 0.0446 veh/m and the
corresponding minimum speed is 3.4570 m/s. Even though the DS patterns of S1, S2, and
S3 look similar, the DS pattern of S2 is extended further to the right (and further down)
than the DS pattern of S1, and the DS pattern of S3 is extended further to the right (and
further down) than the DS pattern of S2. This implies higher densities and lower speeds in
S2 than in S1, and higher densities and lower speeds in S3 than in S2 (or S1).

After period 200 in S1, it takes 4 periods for the network to empty, in S2 it takes
7 periods, and in S3 it takes 38 periods (due to the congestion). In Figure 24, it can
be observed that according to the modeled data in S3, the critical density is reached
at 0.02672 veh/m (from this value the flow starts to decrease), which corresponds to a max-
imum flow of 0.12923 veh/s; indeed, Figure 20 shows that the density in S3 is notoriously
higher than that exhibited by S1 and S2 from period 135 to 213, which is the approximate
start and end, respectively, of the congestion (in this interval as density increases, flow
decreases). In addition, considering S3 and the interval [135, 213], Figure 19 shows that the
network speed goes down and then goes up, Figure 20 shows that the network density
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goes up and then goes down, and Figure 21 shows that the network flow goes down and
then goes up. Noticeably, in the range [164, 200], S2 presents higher densities and lower
speeds than S1 (see Figures 19 and 20), indicating that S2 was closer to being congested
than S1. In S3, from period 81 (when the input flow on each network entrance is equal to
high_flow), it takes around 82.5 min (55 periods) for the network to become congested at
period 135.

4. Conclusions

Using the proposed method, we were able to answer our second investigative question
as follows: the precision of driving is a variable that affects the MFD, the vehicles’ top speeds
distribution is a variable that affects the MFD, the procedure for selecting routes is a variable
that does not affect the MFD, and the procedure for selecting destinations is a variable that
does not affect the MFD. It is important to say that the aforementioned results are valid for
the configurations of variables that we tried, for the network under study, and considering
the threshold values we set (which can be tuned as needed for convenience) to be compared
with the metrics values. Nevertheless, the method we proposed can be used with other
networks, with different variables than those we used, and with different configurations of
the variables we used. We chose procedures for selecting routes based on the idea that in
developing countries, vehicles (or the drivers themselves) are not always equipped with
(or carrying) the proper technology for selecting routes. The idea behind the procedures
for selecting destinations in S1 and S2 in experiment 4 is that a desirable traffic situation
involves links with homogeneous densities, i.e., vehicles uniformly distributed on links,
therefore vehicles reaching destinations all over the network increases the likelihood of
links with homogeneous densities. On the contrary, the procedure for selecting destinations
in S3 of experiment 4 caused non-uniform selection of destinations.

In experiment 1, we discovered that driving imperfection is a variable that can modify
the MFD. This conclusion was drawn because between S2 and S3, the compared capacities,
and the compared critical densities were dissimilar, and between S1 and S3, the compared
DS patterns, the compared capacities, and the compared critical densities were dissimilar.
We found that the DS patterns between S1 and S2 and between S2 and S3 were similar,
although the DS pattern of S2 (in which the driving imperfection was at 50%) was below
the DS pattern of S1 (in which the driving imperfection was non-existent) and presented
lower network speeds than S1 for the occurring network densities. Also, the DS pattern of
S2 was longer to the right than the DS pattern of S1 (thus, S2 presents higher densities and
lower speeds not reached by S1), the DS pattern of S3 (in which the imperfection for driving
is at 100%) is below the DS pattern of S2 and presents lower network speeds than S2 for
the occurring network densities, and the DS pattern of S3 is longer to the right than the DS
pattern of S2 (thus, S3 presents higher densities and lower speeds than S2). When the input
flow was 0.1 veh/s per entrance (during the periods range [1, 40]) and 0.125 veh/s per
entrance (during the periods range [41, 80]), we observed comparable network flows and
densities (throughout time) among simulations, with S1 presenting higher speeds, followed
by S2 and then S3. When the input flow was 0.1666 veh/s per entrance (during the periods
range [81, 200]) the difference in the network speed, density, and flow between S3 and the
rest was notorious, highlighting that in S3, the critical density was reached and exceeded;
traffic conditions with drivers driving with total imperfection are not sustainable, since the
network gets congested.

In experiment 2, we found that the variable generating the vehicles top speeds is
able to modify the MFD. Between S1 and S3, the DS patterns and the critical densities are
dissimilar; the DS pattern of S1 (in which a top speed is selected in the range [16.66, 21.66])
is above the pattern of S2 (in which a top speed is selected in the range [11.66, 21.66]), and
the pattern of S2 is above the pattern of S3 (in which a top speed is selected in the range
[11.66, 16.66]); the range in which density operates is similar for the three simulations; in
phase three, densities throughout time between S2 and S3 are comparable and above the
densities of S1. Nevertheless, in no simulation was it evident that the critical density was
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reached and exceeded, so the three configurations of the variable generating the vehicles’
top speeds are sustainable.

In experiment 3, we found that the procedure for selecting routes is not a variable that
can modify the MFD. Nevertheless, we deduced that between S1 and S3, the capacities are
(slightly) dissimilar; the DS patterns between S1, S2, and S3 are close to one another, but
the DS pattern of S3 presents higher densities, since in S3, the critical density is reached
and exceeded during phase three. Therefore, in phase three in S3, higher network densities
and lower network flows occur than in S1 and S2. Nevertheless, in the first two phases,
the network speed, the network density, and the network flow (throughout time) are
comparable among the three simulations. The procedure of S1 calculates links travel
times based on the speed on links recorded in the previous period, and the procedure of
S2 calculates links travel times based on the speed on links recorded in the previous two
periods. Therefore, the traffic conditions experienced in S1 and S2 are similar. The procedure
of S3 cannot maintain sustainable traffic (cannot avoid congestion) because it simply
calculates the travel time of a link by considering the link length and a constant speed.

In experiment 4, we found that the procedure for generating destinations does not
modify the MFD, but in all comparisons we made (S1 and S2, S2 and S3, S1 and S3) we
found that the critical densities are dissimilar; despite this, the DS patterns of S1, S2, and S3
are similar. The last is considerably extended to the right (i.e., it presents higher densities
and lower speeds), thus the procedures presented in this investigation for generating the
O-D table can move the range in which a density vs. speed pattern operates (limiting the
maximum density and hence the minimum speed) but the DS patterns trajectories in a
2d coordinate system stay close to each other. During phase one and two, the behavior
throughout time of the network speed, the network density, and the network flow between
simulations is comparable. During phase three in S3, the critical density is reached and
subsequently exceeded, and lower speeds, higher densities, and lower flows are observed
compared to those in S1 and S2. In addition, in phase three, S2 presents lower speeds
and higher densities than S1; the procedure for generating destinations in S1 guarantees
that each destination is selected the same number of times, whereas the procedure for
generating destinations in S2 considers that each destination has the same probability of
being selected, but it does not guarantee that each destination will be selected the same
number of times. The procedure for generating destinations in S3 gives each destination
a probability of occurrence that falls between 0.5 and 1. The procedures implemented
in S1 and S2 are sustainable (as they avoid congestion) but the procedure in S3 is not
(congestion emerges).

It should be said that a variable can be set to different configurations beyond those
we explore in this study, and the results (if the variable affects or not the MFD) might be
extended. Also a different network can produce different results. Therefore, our main objec-
tive was to ensure the design of the method we presented in order to be used with different
variables, different configurations of the variables, and different networks; if a variable
affects the MFD, it may be considered to be a candidate for improving traffic conditions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app14083486/s1. Python file S1: c1.py (code to control
simulations), Python file S2: c2.py (code to generate destinations), MATLAB Code S1: cod2.m (code
to read the data from simulations), MATLAB Code S2: cod4.m (code to analyze the data), SUMO
Configuration File S1: configuracion1.sumocfg (file to configurate SUMO), XML file S1: osm3.net.xml
(file with the network data), XML file S2: ruta0.rou.xml (file with the vehicles parameters values),
XML file S3: set.settings.xml (file with additional SUMO settings). The “Experiment 1” folder contains
Microsoft Excel Comma Separated Values File S1: destinos1.csv (file with the vehicles destinations
IDs used in the simulations of experiment 1), MATLAB Data S1: variables_p1.mat (file with the
aggregated data of simulation 1, experiment 1), MATLAB Data S2: variables_p2.mat (file with the
aggregated data of simulation 2, experiment 1), MATLAB Data S3: variables_p3.mat (file with the
aggregated data of simulation 3, experiment 1). The “Experiment 2” folder contains Microsoft Excel
Comma Separated Values File S2: destinos1.csv (file with the vehicles destinations IDs used in the
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Appl. Sci. 2024, 14, 3486 27 of 29

simulations of experiment 2), MATLAB Data S4: variables_p1.mat (file with the aggregated data
of simulation 1, experiment 2), MATLAB Data S5: variables_p2.mat (file with the aggregated data
of simulation 2, experiment 2), MATLAB Data S6: variables_p3.mat (file with the aggregated data
of simulation 3, experiment 2). The “Experiment 3” folder contains Microsoft Excel Comma Sepa-
rated Values File S3: destinos1.csv (file with the vehicles destinations IDs used in the simulations of
experiment 3), MATLAB Data S7: variables_p1.mat (file with the aggregated data of simulation 1,
experiment 3), MATLAB Data S8: variables_p2.mat (file with the aggregated data of simulation 2,
experiment 3), MATLAB Data S9: variables_p3.mat (file with the aggregated data of simulation 3,
experiment 3). The “Experiment 4” folder contains MATLAB Data S10: variables_p1.mat (file with
the aggregated data of simulation 1, experiment 4), MATLAB Data S11: variables_p2.mat (file with
the aggregated data of simulation 2, experiment 4), MATLAB Data S12: variables_p3.mat (file with
the aggregated data of simulation 3, experiment 4); “p1” folder contains Microsoft Excel Comma
Separated Values File S4: destinos1.csv (file with the vehicles destinations IDs used in simulation 1 of
experiment 4); “p2” folder contains Microsoft Excel Comma Separated Values File S5: destinos1.csv
(file with the vehicles destinations IDs used in simulation 2 of experiment 4); “p3” folder contains
Microsoft Excel Comma Separated Values File S6: destinos1.csv (file with the vehicles destinations
IDs used in simulation 3 of experiment 4). The MATLAB version we used was R2023a. The Python
version we used was Python 3.11.2.
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