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Abstract: Convolutional neural networks (CNNs) serve as powerful tools in computer vision tasks
with extensive applications in daily life. However, they are susceptible to adversarial attacks. Still,
attacks can be positive for at least two reasons. Firstly, revealing CNNs vulnerabilities prompts efforts
to enhance their robustness. Secondly, adversarial images can also be employed to preserve privacy-
sensitive information from CNN-based threat models aiming to extract such data from images. For
such applications, the construction of high-resolution adversarial images is mandatory in practice.
This paper firstly quantifies the speed, adversity, and visual quality challenges involved in the
effective construction of high-resolution adversarial images, secondly provides the operational design
of a new strategy, called here the noise blowing-up strategy, working for any attack, any scenario,
any CNN, any clean image, thirdly validates the strategy via an extensive series of experiments. We
performed experiments with 100 high-resolution clean images, exposing them to seven different
attacks against 10 CNNs. Our method achieved an overall average success rate of 75% in the targeted
scenario and 64% in the untargeted scenario. We revisited the failed cases: a slight modification of our
method led to success rates larger than 98.9%. As of today, the noise blowing-up strategy is the first
generic approach that successfully solves all three speed, adversity, and visual quality challenges, and
therefore effectively constructs high-resolution adversarial images with high-quality requirements.

Keywords: black-box attack; convolutional neural network; evolutionary algorithm; high-resolution
adversarial image; noise blowing-up

1. Introduction

The ability of convolutional neural networks (CNNs) [1] to automatically learn from
data has made them a powerful tool in a wide range of applications touching on various
aspects of our daily lives, such as image classification [2,3], object detection [4], facial
recognition [5], autonomous vehicles [6], medical image analysis [7,8], natural language
processing (NLP) [9,10], augmented reality (AR) [11], quality control in manufacturing [12]
and satellite image analysis [13,14].

Even so, CNNs are vulnerable to attacks. In the context of image classification, which is
considered in the present paper, carefully designed adversarial noise added to the original
image can lead to adversarial images being misclassified by CNNs. These issues can lead
to serious safety problems in real-life applications. On the flip side, such vulnerabilities can
be also leveraged to obscure security and privacy-sensitive information from CNN-based
threat models seeking to extract such data from images [15–17].

In a nutshell, adversarial attacks are categorized based on two components: the
level of knowledge the attacker has about the CNN; the scenario followed by the attack.
Regarding the first component, in a white-box attack [3,18–21] (also known as gradient-
based attack), the attacker has full access to the architecture and to the parameters of the
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CNN. In contrast, in a black box attack [22–27], the attacker does not know the CNN’s
parameters or architecture; its knowledge is limited to the CNN’s evaluation for any input
image, including the label category in which it classifies the image, and the corresponding
label value. As a consequence of the knowledge bias, white-box attacks usually generate
adversarial images faster than black-box attacks. Regarding the second component, in the
target scenario, the goal of the attack is to manipulate the clean input image to create
an adversarial image that the CNN classifies into a predefined target category. In the
untargeted scenario, the goal of the attack is to create an adversarial image that the CNN
classifies into any category other than the category of the clean image. An additional
objective in these scenarios is to require that the modifications put on the original clean
image to create the adversarial image remain imperceptible to a human eye.

1.1. Standart Adversarial Attacks

To perform image recognition, CNNs start their assessment of any image by first
resizing it to its own input size. In particular, high-resolution images are scaled down, say
to 32 × 32 or 224 × 244 for most CNNs trained on CIFAR-10, respectively on ImageNet [28].
Until recently (and still now), to the best of our knowledge, attacks are performed on these
resized images. Consequently, the resulting adversarial images’ size coincides with the
CNN input’s size, regardless of the size of the original images. Figure 1 describes this
standard approach, in which attacks take place in the low-resolution domain, denoted as
the R domain in this paper.

CNN
Input size: 
224 x 224

Adversarial 
image

Adversarial 
noise

Original
image

224 x 224

224 x 224

1824 x 2364

224 x 224

Resized
original
image

Adversarial
Attack

classification
in 𝑐𝑎

classification
in 𝑐  𝑐𝑎

Figure 1. Standard attacks’ process, where ca is the CNN’s leading category of the clean resized
image, and c ̸= ca is the CNN’s leading category of the adversarial image.

As previously highlighted, the susceptibility of CNNs to adversarial attacks can
be utilized to obfuscate privacy-sensitive information from CNN-empowered malicious
software. To use adversarial images for such security purposes, their sizes must match
the sizes of the original clean images considered. In practice, these sizes are usually far
larger than 224 × 224. However, generating high-resolution adversarial images, namely
adversarial images in the H domain as we call it in this paper, poses certain difficulties.

1.2. Challenges and Related Works

Creating adversarial images of the same size as their clean counterparts, as illus-
trated in Figure 2, is a novel and highly challenging task in termes of speed, adversity,
and imperceptibility.

Firstly, the complexity of the problem grows quadratically with the size of the images.
This issue impacts the speed of attacks performed directly in the H domain. In [29],
an evolutionary algorithm-based black-box attack, that successfully handled images of
sizes 224 × 224, was tested on a high-resolution image of size 910 × 607 via the direct
approach illustrated in Figure 2. Despite 40 h of computational efforts, it failed to create a
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high-resolution adversarial image by this direct method. This indicates that a direct attack
in the H domain, as described above, is unlikely to succeed. An alternative approach is
definitively needed to speed up the attack process in the H domain.

Additionally, the adversarial noise in the high-resolution adversarial image should
prevail even when the adversarial image is resized to the input size of the CNN. Finally,
the difference between the high-resolution original clean image and the high-resolution
adversarial image must be imperceptible to a human eye.

CNN
Input size: 
224 x 224

Adversarial  image

Adversarial noise

Original image

224 x 224

1824 x 2364

224 x 224

Resized
original
image

Adversarial
Attack

classification
in c ≠ 𝑐𝑎

1824 x 2364

1824 x 2364

classification
in 𝑐𝑎

Resized
adversarial

image

Figure 2. Direct attack process generating an adversarial image with the same size as the original
clean image.

A first solution to the speed and adversity challenges is presented in [29,30] as an
effective strategy that smoothly transforms an adversarial image—regardless of how it is
generated—from the R domain to the H domain. However, the imperceptibility issue was
not resolved.

1.3. Our Contribution

In this article, we introduce a novel strategy, extending our conference paper [31]
(and enhancing [29,30]). This strategy stands as the first effective method for generating
high visual quality adversarial images in the high-resolution domain in the following
sense: The strategy works for any attack, any scenario, any CNN, and any clean high-
resolution image. Compared to related works, our refined strategy increases substantially
the visual quality of the high-resolution adversarial images, as well as the speed and
efficiency in creating them. In summary, the approach amounts to a “blowing-up” to the
high-resolution domain of the adversarial noise—only of the adversarial noise, and not
of the full adversarial image—created in the low-resolution domain. Adding this high-
resolution noise to the original high-resolution clean image leads to an indistinguishable
high-resolution adversarial image.

This noise blowing-up strategy is validated in terms of speed, adversity, and visual
quality by an extensive set of experiments. It encompasses seven attacks (four white-box
and three black-box) against 10 state-of-the-art CNNs trained on ImageNet; the attacks are
performed both for the untargeted and the target scenario, with 100 high-resolution clean
images. In particular, the visual quality of high-resolution adversarial images generated
with our method is thoroughly studied; the outcomes are compared with adversarial
images resulting from [29,30].
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1.4. Organisation of the Paper

Our paper is organised as follows. Section 2 recalls briefly what are the target and
untarget scenarios in R, what their versions in H, fixes some notations, and lists a series
of indicators (Lp norms and FID) used to assess the human perception of distinct images.
Section 3 formalises the noise blowing-up strategy, provides the scheme of the attack atkH,C
that lifts to H any attack atkR,C against a CNN C that works in the R domain, and that takes
advantage of lifting the adversarial noise only. It recalls some complementary indicators
used to assess the impact of the obtained tentative adversarial images (Loss function LC ,
“safety buffer” ∆C ), and again fixes some notations. The experimental study is performed
in the subsequent Sections. Section 4 describes the ingredients of the experiments: the
resizing functions, the 10 CNNs, the 100 clean high-resolution images, the target categories
considered in the target scenario, and the 7 attacks. Section 5 provides the results of the
experiments performed under these conditions: success rate, visual quality, and imper-
ceptibility of the difference between adversarial and clean images, timing, and overhead
of the noise blowing-up strategy. The cases, where the standard implementation of the
strategy failed to succeed, are revisited in Section 6 thanks to the “safety buffer” ∆C . Finally,
Section 7 provides a comparison of the noise blowing-up method with the generic lifting
method [29,30] on three challenging high-resolution images, one CNN, and one attack for
the target scenario. Section 8 summarizes our findings, and indicates directions for future
research. An Appendix completes the paper with additional data and evidence.

All algorithms and experiments were implemented using Python 3.9 [32] with NumPy
1.23.5 [33], TensorFlow 2.14.0 [34], Keras 3 [35], and Scikit 0.22 [36] libraries. Computations
were performed on nodes with Nvidia Tesla V100 GPGPUs of the IRIS HPC Cluster at the
University of Luxembourg.

2. CNNs and Attack Scenarios

CNNs performing image classification are trained on some large dataset S to sort
images into predefined categories c1, · · · , cℓ. The categories, and their number ℓ, are
associated with S and are common to all CNNs trained on S . One denotes R the set of
images of size r1 × r2 (where r1 is the height, and r2 is the width of the image) natively
adapted to such CNNs.

Once trained, a CNN can be exposed to images (typically) in the same domain R as
those on which it was trained. Given an input image I ∈ R, the trained CNN produces a
classification output vector

oI = (oI [1], · · · , oI [ℓ]), (1)

where 0 ≤ oI [i] ≤ 1 for 1 ≤ i ≤ ℓ, and ∑ℓ
i=1 oI [i] = 1. Each ci-label value oI [i] measures

the plausibility that the image I belongs to the category ci.
Consequently, the CNN classifies the image I as belonging to the category ck if

k = arg max1≤i≤ℓ(oI [i]). If there is no ambiguity on the dominating category (as occurs for
most images used in practice; we also make this assumption in this paper), one denotes
(ck, oI [k]) the pair specifying the dominating category and the corresponding label value.
The higher the ck-label value oI [k], the higher the confidence that I represents an object
of the category ck from CNN’s “viewpoint”. For the sake of simplicity and consistency
with the remaining of this paper, we shall write (cI , τcI ) = (ck, oI [k]). In other words, C’s
classification of I is

C(I) = (cI , τcI ) ∈ V = {(ci, vi), where vi ∈ [0, 1] for 1 ≤ i ≤ ℓ}. (2)

2.1. Assessment of the Human Perception of Distinct Images

Given two images A and B of the same size h × w (belonging or not to the R domain),
there are different ways to assess numerically the human perception of the difference
between them, as well as the actual “weight” of this difference. In the present study, this
assessment is performed mainly by computing the (normalized) values of Lp(A,B) for
p = 0, 1, 2, or ∞ and the Fréchet Inception Distance (FID).
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Introduced in [37], FID originally served as a metric to evaluate the performance
of GANs by assessing the similarity of generated images. FID is one of the recent tools
for assessing the visual quality of adversarial images and it aligns closely with human
judgment (see [38–40]). On the other hand, [41,42] provide an assessment of Lp-norms as a
measure of perceptual distance between images.

In a nutshell, for an image I of size h × w, the integer

0 ≤ pi,j,α(I) ≤ 255

denotes the value of the pixel positioned in the ith-row, jth-column, of the image I for the
channel α ∈ {R, G, B} (R = Red, G = Green, B = Blue). Then,

• Lnorm
0 (A,B) = 1

3hw #{i, j, α ; pi,j,α(A) ̸= pi,j,α(B)},
• Lnorm

1 (A,B) = 1
283hw ∑i,j,α |pi,j,α(A)− pi,j,α(B)|,

• Lnorm
2 (A,B) = 1

283hw

√
∑i,j,α |pi,j,α(A)− pi,j,α(B)|2,

• L∞(A,B) = Maxi,j,α|pi,j,α(A)− pi,j,α(B)|
where 1 ≤ i ≤ h, 1 ≤ j ≤ w, and α ∈ {R, G, B}. These quantities satisfy the inequalities:

0 ≤ Lnorm
0 (A,B), Lnorm

1 (A,B), Lnorm
2 (A,B) ≤ 1, and 0 ≤ L∞(A,B) ≤ 256.

The closer their values are to 0, the closer are the images A,B to each other.
To effectively capture the degree of disturbance, and therefore to provide a reliable mea-

sure of the level of disruption, FID quantifies the separation between clean and disturbed
images based on extracting features from images that are provided by the Inception-v3
network [43]. Activations from one of the intermediate layers of the Inception v3 model are
used as feature representations for each image. FID assesses the similarity between two
probability distributions in a metric space, via the formula:

• FID(A, B) = ∥µA − µB∥2 + Tr(MA + MB − 2 ·
√

MA · MB)

where, µA and µB denote feature-wise mean vectors for the images A and B, respectively,
reflecting average features observed across the images. MA and MB represent covariance
matrices for the feature vectors (covariance matrices offer insights into how features in the
vectors co-vary with each other). The quantity ∥µA − µB∥2 captures the squared difference
in mean vectors (highlighting disparities in these average features), and the trace quantity
assesses dissimilarities between the covariance matrices. In the end, FID quantifies how
similar the distribution of feature vectors in the A is to that in the B. The lower the FID
value, the more similar the images A and B.

2.2. Attack Scenarios in the R Domain

Let C be a trained CNN, ca be a category among the ℓ possible categories, and A a
clean image in the R domain, classified by C as belonging to ca. Let τa be its ca-label value.
Based on these initial conditions, we describe two attack scenarios (the target scenario and
the untarget scenario) aiming at creating an adversarial image D ∈ R accordingly.

Whatever the scenario, one requires that D remains so close to A, that a human would
not notice any difference between A and D. This is done in practice by fixing the value of
the parameter ϵ, which controls (or restricts) the global maximum amplitude allowed for the
modifications of each pixel value of A to construct an adversarial image D. Note that, for a
given attack scenario, the value set to ϵ usually depends on the concrete performed attack,
more specifically on the Lp distance used in the attack to assess the human perception
between an original and an adversarial image.

The (ca, ct) target scenario performed on A requires first to select a category ct ̸= ca.
The attack then aims at constructing an image D that is either a good enough adversarial image
or a τ-strong adversarial image.

A good enough adversarial image is an adversarial image that C classifies as belonging to
the target category ct, without any requirement on the ct-label value τt beyond being strictly
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dominant among all label values. A τ-strong adversarial image is an adversarial image that
C not only classifies as belonging to the target category ct, but for which its ct-label value
τt ≥ τ for some threshold value τ ∈ [0, 1] fixed a priori.

In the untarget scenario performed on A, the attack aims at constructing an image D
that C classifies in any category c ̸= ca.

One writes atkscenario
R,C to denote the specific attack atk performed to deceive C in the

R domain according to the selected scenario, and D = atkscenario
R,C (A) an adversarial image

obtained by running successfully this attack on the clean image A. Note that one usually
considers only the first adversarial image obtained by a successful run of an attack, so that
D is uniquely defined.

Finally, one writes C(D) = (c, τc) the classification of the adversarial image obtained.
Note that (c, τc) = (ct, τt) in the case of the target scenario.

2.3. Attack Scenarios Expressed in the H Domain

In the context of high-resolution (HR) images, let us denote by H the set of images
that are larger than those of R. In other words, an image of size h × w (where h designates
the height, and w the width of the image considered) belongs to H if h ≥ r1 and w ≥ r2.
One assumes given a fixed degradation function

ρ : H > R, (3)

that transforms any image I ∈ H into a “degraded” image ρ(I) ∈ R. Then there is a
well-defined composition of maps C ◦ ρ as shown in the following scheme:

H ρ
> R

V

C
∨C◦ρ >

(4)

Given Ahr
a ∈ H, one obtains that way the classification of the reduced image

Aa = ρ(Ahr
a ) ∈ R as C(Aa) ∈ V .

We assume that the dominating category of the reduced image Aa is without ambiguity,
and denote by C(Aa) = (ca, τa) ∈ V the outcome of C’s classification of Aa.

Thanks to the degradation function ρ, one can express in the H domain any attack
scenario that makes sense in the R domain. This is in particular the case for the target
scenario and for the untarget scenario.

Indeed, an adversarial HR image against C for the (ca, ct) target scenario performed
by an attack atktarget

H,C on Ahr
a ∈ H is an image Dhr,C

t (Ahr
a ) = atktarget

H,C (Ahr
a ) ∈ H, that satis-

fies two conditions (note that the notation Dhr,C
t (Ahr

a ), with t as index, encapsulates and
summarizes the fact that the adversarial image is obtained for the specific target scenario
considered). On the one hand, a human should not be able to notice any visual difference
between the original Ahr

a and the adversarial Dhr,C
t (Ahr

a ) HR images. On the other hand, C
should classify the degraded image DC

t (Ahr
a ) = ρ(Dhr,C

t (Ahr
a )) in the category ct for a suffi-

ciently convincing ct-label value. The image Dhr,C
t (Ahr

a ) ∈ H is then a good enough adversarial
image or a τ-strong adversarial image if its reduced version DC

t (Ahr
a ) = ρ(Dhr,C

t (Ahr
a )) is.

Similarly, and mutatis mutandis for the untarget scenario, one denotes by Dhr,C
untarget(Ahr

a ) =

atkuntarget
H,C (Ahr

a ) the HR adversarial images obtained by an attack atkuntarget
H,C for the untarget

scenario performed on Ahr
a ∈ H, and by DC

untarget(Ahr
a ) ∈ R its degraded version.

The generic attack scenario on C in the HR domain can be visualized in the following scheme:
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Ahr
a ∈ H ..................

atkscenario
H,C

> Dhr,C
scenario(A

hr
a ) ∈ H

Aa ∈ R

ρ

∨
DC

scenario(A
hr
a ) ∈ R

ρ
∨

(ca, τa) ∈ V

C
∨

(c, τc) ∈ V

C
∨

(5)

Depending on the scenario considered, one has:

• For the target scenario: Dhr,C
scenario(A

hr
a ) = Dhr,C

t (Ahr
a ) = atktarget

H,C (Ahr
a ) ∈ H,DC

scenario(Ahr
a ) =

DC
t (Ahr

a ) = ρ(Dhr,C
t (Ahr

a )) ∈ R, and (c, τc) = (ct, τt) with ct dominant among all cate-
gories, and, furthermore, τt ≥ τ if one additionally requires the adversarial image to
be τ-strong adversarial.

• For the untarget scenario: Dhr,C
scenario(A

hr
a ) = Dhr,C

untarget(Ahr
a ) = atkuntarget

H,C (Ahr
a ) ∈ H,

DC
scenario(Ahr

a ) = DC
untarget(Ahr

a ) ∈ R, and (c, τc) with c such that c ̸= ca.

Whatever the scenario, one also requires that a human is unable to notice any difference
between the clean image Ahr

a and the adversarial image Dhr,C
scenario(A

hr
a ) in H.

3. The Noise Blowing-Up Strategy

The method presented here (and introduced in [31]) attempts to circumvent the speed,
adversity, and visual quality challenges mentioned in the Introduction, which are encoun-
tered when one intends to create HR adversarial images. While speed and adversity were
successfully addressed in [29,30] via a strategy similar to some extent to the present one,
the visual quality challenge remained partly unsolved. The refinement provided by our
noise blowing-up strategy, which lifts to the H domain for any attack working in the
R domain, addresses this visual quality issue without harming the speed and adversity
features. It furthermore simplifies and generalises the attack scheme described in [29,30].

In a nutshell, the noise blowing-up strategy applied to an attack atk on a CNN C
following a given scenario, essentially proceeds as follows.

One considers a clean image Aa ∈ R, degraded from a clean image Ahr
a ∈ H thanks

to a degrading function ρ. Then one performs an attack atkscenario
R,C on Aa in the R domain,

that leads to an image ∈ R, adversarial against the CNN for the considered scenario.
Although getting such adversarial images in the R domain is crucial for obvious reasons,
our strategy does not depend on how they are obtained and applies to all possible attacks
atkscenario

R,C working efficiently in the R domain. This feature contributes substantially to the
flexibility of our method.

Then one computes the adversarial noise in R as the difference between the adversarial
image and the clean image in R. Thanks to a convenient enlarging function λ, one blows up
this adversarial noise from R to H. Then, one adds this blown-up noise to Ahr

a , creating
that way a high-resolution image, called here the HR tentative adversarial image.

One checks whether this HR tentative adversarial image fulfills the criteria stated
in the last paragraph of Section 2.3, namely becomes adversarial once degraded by the
function ρ. Should this occur, it means that blowing up the adversarial noise in R has led
to a noise in H that turns out to be also adversarial. If the blown-up noise is not sufficiently
adversarial, one raises the expectations at the R level accordingly.

The concrete design of the noise blowing-up strategy, which aims at creating an
efficient attack in the H domain once given an efficient attack in the R domain for some
scenario, is given step-by-step in Section 3.1. A series of indicators is given in Section 3.2.
The assessment of these indicators depends on the choice of the degrading and enlarging
functions used to go from H to R, and vice versa. These choices are specified in Section 4.

3.1. Constructing Images Adversarial in H Out of Those Adversarial in R
Given a CNN C, the starting point is a large-size clean image Ahr

a ∈ H.
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In Step 1, one constructs its degraded image Aa = ρ(Ahr
a ) ∈ R.

In Step 2, one runs C on Aa to get its classification in a category ca. More precisely, one
gets C(Aa) = (ca, τa).

In Step 3, with notations consistent with those used in Section 2.3, one assumes given
an attack atkscenario

R,C on Aa in the R domain, that leads to an image

D̃C
scenario(Aa) ∈ R, (6)

adversarial against CNN for the considered scenario. As already stated, how such an
adversarial image is obtained does not matter. For reasons linked to Step 5 and to Step 8,
one denotes (cbe f , τ̃cbe f ) the outcome of the classification by C of this adversarial image in
R. The index “be f ” indicates that these assessments and measures take place before the
noise blowing-up process per se (Steps 4, 5, 6 essentially).

Step 4 consists in getting the adversarial noise N C(Aa) ∈ R as the difference

N C(Aa) = D̃C
scenario(Aa)−Aa ∈ R (7)

of images living in R, one being the adversarial image of the clean other.
To perform Step 5, one needs a fixed enlarging function

λ : R > H (8)

that transforms any image of R into an image in H. Anticipating on Step 8, it is worthwhile
noting that, although the reduction function ρ and the enlarging function λ have opposite
purposes, these functions are not necessarily inverse one from the other. In other words,
ρ ◦ λ and λ ◦ ρ may differ from the identity maps idR and idH respectively (usually they do).

One applies the enlarging function λ to the low-resolution adversarial noise N C(Aa),
what leads to the blown-up noise

N hr,C(Ahr
a ) = λ(N C(Aa)) ∈ H. (9)

In Step 6, one creates the HR tentative adversarial image by adding this blown-up
noise to the original high-resolution image as follows:

Dhr,C
scenario(A

hr
a ) = Ahr

a +N hr,C(Ahr
a ) ∈ H. (10)

In Step 7, the application of the reduction function ρ on this HD tentative adversarial
image creates an image DC

scenario(Ahr
a ) = ρ(Dhr,C

scenario(A
hr
a )) in the R domain.

Finally, in Step 8, one runs C on DC
scenario(Ahr

a ) to get its classification (ca f t, τca f t).
The index “a f t” indicates that these assessments and measures take place after the noise
blowing-up process per se (Steps 4, 5, 6 essentially).

The attack succeeds if the conditions stated at the end of Section 2.3 are satisfied
according to the considered scenario.

Remarks.—(1) For reasons explained in Step 5, there is no reason that τ̃cbe f = τca f t

even when C classifies both images D̃C
scenario(Aa) and DC

scenario(Ahr
a ) in the same category

c = cbe f = ca f t (this condition is expected in the target scenario, provided this common
category satisfies c ̸= ca). These label values are very likely to differ. This has two
consequences: the first is to make mandatory the verification process performed in Step 8,
let alone to make sure that the adversarial image is conveniently classified by C according
to the considered scenario; the second is that, for the target scenario, one should set the
value of τ̃cbe f in a way such to ensure that the image Dhr,C

t (Ahr
a ) is indeed adversarial (see

Section 3.2). (2) In the context of the untarget scenario, one should make sure that ca f t ̸= ca.
In the context of the target scenario, one should also aim at getting ca f t = cbe f (provided
one succeeds in creating an adversarial image for which cbe f ̸= ca). These requirements are
likely to influence the value set to τ̃cbe f as well (see Section 3.2).
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Scheme (11) summarizes these steps. It shows how to create, from a target attack
atkscenario

R,C efficient against C in the R domain, the attack atkscenario
H,C in the H domain obtained

by the noise blowing-up strategy:

Ahr
a ∈ H ................................................................................> + .............................

atkscenario
H,C

> Dhr,C
scenario(A

hr
a ) ∈ H

N hr,C (Ahr
a ) ∈ H

∧

Aa ∈ R

ρ

∨
...............
atkscenario

R,C
> D̃C

scenario(Aa) ∈ R > N C (Aa) ∈ R

λ
∧

DC
scenario(A

hr
a ) ∈ R

ρ

∨

(ca, τa)

C
∨

(cbe f , τ̃cbe f )

C
∨

(ca f t, τca f t )

C
∨

(11)

3.2. Indicators

Although both D̃C
scenario(Aa) and DC

scenario(Ahr
a ) stem from Ahr

a , belong to the same set
R of low-resolution images, these images nevertheless differ in general, since ρ ◦ λ ̸= idR.
Therefore, as already stated, this fact implies that the verification process performed in
Step 8 is mandatory.

For the target scenario, one aims at ca f t = cbe f = ct. Since τ̃ct and τct are likely to differ,
One measures the difference with the real-valued loss function L defined for Ahr

a ∈ H as

LC(Ahr
a ) = τ̃ct − τct . (12)

In particular, for the target scenario, our attack is effective if one can set accurately
the value of τ̃t to match the inequality τt ≥ τ for the threshold value τ, or to make sure
that DC

t (Ahr
a ) is a good enough adversarial image in the R domain while controlling the

distance variations between Ahr
a and the adversarial Dhr,C

t (Ahr
a ).

For the untarget scenario, one aims at ca f t ̸= ca. To hope to achieve ca f t ̸= ca, one
requires cbe f ̸= ca. However, this requirement alone may not be sufficient to obtain ca f t ̸= ca.
Indeed, depending on the attack, the adversarial image DC

untarget(Ahr
a ) (in the R domain)

may be very sensitive to the level of trust that D̃C
untarget(Ahr

a ) (also in the R domain) belongs
to the category cbe f . In other words, even if the attack performed in step 3 of the noise
blowing-up strategy succeeded, steps 5 to 9 may not succeed under some circumstances,
and it may occur that the image resulting from these steps is classified back to ca.

Although less pregnant for the target scenario, a similar sensitivity phenomenon may
nevertheless occur, leading to ca f t ̸= cbe f (hence to ca f t ̸= ct, since cbe f = ct in this scenario),
and therefore to an unsuccess of the noise blowing-up strategy.

For these reasons, it may be safer to ensure a “margin of security” measured as follows.
One defines the Delta function ∆C for Ahr

a ∈ H as:

∆C(Ahr
a ) = τ̃cbe f − τ̃cnext,be f , (13)

where cnext,be f is the second best category, namely the category c for which the label value
τ̃c is the highest after the label value τ̃cbe f of cbe f . Enlarging the distance of the label values
between the best and second best category before launching the next steps of the noise
blowing-up strategy may lead to higher success rates of the strategy (see Section 6).

Remark.—Note that the present approach, at the difference of the approach, initially
introduced in [29,30], does not require frequent resizing up and down via λ, ρ the adver-
sarial images. In particular, if one knows how the loss function behaves (in the worst
case, or in average) for a given targeted attack, then one can adjust a priori the value of τ̃c
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accordingly, and be satisfied with one such resizing up and down. Mutatis mutandis for the
untarget attack and the Delta function.

To assess the visual variations and the noise between the images (see Section 2.1), we
shall compute the Lnorm

0 , Lnorm
1 , Lnorm

2 , L∞, and FID values for the following pairs of images:

• Aa and D̃C
scenario(Ahr

a ) in the R domain. One writes Lnorm,adv
p,R (p = 0, 1, 2) and Ladv

∞,R the
corresponding values.

• Ahr
a and Dhr,C

scenario(A
hr
a ) in the H domain. One writes Lnorm,adv

p,H (p = 0, 1, 2) and Ladv
∞,H

the corresponding values.
• Ahr

a and λ ◦ ρ(Ahr
a ) in the H domain. One writes Lnorm,clean

p,H (p = 0, 1, 2) and Lclean
∞,H the

corresponding values.
• Ahr

a , λ ◦ ρ(Ahr
a ) in the H domain. One writes FIDclean

H the corresponding values.
• Ahr

a and Dhr,C
scenario(A

hr
a ) in the H domain. One writes FIDadv

H the corresponding values.

In particular, when adversarial images are involved, the comparison of some of these
values between what occurs in the R domain, and what occurs in the H domain gives
an insight into the weight of the noise at each level, and of the noise propagation once
blown-up. Additionally, we shall as well assess the ratio:

Lnorm,adv
1,H

Lnorm,clean
1,H

=
Lnorm

1 (Ahr
a ,Dhr,C

scenario(A
hr
a ))

Lnorm
1 (Ahr

a , λ ◦ ρ(Ahr
a ))

.

This ratio normalizes the weight of the noise with respect to the effect of the anyhow
occurring composition λ ◦ ρ. Said otherwise, it evaluates the impact created by the noise
normalized by the impact created anyhow by the resizing functions.

4. Ingredients of the Experimental Study

This section specifies the key ingredients used in the experimental study performed
in Section 5: degrading and enlarging functions, CNNs, HR clean images, attacks and
scenarios. We also take advantage of the outcomes of [29–31] for the choice of some
parameters used in the experimental study.

4.1. The Selection of ρ and of λ

The assessment of the indicators of Section 3.2, and therefore the performances and
adequacy of the resized tentative adversarial images obtained between R and H, clearly
depend on the reducing and enlarging functions ρ and λ selected in Scheme (11).

The combination call (ρ, λ, ρ) (performed in Step 1 for the first call of ρ, in Step 5 for
the unique call of λ, and in Step 7 for the second call of ρ) to the degrading and enlarging
functions are “aside” of the actual attacks performed in the R domain. However, both the
adversity and the visual quality of the HR adversarial images are highly sensitive to the
selected combination.

Moreover, as pointed out in [29], enlarging functions usually have difficulties with
high-frequency features. This phenomenon leads to an increased blurriness in the resulting
image. Therefore, the visual quality of (and the speed to construct, see [29]) the high-
resolution adversarial images obtained by our noise blowing-up strategy benefits from a
scarce usage of the enlarging function. Consequently, the scheme minimizes the number of
times λ (and consequently ρ) are used.

We considered four non-adaptive methods that convert an image from one scale
to another. Indeed, the Nearest Neighbor [44], the Bilinear method [45], the Bicubic
method [46] and the Lanczos method [47,48] are among the most common interpolation
algorithms, and are available in python libraries. Note that the Nearest Neighbor method
is the default degradation function on Keras load_img function [35]. Tests performed
in [29,30] lead to reducing the resizing functions to the Lanczsos and the Nearest methods.

We performed a case study with the 8 possible different combinations (ρ, λ, ρ) obtained
with the Lanczsos and the Nearest methods (see Appendix B for the full details). Its
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outcomes lead us to recommend the combination (ρ, λ, ρ) = Lanczos, Lanczos, Lanczos)
(see also Section 4.3).

4.2. The CNNs

The experimental study is performed on 10 diverse and commonly used CNNs trained
on ImageNet (see [27] for the reasons for these choices). These CNNs are specified in
Table 1.

Table 1. The 10 CNNs trained on ImageNet, their number of parameters (in millions), and their Top-1
and Top-5 accuracy.

Ck Name of the CNN Parameters Top-1 Accuracy Top-5 Accuracy

C1 DenseNet121 8M 0.750 0.923
C2 DenseNet169 14M 0.762 0.932
C3 DenseNet201 20M 0.773 0.936
C4 MobileNet 4M 0.704 0.895
C5 NASNetMobile 4M 0.744 0.919
C6 ResNet50 26M 0.749 0.921
C7 ResNet101 45M 0.764 0.928
C8 ResNet152 60M 0.766 0.931
C9 VGG16 138M 0.713 0.901
C10 VGG19 144M 0.713 0.900

4.3. The HR Clean Images

The experiments are performed on 100 HR clean images. More specifically, Table 2
gives the 10 ancestor categories ca, and the 10 corresponding target categories ct used in
the (ca, ct)-target scenario whenever applicable (see Section 4.4). These categories (ancestor
or target) are the same as those of [27,49], which were picked at random among the
1000 categories of ImageNet.

Table 2. For 1 ≤ p ≤ 10, the second column lists the ancestor category cap and its ordinal 1 ≤ ap ≤ 1000
among the categories of ImageNet. Mutatis mutandis in the third column with the target category ctp

and ordinal tp.

p (cap , ap) (ctp , tp)

1 (abacus, 398) (bannister, 421)
2 (acorn, 988) (rhinoceros beetle, 306)
3 (baseball, 429) (ladle, 618)
4 (broom, 462) (dingo, 273)
5 (brown bear, 294) (pirate, 724)
6 (canoe, 472) (saluki, 176)
7 (hippopotamus, 344) (trifle, 927)
8 (llama, 355) (agama, 42)
9 (maraca, 641) (conch, 112)

10 (mountain bike, 671) (strainer, 828)

For each ancestor category, we picked at random 10 clean ancestor images from the
ImageNet validation scheme in the corresponding ca category, provided that their size
h × w satisfies h ≥ 224 and w ≥ 224. This requirement ensures that these images Ahr

a
belong to the H domain. These images are pictured in Figure A1 in Appendix A, while
Table A1 gives their original sizes. Note that, out of the 100 HR clean images in Figure A1,
92 coincide with those used in [27,49] (which were picked at random in this article). We
replaced the 8 remaining images used in [27,49] whose sizes did not fulfill the requirement.
As a consequence, the images A1

1 and A10
1 in the category ca1 , A3

3 in the category ca3 ,
A1

5,A2
5,A7

5 in the category ca5 , and A4
9,A7

9 in the category ca9 differ from those of [27,49].
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Although the images Ap
q are picked from the ImageNet validation set in the categories

caq , CNNs may not systematically classify all of them in the “correct” category caq in the
process of Steps 1 and 2 of Scheme (11). Indeed, Tables A2 and A3 in Appendix A show that
this phenomenon occurs for all CNNs, whether one uses ρ = “Lanczos” (L) or “Nearest”
(N). Table 3 summarizes these outcomes, where SC

clean(ρ) designates the set of “correctly”
classified clean images Ap

q .

Table 3. For each CNN Ck (1st row), number of clean HR images Ap
q classified by Ck in the “correct”

category caq either with the degrading function ρ = “Lanczos” (2nd row), or with ρ = “Nearest”
(3rd row).

C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

#SC
clean(L) 97 99 98 97 95 98 95 95 93 94

#SC
clean(N) 99 97 97 95 94 97 95 94 93 94

Table 3 shows that the sets SC
clean(L) and SC

clean(N) usually differ. Tables A2 and A3
proves that this holds as well for C = C7, C9, C10 although both sets have the same number
of elements.

In any case, the “wrongly” classified clean images are from now on disregarded since
they introduce a native bias. Experiments are therefore performed only for the “correctly”
classified HR clean images belonging to SC

clean(ρ).

4.4. The Attacks

We considered seven well-known attacks against the 10 CNNs given in Table 1. Table 4
lists these attacks, and specifies (with an “x”) whether we use them in the experiments for
the targeted scenario, for the untargeted scenario, or for both (see Table 5 for a justification
of these choices), and their white-box or black-box nature. To be more precise, if an attack
admits a dual nature, namely black box and white-box (potentially semi-white-box), we
consider the attack only in its more demanding black-box nature. This leads us to consider
three black-box attacks (EA, AdvGAN, SimBA) and four white-box attacks (FGSM, BIM,
PGD Inf, PGD L2).

Let us now briefly describe these attacks while specifying the parameters to be used in
the experiments. Note that, except (for the time being) for the EA attack, all attacks were
applied with the Adversarial Robustness Toolbox (ART) [50], which is a Python library that
includes several attack methods.

Table 4. List of attacks considered, their white-box or black-box nature, and the scenarios for which
they are run in the present study.

Attacks White Box Black Box Targeted Untargeted

EA x x x
advGAN x x x
SimBA x x
FGSM x x
BIM x x x
PGD Inf x x x
PGD L2 x x x

–EA attack [25,27] is an evolutionary algorithm-based black-box attack. It begins by
creating a population of ancestor image copies and iteratively modifies their pixels over
generations. The attack’s objective is defined by a fitness function that uses an individual’s
ct probability obtained from the targeted CNN. The population size is set to 40, and the pixel
mutation magnitude per generation is α = 1/255. The attack is executed in both targeted
and untargeted scenarios. For the targeted scenario, the adversarial image’s minimum
ct-label value is set to τ̃t ≥ 0.55. The maximum number of generations is set to N = 10,000.
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Table 5. Number of successfully generated adversarial images in the R domain.

Attacks
EA AdvGAN SimBA FGSM BIM PGD Inf PGD L2

untarg targ untarg targ untarg targ untarg targ untarg targ untarg targ untarg targ

C1 95 89 96 81 91 0 78 0 96 68 97 96 97 82
C2 95 92 94 85 94 0 63 2 98 78 99 98 99 90
C3 94 90 93 82 92 0 67 1 96 71 98 98 97 85
C4 94 90 81 88 91 0 64 0 96 84 97 97 97 94
C5 89 77 89 74 85 0 50 0 88 56 93 83 94 71
C6 95 94 92 79 90 0 84 1 96 96 97 98 96 98
C7 92 87 86 78 92 0 80 1 93 93 95 95 93 93
C8 86 93 88 74 78 0 75 0 94 94 95 95 89 94
C9 90 92 78 58 87 0 86 3 92 76 92 93 91 83
C10 90 94 79 59 87 1 87 1 92 77 93 94 92 84

max 0.546 0.555 0.762 0.481 0.508 0.041 0.993 0.457 0.999 0.999 0.999 0.999 0.999 0.999
min 0.007 0.550 0.003 0.031 0.038 0.041 0.050 0.257 0.258 0.289 0.524 0.721 0.277 0.221
avg 0.359 0.551 0.150 0.255 0.352 0.041 0.522 0.340 0.958 0.901 0.987 0.986 0.966 0.943

–Adversarial GAN attack (AdvGAN) [51] is a type of attack that operates in either
a semi-whitebox or black-box setting. It uses a generative adversarial network (GAN) to
create adversarial images by employing three key components: a generator, a discriminator,
and the targeted neural network. During the attack, the generator is trained to produce
perturbations that can convert original images into adversarial images, while the discrimi-
nator ensures that the generated adversarial image appears identical to the original image.
The attack is executed in the black-box setting.

–Simple Black-box Attack (SimBA) [52] is a versatile algorithm that can be used for
both black-box and white-box attacks. It works by randomly selecting a vector from a
predefined orthonormal basis and adding or subtracting it from the target image. SimBA is
a simple and effective method that can be used for both targeted and untargeted attacks.
For our experiments, we utilized SimBA in the black-box setting with the overshoot param-
eter epsilon set to 0.2, batch size set to 1, and the maximum number of generations set to
10,000 for both targeted and untargeted attacks.

–Fast Gradient Sign Method (FGSM) [53] is a white-box attack that works by using
the gradient of the loss function J(X,y) with respect to the input X to determine the direction
in which the original input should be modified. FGSM is a one-step algorithm that can be
executed quickly. In its untargeted version, the adversarial image is

Xadv = X + ϵsign(∆X J(X, ca)), (14)

while in its targeted version it is

Xadv = X − ϵsign(∆X J(X, ct)). (15)

where ϵ is the perturbation size which is calculated with Lin f norm and ∆ is the gradient
function. We set eps_step = 0.01 and ϵ = 8/255.

–Basic Iterative Method (BIM) [54] is a white-box attack that is an iterative version of
FGSM. BIM is a computationally expensive attack, as it requires calculating the gradient at
each iteration. In BIM, the adversarial image Xadv is initialized with the original image X
and gradually updated over a given number of steps N as follows:

Xadv
ℓ+1 = Clipϵ{Xadv

ℓ + αsign(∆A(JC(Xadv
ℓ , ca)))} (16)

in its untargeted version and

Xadv
ℓ+1 = Clipϵ{Xadv

ℓ − αsign(∆A(JC(Xadv
ℓ , ct)))}, (17)
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in its targeted version, where α is the step size at each iteration and ϵ is the maximum
perturbation magnitude of Xadv = Xadv

N . We use the eps_step = 0.1, max_iter = 100,
and ϵ = 2/255.

–Projected Gradient Descent Infinite (PGD Inf) [55] is a white-box attack that is similar
to the BIM attack, but with some key differences. In PGD Inf, the initial adversarial image
is not set to the original image X, but rather to a random point within an Lp-ball around X.
The distance between X and Xadv is measured using the Lnorm. For our experiments, we set
the norm parameter to ∞, which indicates the use of the L∞ norm. We also set the step size
parameter eps_step to 0.1, the batch size to 32, and the maximum perturbation magnitude
ϵ to 8/255.

–Projected Gradient Descent L2 (PGD L2) [55] is a white-box attack and it is similar to
PGD Inf, with the difference that L∞ is replaced with L2. We set norm = 2, eps_step = 0.1,
batch_size = 32, and ϵ = 2.

5. Experimental Results of the Noise Blowing-Up Method

The experiments, following the process implemented in Scheme (11), essentially
proceed in two phases for each CNN listed in Table 1, and for each attack and each scenario
specified in Table 4.

Phase 1, whose results are given in Section 5.1, mainly deals with running atkscenario
R,C

on degraded images in the R domain. It corresponds to Step 3 of Scheme (11). The results
of these experiments are interpreted in Section 5.2.

Remark.—It is worthwhile noting that Step 3, which is, of course, mandatory in the
whole process, should be considered an independent feature of the noise blowing-up
strategy. Indeed, although its results are necessary for the experiments performed in the
subsequent steps, the success or failure of Phase 1 measures the success or failure of the
considered attack (EA, AdvGAN, BIM, etc.) for the considered scenario (target or untarget)
in its usual environment (the low-resolution R domain). In other words, the outcomes of
Phase 1 do not assess in any way the success or failure of the noise blowing-up strategy.
This very aspect is addressed in the experiments performed in Phase 2.

Phase 2, whose results are given in Section 5.3, indeed encapsulates the essence of
running atkscenario

H,C via the blowing-up of the adversarial noise from R to H. It corresponds
to Steps 4 to 8 of Scheme (11). The results of these experiments are interpreted in Section 5.4.

5.1. Phase 1: Running atkscenario
R,C

Table 5 summarizes the outcome of running the attacks atkscenario
R,Ck

on the 100 clean

ancestor images ρ(Ap
q ) ∈ R, obtained by degrading, with ρ = “Lanczos” function, the HR

clean images Ap
q represented in Figure A1, against the 10 CNNs C1, · · · , C10, either for the

untarget scenario, or for the (ca, ct) target scenario.
Table 5 gives the number of successfully generated adversarial images in the R domain

created by seven attacks against 10 CNNs, for either the targeted (targ) or the untargeted
(untarg) scenario. In the last three rows, the maximum, minimum, and average dominant
label values achieved by each successful targeted/untargeted attack are reported across
all CNNs.

5.2. Interpretation of the Results of Phase 1

Except for SimBA and FGSM for the target scenario, one sees that all attacks are
performing well for both scenarios. Given SimBA and FGSM’s poor performance in
generating adversarial images for the target scenario (see Remark at the beginning of this
Section), we decided to exclude them from the subsequent noise blowing-up strategy for
the target scenario.

The analysis of the average dominant label values reveals as expected that white-box
attacks usually create very strong adversarial images. This is the case for BIM, PGD Inf,
and PGD L2 in both the targeted and untargeted scenarios. A contrario but also as expected,
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black-box attacks (EA, AdvGan for both scenarios, and SimBA for the untarget scenario)
achieved lower label values for the target scenario and significantly lower label value of
the dominant category for the untarget scenario. This specific issue (or, better said, its
consequences as reported in Sections 5.3 and 5.4) is addressed in Section 6.

5.3. Phase 2: Running atkscenario
H,C

For the relevant adversarial images kept from Table 5, one proceeds with the remaining
steps of Scheme (11) with the extraction of the adversarial noise in the R domain, its
blowing-up to the H domain, its addition to the clean HR corresponding image, and the
classification by the CNN of the resulting tentative adversarial image.

The speed of the noise blowing-up method is directly impacted by the size of the
clean high-resolution image (as pointed out in [31]). Therefore, representative HR clean
images of large size and small sizes are required to assess the additional computational cost
(both in absolute and relative terms) involved by the noise blowing-up method. To ensure
a fair comparison across various attacks and CNNs, we selected for each scenario (targeted
or untargeted) HR clean images where all attacks successfully generated HR adversarial
images against 10 CNNs. This led to the images referred to in Table 6 (the Table indicates
their respective sizes h × w).

Table 6. Images employed for the assessment of the speed/overhead of the noise blowing-up method
for each considered scenario and attack.

Attacks Targeted Untargeted
EA, FGSM, BIM, PGD Inf, PGD L2 FGSM, BIM, PGD Inf, PGD L2

images (h × w) A10
1 (2448 × 3264) A9

6 (1536 × 2048)
A1

2 (374 × 500) A4
8 (253 × 380)

The performance of the noise blowing-up method is summarized in Table 7 Please
revise all mentions according to requested style and ensure all tables are mentioned in
numerical order. for adversarial images generated by atktargeted

H,C , and in Table 8 for those

generated by atkuntargeted
H,C for each CNN and attack (except SimBAtargeted

H,C and FGSMtargeted
H,C

for reasons given in Section 5.2). The adversarial images in R used for these experiments
are those referred to in Table 5.

For each relevant attack and CNN, the measures of a series of outcomes are given in
Tables 7 and 8.

Regarding targeted attacks (the five attacks EA, AdvGAN, BIM, PGD Inf, and PGD L2
are considered) as summarized in Table 7, the row ca f t = cbe f (and = ct) gives the number
of adversarial images for which the noise blowing-up strategy succeeded. The row SR gives
the resulting success rate in % (For example, with EA and C1, SR = 81

89 = 91%). The row
ca f t ̸= cbe f reports the number of adversarial images for which the noise blowing-up
strategy failed. The row ca f t = ca reports the number of images, among those that failed,
that are classified back to ca. The row LC gives the mean value of the loss function (see
Section 3.2) for the adversarial images that succeeded, namely those referred to in the row
ca f t = cbe f . Relevant sums or average values are given in the last column.

Regarding untargeted attacks (the seven attacks are considered) as summarized in
Table 8, the row ca f t ̸= ca gives the number of adversarial images for which the noise
blowing-up strategy succeeded, and the row SR gives the resulting success rate. The row
ca f t = cbe f reports the number of images, among those that succeeded, that are classified in
the same category as the adversarial image obtained in Phase 1. The row ca f t = ca reports
the number of images for which the strategy failed. Relevant sums or average values are
given in the last column.

To assess the visual imperceptibility of adversarial images compared to clean images,
we utilize Lp-norms and FID values (see Section 3.2). The average (Avg) and standard
deviation (StDev) values of the Lp-norms and FID values, across all CNNs for each attack,
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are provided for both targeted and untargeted scenarios in Tables 9 and 10, respectively (see
Tables A6 and A7 for detailed report of FID values). Table 9 considers only the successful
adversarial images provided in Table 7, namely those identified by ca f t = cbe f , provided
their number is statistically relevant (what leads to the exclusion of AdvGAN images).
Table 10 considers only the successful adversarial images obtained in Table 8, namely those
identified by ca f t ̸= ca (all considered attacks lead to a number of adversarial images that
is statistically relevant). This is indicated by the pair “atk/# of adversarial images used”.
Tables 9 and 10 also provide an assessment of the visual impact of the resizing functions ρ
and λ on the considered clean images for which adversarial images are obtained by atk.

Table 7. Performance of the Noise blowing-up strategy on adversarial images generated with attacks
for the targeted scenario (ca, cbe f ) (with cbe f = ct) against 10 CNNs. The symbol ↑ (resp. ↓) indicates
the higher (resp. the lower) the value the better.

Targeted Attacks C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

EA

↑ ca f t = cbe f 81 74 80 76 61 91 86 89 92 94 824
ca f t ̸= cbe f 8 18 10 14 16 3 1 4 0 0
↓ ca f t = ca 8 18 10 14 3 3 1 4 0 0
↑ SR 91.0 80.4 88.9 84.4 79.2 96.8 98.9 95.7 100 100 91.5
↓ LC 0.202 0.213 0.189 0.249 0.243 0.139 0.129 0.120 0.044 0.036 0.156

AdvGAN

↑ ca f t = cbe f 0 0 0 0 0 0 0 0 0 2 2
ca f t ̸= cbe f 4 4 2 5 11 8 4 3 24 21
↓ ca f t = ca 76 81 80 83 63 72 74 71 34 36
↑ SR 0 0 0 0 0 0 0 0 0 8.7 0.9
↓ LC 0.113 0.218 0.211 0.160 0.162 0.176 0.221 0.186 0.034 0.040 0.152

BIM

↑ ca f t = cbe f 50 64 53 69 47 96 92 92 75 72 710
ca f t ̸= cbe f 18 14 18 15 9 0 1 2 1 5
↓ ca f t = ca 17 13 18 15 6 0 1 2 1 3
↑ SR 73.5 83.1 74.6 82.1 83.9 100 98.9 97.9 98.6 93.5 88.6
↓ LC 0.100 0.165 0.167 0.117 0.119 0.007 0.024 0.023 0.025 0.025 0.077

PGD Inf

↑ ca f t = cbe f 96 98 97 96 78 98 95 95 93 94 940
ca f t ̸= cbe f 0 0 1 1 5 0 0 0 0 0
↓ ca f t = ca 0 0 1 1 4 0 0 0 0 0
↑ SR 100 100 98.9 98.9 93.9 100 100 100 100 100 99.2
↓ LC 0.013 0.010 0.011 0.017 0.046 3 × 10−6 7 × 10−5 6 × 10−6 2 × 10−5 1 × 10−4 0.009

PGD L2

↑ ca f t = cbe f 69 76 75 89 64 96 92 93 82 81 817
ca f t ̸= cbe f 13 14 10 5 7 2 1 1 1 3
↓ ca f t = ca 13 14 10 5 4 2 1 1 1 2
↑ SR 84.1 84.4 88.2 94.7 90.1 97.9 98.9 98.9 98.8 96.4 93.2
↓ LC 0.013 0.126 0.114 0.081 0.070 0.005 0.005 0.004 0.015 0.020 0.058

↑ Average SR 69.7 69.6 70.1 72.0 69.4 78.9 79.3 78.5 79.5 79.7 74.7

↓ Average LC 0.114 0.146 0.138 0.125 0.128 0.065 0.076 0.067 0.024 0.024 0.091

Under these conditions, Table 11 for the target scenario (respectively Table 12 for the
untarget scenario) provides the execution times in seconds (averaged over the 10 CNNs for
each attack and scenario) for each step of the noise blowing-up method, as described in
Scheme (11), for the generation of HR adversarial images from large A10

1 and small A1
2 HR

clean images (respectively large A9
6 and small A4

8 HR clean images).
The Overhead column provides the time of the noise blowing-up method per se, namely

computed as the cumulative time of all steps of Scheme (11) except Step 3. The ‰ column
displays the relative per mille additional time of the overhead of the noise blowing-up
method as compared to the underlying attack atk performed in Step 3.
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Table 8. Performance of the Noise blowing-up technique on adversarial images generated with
untargeted attacks against 10 CNNs. The symbol ↑ (resp. ↓) indicates the higher (resp. the lower) the
value the better.

Untargeted Attacks C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

EA

↑ ca f t ̸= ca 2 3 1 11 2 7 5 0 31 28 90
ca f t = cbe f 2 3 1 11 2 7 5 0 31 28
↓ ca f t = ca 93 92 93 83 87 88 87 86 59 62
↑ SR 2.2 3.2 1.1 11.7 2.2 7.4 5.4 0.0 34.4 31.1 9.9

AdvGAN

↑ ca f t ̸= ca 4 8 4 4 8 7 2 6 18 22 83
ca f t = cbe f 4 8 4 4 8 7 2 6 18 22
↓ ca f t = ca 92 86 89 77 81 85 84 82 60 57
↑ SR 4.2 8.5 4.3 4.9 9.0 7.6 2.3 6.8 23.1 27.8 9.9

SimBA

↑ ca f t ̸= ca 25 23 22 24 18 25 32 30 31 36 266
ca f t = cbe f 25 23 22 24 18 25 32 30 31 36
↓ ca f t = ca 66 71 70 67 67 65 60 48 56 51
↑ SR 27.5 24.5 23.9 26.4 21.2 27.8 34.8 38.5 35.6 41.4 30.1

FGSM

↑ ca f t ̸= ca 77 60 64 63 49 84 79 75 86 87 724
ca f t = cbe f 77 59 62 59 49 83 74 75 86 86
↓ ca f t = ca 1 3 3 1 1 0 1 0 0 0
↑ SR 98.7 95.2 95.5 98.4 98.0 100.0 98.8 100.0 100.0 100.0 98.5

BIM

↑ ca f t ̸= ca 95 97 96 95 88 96 93 93 92 92 937
ca f t = cbe f 95 96 96 92 87 96 93 93 92 92
↓ ca f t = ca 1 1 0 1 0 0 0 1 0 0
↑ SR 99.0 99.0 100.0 99.0 100.0 100.0 100.0 98.9 100.0 100.0 99.6

PGD Inf

↑ ca f t ̸= ca 97 99 98 97 93 97 95 95 92 93 956
ca f t = cbe f 97 99 98 97 92 97 95 95 92 93
↓ ca f t = ca 0 0 0 0 0 0 0 0 0 0
SR 100 100 100 100 100 100 100 100 100 100 100.0

PGD L2

↑ ca f t ̸= ca 96 98 97 96 92 96 93 89 91 92 940
ca f t = cbe f 96 98 97 96 92 96 93 89 90 92
↓ ca f t = ca 1 1 0 1 2 0 0 0 0 0
↑ SR 99.0 99.0 100.0 99.0 97.9 100.0 100.0 100.0 100.0 100.0 99.5

↑ Average SR 61.5 61.3 60.7 62.8 61.2 63.3 63.0 63.5 70.5 71.5 63.9

Table 9. Visual quality as assessed by Lp-distances and FID values for the target scenario.

Targeted Attack/# of Adversarial Images Used

EA/824 BIM/710 PGD Inf/940 PGD L2/817 Overall/3291

Avg StDev Avg StDev Avg StDev Avg StDev Avg StDev

L0

Lnorm,adv
0,R 0.945 0.014 0.979 0.013 0.971 0.010 0.995 0.009 0.829 0.009

Lnorm,adv
0,H 0.939 0.015 0.833 0.036 0.858 0.043 0.645 0.023 0.744 0.024

Lnorm,clean
0,H 0.998 0.009 0.997 0.012 0.996 0.014 0.996 0.014 0.996 0.010

L1

Lnorm,adv
1,R 0.047 0.078 0.009 0.035 0.010 0.003 0.003 3 × 10−4 0.014 0.023

Lnorm,adv
1,H 0.023 0.006 0.005 0.001 0.009 0.003 0.003 3 × 10−4 0.009 0.002

Lnorm,clean
1,H 0.027 0.017 0.022 0.014 0.025 0.016 0.023 0.015 0.021 0.014

Lnorm,adv
1,H /Lnorm,clean

1,H 1.271 1.112 0.362 0.338 0.562 0.480 0.214 0.202 0.543 0.467

L2

Lnorm,adv
2,R 8 × 10−5 2 × 10−5 2 × 10−5 2 × 10−6 3 × 10−5 9 × 10−6 1 × 10−5 9 × 10−7 3 × 10−5 7 × 10−6

Lnorm,adv
2,H 4 × 10−5 2 × 10−5 8 × 10−6 3 × 10−6 2 × 10−5 6 × 10−6 7 × 10−6 2 × 10−6 1 × 10−5 6 × 10−6

Lnorm,clean
2,H 5 × 10−5 3 × 10−5 5 × 10−5 3 × 10−5 5 × 10−5 3 × 10−5 5 × 10−5 3 × 10−5 4 × 10−5 2 × 10−5

L∞

Lnorm,adv
∞,R 36 11 2 0 8 0 17 4 16 4

Lnorm,adv
∞,H 38 10 5 0 13 2 18 5 18 4

Lnorm,clean
∞,H 129 41 125 42 127 42 125 42 119 34

FID FIDadv
H 17.6 6.6 5.3 2.7 13.7 9.4 7.7 4.1 11.1 5.7

FIDclean
H 14.4 1.2 14.2 0.7 13.9 0.3 14.2 0.5 14.2 0.7
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Table 10. Visual quality as assessed by Lp-distances and FID values for the untargeted scenario.

Untargeted Attack/# of Adversarial Images

EA/90 AdvGAN/83 SimBA/266 FGSM/724 BIM/937 PGD Inf/956 PGD L2/940 Overall/3996

Avg StDev Avg StDev Avg StDev Avg StDev Avg StDev Avg StDev Avg StDev Avg StDev

L0

Lnorm,adv
0,R 0.822 0.150 0.838 0.088 0.994 0.050 0.990 0.017 0.980 0.013 0.974 0.011 0.993 0.010 0.942 0.048

Lnorm,adv
0,H 0.825 0.107 0.851 0.064 0.809 0.091 0.966 0.010 0.844 0.031 0.879 0.039 0.654 0.018 0.832 0.051

Lnorm,clean
0,H 0.996 0.015 0.998 0.011 0.995 0.016 0.998 0.006 0.996 0.014 0.996 0.014 0.996 0.014 0.997 0.013

L1

Lnorm,adv
1,R 0.011 0.005 0.021 0.011 0.008 0.003 0.031 0.001 0.006 0.001 0.012 0.003 0.004 2 × 10−4 0.013 0.003

Lnorm,adv
1,H 0.010 0.005 0.019 0.009 0.007 0.003 0.026 0.001 0.005 0.001 0.011 0.003 0.003 3 × 10−4 0.012 0.003

Lnorm,clean
1,H 0.020 0.012 0.025 0.012 0.023 0.015 0.027 0.017 0.025 0.017 0.025 0.018 0.025 0.018 0.025 0.015

Lnorm,adv
1,H /Lnorm,clean

1,H 0.808 1.055 0.761 0.055 0.606 0.931 1.461 1.284 0.343 0.327 0.680 0.608 0.205 0.197 0.695 0.637

L2

Lnorm,adv
2,R 3 × 10−5 2 × 10−5 9 × 10−5 5 × 10−5 3 × 10−5 9 × 10−6 8 × 10−5 2 × 10−6 2 × 10−5 1 × 10−6 4 × 10−5 9 × 10−6 1 × 10−5 3 × 10−12 4 × 10−5 1 × 10−5

Lnorm,adv
2,H 2 × 10−5 1 × 10−5 3 × 10−5 2 × 10−5 1 × 10−5 7 × 10−6 4 × 10−5 1 × 10−5 9 × 10−6 3 × 10−6 2 × 10−5 7 × 10−6 7 × 10−6 2 × 10−6 2 × 10−5 8 × 10−5

Lnorm,clean
2,H 4 × 10−5 2 × 10−5 5 × 10−5 3 × 10−5 5 × 10−5 3 × 10−5 6 × 10−5 3 × 10−5 5 × 10−5 3 × 10−5 5 × 10−5 3 × 10−5 5 × 10−5 3 × 10−5 5 × 10−5 3 × 10−5

L∞

Lnorm,adv
∞,R 17 8 103 33 13 6 8 0 2 0 8 0 16 4 24 7

Lnorm,adv
∞,H 16 8 103 39 13 6 20 1 5 0 14 1 17 4 27 8

Lnorm,clean
∞,H 119 46 139 41 121 43 132 40 127 42 127 42 126 42 127 42

FID FIDadv
H 3.7 1.9 15.1 2.9 8.5 3.9 49.5 12.3 5.7 2.8 23.9 18.9 8.8 4.8 16.5 6.7

FIDclean
H 14.5 4.6 24.4 7.6 15.5 2.5 16.1 1.6 14.1 0.5 14.0 0.3 13.5 2.1 16.0 2.7
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Table 11. In the target scenario, for each considered attack atk, execution time (in seconds, averaged
over the 10 CNNs) of each step of Scheme (11) for the generation of HR adversarial images for the
HR clean images A10

1 and A1
2. The Overhead column provides the cumulative time of all steps except

Step 3. The ‰ column displays the relative per mille additional time of the Overhead as compared to
the time required by atk performed in Step 3.

atk Images Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Overhead ‰

EA A10
1 0.144 0.047 848.7 3 × 10−4 0.053 0.101 0.363 0.048 0.757 0.89

A1
2 0.010 0.048 443.2 3 × 10−4 0.003 0.002 0.011 0.047 0.122 0.28

FGSM A10
1 0.148 0.050 59.2 2 × 10−4 0.045 0.103 0.360 0.049 0.755 12.75

A1
2 0.009 0.049 58.1 2 × 10−4 0.003 0.002 0.011 0.046 0.120 2.06

BIM A10
1 0.143 0.049 83.8 2 × 10−4 0.045 0.103 0.356 0.049 0.744 8.88

A1
2 0.009 0.047 97.5 2 × 10−4 0.003 0.002 0.010 0.046 0.118 1.22

PGD Inf A10
1 0.143 0.048 90.7 2 × 10−4 0.045 0.102 0.357 0.049 0.744 8.21

A1
2 0.009 0.051 88.3 2 × 10−4 0.003 0.002 0.010 0.046 0.122 1.38

PGD L2 A10
1 0.141 0.048 104.2 2 × 10−4 0.044 0.101 0.350 0.047 0.732 7.02

A1
2 0.009 0.048 106.3 2 × 10−4 0.003 0.002 0.010 0.046 0.118 1.11

AVG A10
1 0.144 0.048 2 × 10−4 0.047 0.102 0.357 0.048 0.746

A1
2 0.009 0.049 2 × 10−4 0.003 0.002 0.010 0.046 0.120

Table 12. In the untargeted scenario, for each considered attack atk, execution time (in seconds,
averaged over the 10 CNNs) of each step of Scheme (11) for the generation of HR adversarial images
for the HR clean images A9

6 and A4
8. The Overhead column provides the cumulative time of all steps

except Step 3. The ‰ column displays the relative per mille additional time of the Overhead as
compared to the time required by atk performed in Step 3.

Images Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Overhead ‰

FGSM A9
6 0.056 0.042 66.3 2 × 10−4 0.021 0.037 0.136 0.042 0.334 5.04

A4
8 0.007 0.045 67.2 2 × 10−4 0.002 0.001 0.005 0.042 0.103 1.53

BIM A9
6 0.055 0.042 78.9 2 × 10−4 0.021 0.038 0.135 0.042 0.333 4.22

A4
8 0.007 0.043 79.1 2 × 10−4 0.002 0.001 0.005 0.042 0.101 1.27

PGD Inf A9
6 0.056 0.043 80.9 2 × 10−4 0.020 0.038 0.137 0.042 0.336 4.15

A4
8 0.007 0.043 81.8 2 × 10−4 0.002 0.001 0.005 0.042 0.100 1.23

PGD L2 A9
6 0.055 0.043 80.9 2 × 10−4 0.021 0.038 0.137 0.042 0.337 4.17

A4
8 0.007 0.045 81.5 2 × 10−4 0.002 0.001 0.005 0.040 0.101 1.24

AVG A9
6 0.055 0.043 2 × 10−4 0.021 0.038 0.136 0.042 0.335

A4
8 0.007 0.044 2 × 10−4 0.002 0.001 0.005 0.041 0.101

5.4. Interpretation of the Results of Phase 2

In the targeted scenario, the noise blowing-up strategy achieved an overall average
success rate (overall attacks and CNNs) of 74.7% (see Table 7).

Notably, the strategy performed close to perfection with PGD Inf, achieving an average
success rate of 99.2% (and minimal loss of 0.009). The strategy performed also very
well with PGD L2, EA, and BIM, with average success rates of 93.2%, 91.5%, and 88.6%,
respectively. In contrast, the strategy performed poorly with AdvGAN, achieving a success
rate oscillating between 0% (for 8 CNNs) and 8.7%, leading to an average success rate
of 0.9%.

The reason for the success of the noise blowing-up strategy for PGD Inf, PGD L2, EA
and BIM, and its failure for AdvGAN is essentially due to the behavior, for these attacks,
of the average label values of the dominant categories obtained in Table 5, hence is due to a
phenomenon occurring before the noise blowing-up process per se.

Indeed, these values are very high for the white-box attacks PGD Inf (0.986), PGD L2
(0.943), and BIM (0.901), and are quite high for EA (0.551). However, this value is very low
for AdvGAN (0.255).
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The adversarial noises, obtained after Phase 1 (in the R domain) by all attacks ex-
cept AdvGAN, are particularly robust, and “survive” the Phase 2 treatment: The noise
blowing-up process did not significantly reduce their adversarial properties legacy, and the
derived adversarial images, obtained after the noise blowing-up process, remained in the
target category.

The situation differs for AdvGAN: After Phase 1, the target category is only modestly
dominating other categories, and one (or more) other categories achieve only slightly
weaker label values than the dominating target category. Consequently, the adversarial
noise becomes highly susceptible to even minor perturbations, with the effect that these
perturbations can easily cause transitions between categories.

In the untargeted scenario, the noise blowing-up strategy achieved an overall average
success rate (overall attacks and CNNs) of 63.9% (see Table 8).

The strategy performed perfectly or close to perfection with all white-box attacks,
namely PGD Inf (average success rate of 100%), BIM (99.6%), PGD L2 (99.5%) and FGSM
(98.5%). A contrario, the strategy performed weakly or even poorly for all black-box attacks,
namely SimBA (30.1%), AdvGAN (9.9%), and EA (9.9%).

The reason for these differences in the successes of the strategy according to the
considered attacks is the same as seen before in the target scenario: the behavior of the
average label values of the dominating category obtained in Table 5 (hence, in this case too,
before the noise blowing-up process).

Indeed, these values are very high or fairly high for PGD Inf (0.987), BIM (0.958), PGD
L2 (0.966), and FGSM (0.522). However, they are much lower for EA (0.359), SimBA (0.352),
and AdvGAN (0.150).

The adversarial noises, obtained after Phase 1 by all white-box attacks, are particu-
larly robust, and those obtained by all black-box attacks are less resilient. In this latter
case, the adversarial noise leveraged to create the tentative adversarial image by the noise
blowing-up process is much more sensitive to minor perturbations, with similar conse-
quences as those already encountered in the target scenario.

Visual quality of the adversarial images: The values of Lnorm,adv
0,R in Table 9 (resp.

Table 10) show that the attacks performed for the target scenario manipulate on average 82%
of the pixels of the downsized (hence in R) clean image (resp. 94% for the untarget scenario).

Nevertheless, the values of Lnorm,adv
0,H in both tables (hence in the larger H domain,

after the noise blowing-up process) are lower, with an overall average of 74% for the
targeted scenario (resp. 83% for the untargeted scenario). This trend is consistent across all
Lp values (p = 0, 1, 2, ∞), with Lnorm,adv

p,R generally higher than the corresponding Lnorm,adv
p,H

values for all attacks (the values are closely aligned, though, for p = ∞).
Additionally, FIDadv

H values, comparing clean and adversarial images obtained by the
noise blowing-up method, ranging between 5.3 (achieved by BIM) and 17.6 in the targeted
scenario (with average 11.1, see Table 9), and between 3.7 (achieved by EA) and 49.5 in
the untargeted scenario (with average 16.5, see Table 10), are significantly low (it is not
uncommon to have values in the range 300–500). In other words, the adversarial images
maintain a visual quality and proximity to their clean counterparts.

It is important to highlight that the simple operation of scaling down and up the
clean images results in even larger Lnorm,clean

p,H values than Lnorm,adv
p,H for p = 0, 1, ∞ for all

attacks and scenarios (see Tables 9 and 10; note that the values for p = 2 are too small to
assess the phenomenon described above). When one compares FIDclean

H to FIDadv
H , the same

phenomenon occurs for three out of 4 targeted attacks (EA is the exception), and for five
out of 7 untargeted attacks (FGSM and PGD Inf being the exceptions).

Said otherwise, the interpolation techniques usually cause more visual damage than
the attacks themselves, at least as measured by these indicators.

Figure 3 provides images representative of this general behavior. Evidence is fur-
thermore supported numerically by the Lnorm,clean

p,H , Lnorm,adv
p,H (p = 0, 1, ∞) and the FIDclean

H ,

FIDadv
H values deduced from these images.
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More precisely, the 1st column of Figure 3 displays the HR clean images A2
1, A3

6,
and A10

10. The 2nd column displays the non-adversarial λ ◦ ρ(Ahr
a ) ∈ H images, as well as

the corresponding Lnorm,clean
p,H (p = 0, 1, ∞) and FIDclean

H values (in that order).

HR adversarial images Dhr,C
tar (Ahr

a ) are displayed in the 3rd and 4th columns: For
atk = EA performed on C4 = MobileNet for the targeted scenario in the 3rd column,
and for atk = BIM on C6 = ResNet50 for the untargeted scenario in the 4th column.
The corresponding numerical values of Lnorm,adv

p,H (p = 0, 1, ∞) and of FIDadv
H (in that order)

are provided as well.

Ahr
a λ ◦ ρ(Ahr

a ) EA:Dhr,C4
tar (Ahr

a ) BIM: Dhr,C6
untar(Ahr

a )

A2
1 0.99, 0.03, 161, 10.5 0.94, 0.02, 40, 2.5 0.83, 0.01, 5, 0.6

A3
6 1.00, 0.04, 144, 20.0 0.95, 0.02, 37, 14.9 0.85, 0.01, 5, 1.7

A10
10 0.99, 0.05, 150, 17.0 0.93, 0.02, 33, 15.5 0.85, 0.01, 5, 1.3

Figure 3. Examples of images for which the interpolation techniques cause more visual damage
than the attacks themselves. Clean HR images Ahr

a in the 1st column; corresponding non-adversarial
HR resized images λ ◦ ρ(Ahr

a ) in the 2nd column, with values of Lnorm,clean
p,H , p = 0, 1, ∞ and FIDclean

H
underneath (in that order); adversarial HR images in the 3rd column (atk = EA, C = C4, target
scenario) and in the 4th column (atk = BIM, C = C6, untarget scenario), with Lnorm,adv

p,H , p = 0, 1, ∞,

and FIDadv
H underneath (in that order). To enhance visibility, consider zooming in for a clearer view.

Speed of the noise blowing-up method: The outcomes of Tables 11 and 12 for the
overhead of the noise blowing-up method (all steps except Step 3) and its relative cost as
compared to the actual attack (performed in Step 3) are twofold.

Firstly, the performance of the noise blowing-up strategy depends on the size of the
image: It is substantially faster (between 3.24 times and 6.31 times on average) for smaller
than for larger HR clean images.

Secondly, and this is probably the most important outcome of both, the noise blowing-
up method demonstrates exceptional speed both in absolute and in relative terms, and con-
sequently an exceptionally minimal overhead, even for large-size HR clean images.

Indeed, the overhead ranges between 0.100 s and 0.757 s on average over 10 CNNs
(0.100 s achieved in the untargeted scenario for atk = PGD Inf and A4

8; 0.757 seconds
achieved in the targeted scenario for atk = EA and A10

1 ). This is to compare to the extreme
timing values of the attacks performed in Step 3, ranging between 58.1 and 848.7 s all in
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all (and ranging between 81.8 and 848.7 s for the cases related to the 0.100 and 0.757 s
referred to).

Looking at the relative weight of the overhead as compared to atk is even more saying:
It ranges between 0.28‰and 12.75‰, hence is almost negligible.

6. Revisiting the Failed Cases with ∆C

The summary of Section 5.4 is essentially threefold. Firstly, the noise blowing-up
strategy performs very well and with a negligible timing overhead in the target scenario
for all five relevant attacks except AdvGAN, and in the untargeted scenario for all four
white-box attacks but not for the three black-box attacks. Secondly, the poor performances
of the strategy for AdvGAN (target scenario and untargeted scenario), EA (untargeted
scenario), and SimBA (untargeted scenario) are essentially due to too low requirements
put on these attacks during Phase 1 (Step 3 of Scheme (11), hence ahead of the noise
blowing-up process). Thirdly, although between 74% and 83% of the pixels are modified
on average, the adversarial images remain visually very close to their corresponding clean
images, and actually and surprisingly the attacks themselves tend to reduce the differences
introduced by the interpolation functions.

We revisit these failed cases and make use of the Delta function ∆C introduced in
Section 3.2 for this purpose. Indeed, we identified the origin of the encountered issues as
essentially due to the too low distance between the label values of the dominating category
and its closest competitors, hence due to a very small value of ∆C for the considered images
and CNNs.

Given Ahr
a and Aa (Step 1), and ca (Step 2), we study in this Subsection how setting

the increase of the values of ∆C as a requirement in Step 3 of Scheme (11) impacts the
success rate of the noise blowing-up strategy for the failed cases. Note that putting addi-
tional requirements on ∆C may lead to lesser adversarial images at the end of Phase 1 as
∆C increases.

We limit this study to atk = EA (untargeted scenario) and atk = AdvGAN (untargeted
and target scenario). We regrettably exclude SimBA since we do not have access to its code.

6.1. Revisiting the Failed Cases in Both Scenarios

The untargeted scenario revisited for atk = EA and atk = AdvGAN. The new
consideration of the failed cases proceeds by taking a hybrid approach in Step 3, leading to
two successive sub-steps Step 3(a) and Step 3(b).

Step 3(a) consists in running atkuntarget
R,C until it succeeds in creating a first adversarial

image in R classified outside the ancestor category ca. The obtained category cbe f ̸= ca is
therefore the most promising category outside ca.

In Step 3(b), we change the version of the attack and run atktarget
R,C on the adversarial

image obtained at the end of Step 3(a) for the target scenario (ca, cbe f ), with a (more
demanding) stop condition defined by a threshold value on ∆C set at will.

Remarks: (1) To summarize this hybrid approach, Step 3(a) identifies the most promis-
ing category cbe f outside ca (and does so by “pushing down” the ca label value until another
category cbe f shows up), and Step 3(b) “pushes further” the attack in the direction of cbe f
until the label value of this dominant category is sufficiently ahead of all other competitors.
(2) Although this hybrid approach mixes the untargeted and the target versions of the
attack (be it EA or AdvGAN), it fits the untargeted attack scenario nevertheless. Indeed,
the category cbe f ̸= ca is not chosen a priori as would be the case in the target scenario but

is obtained alongside the attack, and is an outcome of atkuntarget
R,C .

The target scenario revisited for atk = AdvGAN. We address the failed cases by
requiring in Step 3 of Scheme (11), that D̃C

target(Aa) ∈ R is classified in ct and that ∆C(Ahr
a )

is large enough.
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6.2. Outcome of Revisiting the Failed Cases

One constructs the graph of the evolution of the success rate (y-axis, in %) of the
noise blowing-up strategy performed for the considered attack for the untargeted scenario
according to step-wise increasing values (x-axis) set to ∆C .

Figure 4 for atk = EA (untargeted scenario), Figure 5 for atk = AdvGAN (untargeted
scenario) and Figure 6 for atk = AdvGAN (targeted scenario) picture this evolution for an
example, namely C4—MobileNet (a), on average over the 10 CNNs (b), and per CNN for
all considered images (c).

UT (resp. T) in (a) and (b) of Figures 4 and 5 (resp. of Figure 6) recalls the “original”
success rate achieved by the noise blowing-up method in creating adversarial images
without putting extra conditions on ∆C (see Table 8, resp. Table 7). The values at the top of
the Figures are the number of images obtained after Phase 1, as ∆C increases.

Detailed reports for each CNN can be found in the Appendix C, Figures A2–A4.
In the untargeted scenario for atk = EA, the approach adopted for the revisited failed

cases turns out to be overwhelmingly successful, and this in a uniform way over the
10 CNNs. The overall number of considered images drops only by 0.6%, namely from
920 to 914 (in the example of C4, this drop is of one image only), while the success rate
drastically increases from an original 9.9% to 98.7%. In the example of C4, the success
rate increases from 11.7% to 98.9%; a success rate of 100% is even achieved for six out of
10 CNNs, even for moderate values of ∆C .
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Figure 4. Performance of the noise blowing-up method for EA in the untargeted scenario with
the increased strength of adversarial images: (a) specifically for C4, (b) averaged across 10 CNNs,
and (c) overall report for all CNNs. In (a,b), ∆C values are displayed at the bottom, and the resulting
number of used images is at the top.
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Figure 5. Performance of the noise blowing-up method for AdvGAN in the untargeted scenario with
the increased strength of adversarial images: (a) specifically for C4, (b) averaged across 10 CNNs,
and (c) overall report for all CNNs. In (a,b), ∆C values are displayed at the bottom, and the resulting
number of used images is at the top.
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Figure 6. Performance of the noise blowing-up method for AdvGAN in the target scenario with
the increased strength of adversarial images: (a) specifically for C4, (b) averaged across 10 CNNs,
and (c) overall report for all CNNs. In (a,b), ∆C values are displayed at the bottom, and the resulting
number of used images is at the top.
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In the untargeted scenario for atk = AdvGAN, the approach is also successful, but to
a lesser extent, and with variations among the CNNs. The overall number of considered
images drops by 43%, namely from 876 to 500 images (in the example of C4, this drop
amounts to 22 images, hence almost 27% less images), while the success rate increases from
an original 9.9% to 73.1% (in the example of C4, the success rate increases from 4.9% to
71.2%). Apart from C2 and C5, where the success rate of the revisited method achieves at
most 50% and 25.8%, all CNNs are reasonably well deceived by the method; the success
rate achieves even 100% for two of them, and this for moderate values of ∆C .

In the targeted scenario, for atk = AdvGAN, the approach also proves useful, but to a
lesser extent as above, and with larger variations among the CNNs. The overall number of
considered images drops by 21%, namely from 758 to 594 images (from 88 to 72 images,
hence almost 18% less images for C4), while the success rate increases from an original
0.3% to 50.8% (in the example of C4, the success rate increases from 0% to 34.7%). It is
worthwhile noting that the method works to perfection with a success rate reaching 100%
for two CNNs (C9 and C10), even with a moderate ∆C value.

Table 13 summarizes the outcomes of the numerical experiments when ∆C is set to the
demanding value 0.55. As a consequence, it is advisable to set (for Phase 1, Step 3) τ̃cbe f to
0.78 for EAuntarg, to 0.76 for AdvGANtarg, and to 0.79 for AdvGANuntarg to be on the safe
side (these values exceed the maxima referred to in Table 13).

Table 13. Minimum, maximum, and mean of the label values τ̃cbe f of adversarial images in the R
domain (Phase 1, Step 3) when ∆C is set to 0.55 per CNN.

EAuntarg AdvGANtarg AdvGANuntarg

Min Max Mean Min Max Mean Min Max Mean

C1 0.587 0.779 0.723 0.575 0.731 0.636 0.588 0.770 0.690
C2 0.593 0.778 0.725 0.583 0.689 0.633 0.619 0.766 0.710
C3 0.597 0.777 0.720 0.613 0.757 0.662 0.594 0.772 0.701
C4 0.572 0.771 0.657 0.571 0.688 0.624 0.581 0.771 0.654
C5 0.564 0.775 0.653 0.572 0.739 0.633 0.582 0.748 0.646
C6 0.610 0.780 0.725 0.587 0.741 0.655 0.581 0.778 0.691
C7 0.587 0.778 0.725 0.604 0.749 0.655 0.610 0.767 0.691
C8 0.603 0.777 0.724 0.586 0.756 0.654 0.606 0.788 0.699
C9 0.593 0.778 0.709 0.584 0.733 0.633 0.594 0.775 0.674
C10 0.593 0.779 0.708 0.584 0.749 0.632 0.605 0.775 0.677

Avg 0.590 0.777 0.707 0.586 0.733 0.641 0.596 0.771 0.683

Finally, experiments show that the visual quality of the HR adversarial images obtained
by the revised method remains outstanding. We illustrate this statement in Figure 7 on
an example, where ∆C is set to 0.55 (the highest and most demanding value considered in
the present study), and the CNN is C4. In Figure 7, (a) represents the HR clean image A3

2
classified by C4 as belonging to the “acorn” category with corresponding label value 0.90,
(b) the adversarial image created by the strategy applied to the EA attack in the untargeted
scenario (classified as “snail” with label value 0.61), (c) the adversarial image created by
the strategy with AdvGAN in the untargeted scenario (classified as “dung beetle” with
label value 0.55), and (d) the adversarial image created by the strategy with AdvGAN in
the targeted scenario (classified as “rhinoceros beetle” with label value 0.43). The images
speak for themselves as far as visual quality is concerned.
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(a) (b) (c) (d)

Figure 7. Sample of HR adversarial images generated by the noise blowing-up strategy for the EA
and AdvGAN attacks in the untargeted scenario, and the AdvGAN attack in the targeted scenario
against C4 = MobileNet, with ∆C set to 0.55 in the R domain. Classification (dominant category and
label value) of C4 are displayed at the bottom. (a) Clean image acorn: 0.90. (b) EAuntarg snail: 0.61.
(c) AdvGANuntarg dung_beetle: 0.55. (d) AdvGANtarg rhinoceros_beetle: 0.43.

7. Comparison of the Lifting Method and of the Noise Blowing-Up Method

This section provides a comparison between the outcomes of our adversarial noise
blowing-up strategy and those of the lifting method introduced in [29,30].

We shall see on three highly challenging examples, that the noise blowing-up strategy
leads to a substantial visual quality gain as compared with the lifting method of [29,30]
(both strategies achieve comparable and negligible timing overheads as compared to the
actual underlying attacks performed). Indeed, the visual quality gain is particularly flagrant
when one zooms on some areas that remained visually problematic with the method used
in [29,30].

7.1. The Three HR Images, the CNN, the Attack, the Scenario

We make here a case study with three HR images (two of which have been considered
in [31]), with C = VGG-16 trained on ImageNet, for the EA-based black-box targeted attack
given in Section 4.4.

The three HR pictures are represented in Table 14. They are the comics Spiderman
picture (Ahr

1 retrieved from the Internet and under Creative Commons License), an artistic
picture graciously provided by the French artist Speedy Graphito (Ahr

2 pictured in [56]) and
Hippopotamus image (Ahr

3 = A2
7) taken from Figure A1. An advantage of adding artistic

images is that, while a human may have difficulties in classifying them in any category,
CNNs do it.

Table 14. Three clean HR images Ahr
a , their original size, the classification of VGG-16 as (ca, τa) of

their reduced versions ρ(Ahr
a ) (with ρ = “Lanczos”), and the target category.

a 1 2 3

Ahr
a

h × w 800 × 1280 1710 × 1740 1200 × 1600

(ca, τa) (Comic Book, 0.4916) (Coffee Mug, 0.0844) (Hippopotamus, 0.9993)

ct altar hamper trifle

7.2. Implementation and Outcomes

Regarding implementation issues, we use (ρ, λ) = (Lanczos, Lanczos) for both the lift-
ing method of [29,30] and the noise blowing-up method presented here, whenever needed.



Appl. Sci. 2024, 14, 3493 27 of 43

In terms of the steps described in Section 3.1, note that both strategies coincide up to
Step 3 included, and start to differ from Step 4 on. In particular, the attack process (Step 3)
in the R domain is the same for both strategies. In the present case, one shall apply the
EA-based targeted attack in the R domain, with the aim to create a 0.55-strong adversarial
image. In other words, τ̃be f ≥ 0.55 (with notations consistent with Section 3). This process
succeeded for the three examples.

Figures 8–10 provide a visual comparison (both globally and on some zoomed area)
of a series of images in the H domain for a = 1, 2, 3, respectively: (a) the clean image Ahr

a ,
(b) the non-adversarial resized image λ ◦ ρ(Ahr

a ), (c) the adversarial image in H obtained
by the lifting method of [29,30], (d) the adversarial image in H obtained by the noise
blowing-up method. The non-adversarial image referred to in (b) remains classified by C in
the ca category, and the adversarial images referred to in (c) and (d) are classified in the ct
category mentioned in Table 14, with ct-label values indicated in the Figures.

With notations consistent with Tables 9 and 10, and with the exponent adv, li f t,
and adv, noise indicating respectively that the adversarial images are obtained via the
lifting method, and by the noise blowing-up method respectively, Table 15 gives a numeri-
cal assessment of the visual quality of the different HR images (b), (c), (d) compared to the
clean ones (a) of Figures 8–10, as measured by Lp distances and FID values.

Table 15. Numerical assessment of the visual quality of the different HR images (b), (c), (d) compared
to the clean ones (a) of Figures 8–10, as measured by Lp distances and FID values.

Ahr
1 Ahr

2 Ahr
3

L0

Lnorm,clean
0,H 0.963 0.938 0.999

Lnorm,adv,li f t
0,H 0.973 0.970 0.969

Lnorm,adv,noise
0,H 0.920 0.960 0.961

L1

Lnorm,clean
1,H 0.071 0.037 0.029

Lnorm,adv,li f t
1,H 0.075 0.049 0.049

Lnorm,adv,noise
1,H 0.021 0.028 0.032

L2

Lnorm,clean
2,H 6 × 10−5 2 × 10−5 2 × 10−5

Lnorm,adv,li f t
2,H 6 × 10−5 2 × 10−5 3 × 10−5

Lnorm,adv,noise
2,H 2 × 10−5 1 × 10−5 2 × 10−5

L∞

Lnorm,clean
∞,H 244 174 191

Lnorm,adv,li f t
∞,H 245 163 198

Lnorm,adv,noise
∞,H 27 30 58

FID
FIDclean

H 180.5 45.5 50.4
FIDadv,li f t

H 221.9 44.1 64.1
FIDadv,noise

H 55.3 34.9 21.9

Figures 8–10 show that, at some distance, both the non-adversarial resized image (b)
and the HR adversarial images (c) and (d) seem to have a good visual quality as compared
to the HR clean image (a). However, the zoomed areas show that details from the HR
clean images become blurry in the HR adversarial images obtained by the lifting method
(c) and in the non-adversarial resized images (b). Moreover, a human eye is not able to
distinguish the blurriness that occurs in (b) from the one that shows up in (c): The loss
of visual quality looks the same in both cases. However, a loss of visual quality does not
occur (at least to the same extent) in the HR adversarial images obtained by the noise
blowing-up method (d). These observations are also sustained numerically by Table 15:
Lnorm,clean

p,H and Lnorm,adv,li f t
p,H , as well as FIDclean

H and FIDadv,li f t
H are close one to the other, while

Lnorm,adv,noise
p,H and FIDadv,noise

H achieve much smaller values than their above counterparts.
In particular, we see and measure in these examples, that the noise blowing-up method
largely compensates for the negative visual impact of the resizing interpolation functions.
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In other words, the adversarial images displayed by the noise blowing-up method in
(d) are visually very close to the original clean images (a), while the adversarial images
displayed by the lifting method in (c) are visually very close to the non-adversarial resized
images in (b).

These experiments strongly speak in favor of our noise blowing-up method, despite
the fact that interpolation scaling-up methods λ result in a loss of high-frequency features
in the H domain (as seen in (b) and (c)). More precisely, our noise blowing-up method
essentially avoids (and even corrects, as shows the behavior of by Lp and FID values) this
later issue, while the lifting method does not.

(a) (b)

(c) (d)

Figure 8. Visual comparison in the H domain of (a) the clean image Ahr
1 , (b) its non-adversarial

resized version, the adversarial image obtained with EAtarget,C for C = VGG-16, (c) by the lifting
method of [29,30], and (d) by the noise blowing-up method. Both non-adversarial images are classified
as “comic books”, (a) with label value 0.49 and (b) with label value 0.45. Both HR adversarial images
are classified as “altar”, (c) with label value 0.52, and (d) with label value 0.41.

(a) (b)

(c) (d)

Figure 9. Visual comparison in the H domain of (a) the clean image Ahr
2 , (b) its non-adversarial

resized version, the adversarial image obtained with EAtarget,C for C = VGG-16, (c) by the lifting
method of [29,30], and (d) by the noise blowing-up method. Both non-adversarial images are classified
as “Coffee Mug”, (a) with label value 0.08 and (b) with label value 0.08. Both HR adversarial images
are classified as “Hamper”, (c) with label value 0.51, and (d) with label value 0.53.
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(a) (b)

(c) (d)

Figure 10. Visual comparison in the H domain of (a) the clean image Ahr
3 , (b) its non-adversarial

resized version, the adversarial image obtained with EAtarget,C for C = VGG-16, (c) by the lifting
method of [29,30], and (d) by the noise blowing-up method. Both non-adversarial images are classified
as “hippopotamus”, (a) with label value 0.99 and (b) with label value 0.99. Both HR adversarial
images are classified as “trifle”, (c) with label value 0.51, and (d) with label value 0.50.

8. Conclusions

In this extensive study, we exposed in detail the noise blowing-up strategy to create
high-quality high-resolution images adversarial against convolutional neural networks,
and indistinguishable from the original clean images.

This strategy is designed to apply to any attack (black-box or white-box), to any
scenario (targeted or untargeted scenario), to any CNN, and to any clean image.

We performed an extensive experimental study on 10 state-of-the-art and diverse
CNNs, with 100 high-resolution clean images, three black-box (EA, AdvGAN, SimBA),
and four white-box (FGSM, BIM, PGD Inf, PGD L2) attacks, applied in the target and the
untarget scenario whenever possible.

This led to the construction of 4110 adversarial images for the target scenario and
3996 adversarial images for the untarget scenario. Therefore, the noise blowing-up method
achieved an overall average success rate of 74.7% in the target scenario, and of 63.9% in the
untarget scenario; the strategy performing perfectly or close to perfection (with a success
rate of 100% or close to it) for many attacks.

We then focused on the failed cases. We showed that a minor additional requirement
in one step of the strategy led to a substantial success rate increase (e.g., from circa 9.9% to
98.7% in the untarget scenario for the EA attack).

All along, we showed that the additional time required to perform our noise blowing-
up strategy is negligible as compared to the actual cost of the underlying attack on which
the strategy applies.

Finally, we compared our noise blowing-up method to another generic method, namely
the lifting method. We showed that the visual quality and indistinguishability of the
adversarial images obtained by our noise blowing-up strategy substantially outperform
those of the adversarial images obtained by the lifting method. We also showed that
applying our noise blowing-up strategy substantially corrects some visual blurriness
artifacts caused natively by interpolation resizing functions.
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Clearly, the noise blowing-up strategy, which essentially amounts to the addition to
the clean high-resolution image of one layer of “substantial” adversarial noise, blown-up
from R to H, is subject to a series of refinements and variants. For instance, one may
instead consider adding to the clean image several “thin” layers of “moderate” blown-up
adversarial noise. This would present at least two advantages. Firstly, one can parallelize
this process. Secondly, depending on how adding different layers of adversarial noise
impacts the overall τca f t -value, one could consider relaxing the expectations on the τ̃cbe f

value for each run of the attack in the R domain, and still meet τca f t and ∆C preset thresh-
olds by adding up wisely the successive layers of noise. Both advantages may lead to a
substantial speed-up of the process, and potentially to an increased visual quality. One
could also consider applying the strategy to the flat scenario, where all ℓ label values are
almost equidistributed, henceforth the CNN considers that all categories are almost equally
likely (even this variant admits variants, e.g., where one specifies a number 2 ≤ x ≤ ℓ of
dominating categories for which the attack would create an appropriate flatness).

Another promising direction comes from the observation that in the present method
as well as in the method introduced in [29,30], the considered attacks explore a priori the
whole image space. In future work, we intend to explore the possibility of restricting
the size of the zones to explore. Provided the kept zones are meaningful (in a sense to
be defined), one could that way design an additional generic method which, combined
with the one presented in this paper, could lead, at a lower computational cost, to high-
resolution adversarial images of very good quality, especially if one pays attention to
high-frequency areas.
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Appendix A. Clean Images

abacus

acorn

baseball

broom

brown bear

canoe

hippopotamus

llama

maraca

mountain bike

Figure A1. Representation of the 100 ancestor clean images Ap
q used in the experiments. Ap

q pictured
in the qth row and pth column (1 ≤ p, q ≤ 10) is randomly chosen from the ImageNet validation set
of the ancestor category caq specified on the left of the qth row.

Table A1. Size h × w (with h, w ≥ 224) of the 100 clean ancestor images Ap
q .

Ancestor Images Ap
q and Their Original Size (h × w)

caq q
p 1 2 3 4 5 6 7 8 9 10

abacus 1 2448 × 3264 960 × 1280 262 × 275 598 × 300 377 × 500 501 × 344 375 × 500 448 × 500 500 × 500 2448 × 3264
acorn 2 374 × 500 500 × 469 375 × 500 500 × 375 500 × 500 500 × 500 375 × 500 374 × 500 461 × 500 333 × 500

baseball 3 398 × 543 240 × 239 2336 × 3504 333 × 500 262 × 350 310 × 310 404 × 500 344 × 500 375 × 500 285 × 380
broom 4 500 × 333 286 × 490 360 × 480 298 × 298 413 × 550 366 × 500 400 × 400 348 × 500 346 × 500 640 × 480

brown bear 5 700 × 467 903 × 1365 333 × 500 500 × 333 497 × 750 336 × 500 480 × 599 375 × 500 334 × 500 419 × 640
canoe 6 500 × 332 450 × 600 500 × 375 375 × 500 406 × 613 600 × 400 1067 × 1600 333 × 500 1536 × 2048 375 × 500

hippopotamus 7 375 × 500 1200 × 1600 333 × 500 450 × 291 525 × 525 375 × 500 500 × 457 424 × 475 500 × 449 339 × 500
llama 8 500 × 333 618 × 468 500 × 447 253 × 380 500 × 333 333 × 500 375 × 1024 375 × 500 290 × 345 375 × 500

maraca 9 375 × 500 375 × 500 470 × 627 1328 × 1989 250 × 510 375 × 500 768 × 104 375 × 500 375 × 500 500 × 375
mountain bike 10 375 × 500 500 × 375 375 × 500 333 × 500 500 × 375 300 × 402 375 × 500 446 × 500 375 × 500 500 × 333
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Table A2. In Step 1 and 2 of Scheme (11), the Lanczos degrading interpolation function is employed
for resizing images to match the input size of CNNs before they are fed into the CNNs. For 1 ≤ p ≤ 10,
the ancestor category caq -label values given by the 10 CNNs of the image Ap

q pictured in Figure A1.
A label value in red indicates that the category caq is not the dominant one.

CNNs p Abacus Acorn Baseball Broom Brown Bear Canoe Hippopotamus Llama Maraca Mountain Bike

1 1.000 0.994 0.997 0.982 0.996 0.987 0.999 0.998 0.481 0.941
2 1.000 0.997 0.993 0.999 0.575 0.921 0.999 0.974 0.987 0.992
3 0.999 0.954 1.000 0.999 0.999 0.675 0.993 0.996 1.000 0.814
4 0.998 0.998 1.000 1.000 0.998 0.552 0.684 0.966 0.742 0.255
5 1.000 0.999 1.000 0.999 0.993 0.827 1.000 0.999 0.153 0.637
6 1.000 0.998 0.946 0.997 1.000 0.975 0.991 0.961 0.684 0.995
7 0.999 0.999 0.997 0.945 0.949 0.524 0.973 0.987 0.960 0.835
8 1.000 0.999 0.985 0.940 0.999 0.893 1.000 0.999 0.997 0.968
9 1.000 0.996 0.967 1.000 0.998 0.710 1.000 1.000 0.991 0.969

C1
DenseNet-121

10 0.997 1.000 0.999 0.997 0.992 0.790 1.000 0.935 0.929 0.907

1 1.000 0.998 0.999 0.973 0.999 0.995 0.995 0.999 0.991 0.799
2 0.999 1.000 0.998 0.991 0.343 0.683 0.999 0.999 0.991 0.862
3 1.000 1.000 1.000 1.000 1.000 0.929 1.000 0.997 1.000 0.922
4 0.990 0.999 1.000 1.000 1.000 0.479 0.927 0.960 0.665 0.885
5 1.000 1.000 1.000 0.999 0.998 0.941 1.000 0.993 0.681 0.969
6 1.000 1.000 0.999 0.999 1.000 0.997 0.997 0.991 0.829 0.952
7 1.000 1.000 0.999 1.000 0.990 0.796 0.990 0.999 0.727 0.856
8 1.000 1.000 0.998 0.985 1.000 0.944 0.998 1.000 1.000 0.942
9 1.000 1.000 0.886 1.000 1.000 0.949 1.000 1.000 0.908 0.941

C2
DenseNet-169

10 0.948 1.000 0.998 0.999 0.999 0.897 0.999 0.999 0.720 0.502

1 1.000 0.999 0.994 1.000 0.994 0.990 0.999 0.999 0.565 0.986
2 1.000 1.000 0.985 1.000 0.928 0.949 0.999 0.978 0.999 0.995
3 0.983 0.957 0.999 1.000 0.999 0.719 1.000 0.995 1.000 0.829
4 0.937 0.987 1.000 1.000 0.999 0.846 0.919 1.000 0.732 0.752
5 1.000 1.000 0.999 0.995 0.995 0.786 1.000 0.993 0.316 0.936
6 1.000 1.000 0.996 1.000 1.000 0.990 1.000 0.790 0.733 0.994
7 1.000 1.000 1.000 0.998 0.997 0.817 0.997 0.984 0.959 0.682
8 1.000 1.000 0.965 0.999 0.966 0.925 0.992 1.000 0.998 0.992
9 1.000 0.998 0.818 1.000 0.980 0.980 1.000 0.999 0.971 0.964

C3
DenseNet-201

10 1.000 1.000 0.995 0.998 0.979 0.976 0.964 0.990 0.604 0.966

1 0.944 0.216 0.609 0.646 0.966 0.287 0.876 0.621 0.324 0.736
2 0.867 0.984 0.966 0.957 0.506 0.751 0.613 0.838 0.972 0.937
3 0.967 0.905 0.937 0.982 0.969 0.778 0.970 0.933 0.999 0.939
4 0.984 0.978 0.966 0.940 0.961 0.621 0.758 0.968 0.472 0.576
5 0.915 0.984 0.917 0.829 0.971 0.836 0.9311 0.873 0.383 0.708
6 0.989 0.950 0.942 0.932 0.970 0.854 0.971 0.808 0.573 0.863
7 0.970 0.962 0.929 0.903 0.895 0.524 0.683 0.989 0.740 0.671
8 0.970 0.985 0.834 0.906 0.942 0.732 0.723 0.986 0.788 0.930
9 0.998 0.965 0.755 0.986 0.940 0.767 0.873 0.967 0.921 0.855

C4
MobileNet

10 0.923 1.000 0.804 0.934 0.772 0.877 0.975 0.766 0.844 0.850

1 0.948 0.930 0.888 0.880 0.887 0.904 0.911 0.945 0.699 0.867
2 0.972 0.917 0.882 0.901 0.426 0.897 0.941 0.954 0.976 0.915
3 0.896 0.938 0.887 0.976 0.943 0.707 0.929 0.747 0.876 0.945
4 0.859 0.940 0.893 0.961 0.920 0.549 0.517 0.889 0.991 0.310
5 0.949 0.950 0.879 0.956 0.896 0.577 0.914 0.977 0.720 0.792
6 0.975 0.945 0.953 0.970 0.921 0.698 0.903 0.926 0.307 0.859
7 0.985 0.902 0.868 0.953 0.837 0.809 0.865 0.955 0.984 0.519
8 0.969 0.955 0.879 0.922 0.881 0.870 0.800 0.969 0.498 0.912
9 0.971 0.874 0.574 0.934 0.935 0.691 0.924 0.942 0.902 0.938

C5
NASNet
Mobile

10 0.847 0.979 0.842 0.945 0.811 0.782 0.946 0.917 0.410 0.605

1 0.999 0.998 0.996 0.883 0.996 0.997 0.999 1.000 0.597 0.959
2 0.980 0.999 0.999 0.999 0.529 0.990 1.000 0.998 0.997 0.984
3 0.999 0.989 0.999 0.999 0.999 0.801 1.000 1.000 1.000 0.990
4 0.999 0.999 0.999 0.999 0.998 0.831 0.970 0.994 0.350 0.444
5 0.999 0.999 0.999 0.994 0.986 0.950 0.997 0.278 0.543 0.871
6 0.999 0.999 0.999 0.999 0.999 0.985 1.000 0.920 0.725 0.685
7 0.999 0.999 0.999 0.998 0.991 0.584 1.000 1.000 0.987 0.803
8 1.000 0.999 0.926 0.990 0.997 0.981 0.970 1.000 0.999 0.963
9 1.000 0.999 0.808 0.999 0.999 0.911 1.000 1.000 0.998 0.991

C6
ResNet-50

10 0.999 0.999 0.999 0.999 0.982 0.987 0.996 0.984 0.775 0.939

1 1.000 1.000 0.997 0.999 1.000 0.999 0.999 1.000 0.665 0.973
2 1.000 1.000 0.972 1.000 0.836 0.984 1.000 0.868 0.995 0.992
3 1.000 0.898 1.000 1.000 1.000 0.940 1.000 1.000 1.000 0.778
4 0.744 1.000 1.000 1.000 0.997 0.556 0.941 0.999 0.447 0.835
5 1.000 1.000 1.000 0.999 0.968 0.939 0.999 0.894 0.325 0.694
6 1.000 1.000 0.996 1.000 1.000 0.983 1.000 0.837 0.719 0.996
7 1.000 1.000 1.000 0.997 0.990 0.920 1.000 1.000 0.305 0.330
8 1.000 1.000 0.999 0.997 0.978 0.993 0.943 1.000 0.997 0.988
9 1.000 1.000 0.959 1.000 0.997 0.903 1.000 1.000 0.969 0.983

C7
ResNet-101

10 1.000 1.000 1.000 1.000 0.998 0.965 0.999 0.995 0.927 0.961
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Table A2. Cont.

CNNs p Abacus Acorn Baseball Broom Brown Bear Canoe Hippopotamus Llama Maraca Mountain Bike

1 1.000 1.000 1.000 0.998 0.999 0.994 1.000 0.999 0.597 0.992
2 0.578 1.000 0.999 1.000 0.356 0.979 1.000 0.999 0.997 0.998
3 1.000 0.974 1.000 1.000 1.000 0.676 1.000 1.000 1.000 0.919
4 0.996 1.000 1.000 1.000 1.000 0.610 0.961 0.985 0.597 0.896
5 1.000 1.000 1.000 1.000 1.000 0.909 1.000 0.919 0.161 0.928
6 1.000 1.000 1.000 1.000 1.000 0.992 0.999 0.869 0.951 0.964
7 0.997 1.000 1.000 1.000 0.960 0.500 1.000 1.000 0.962 0.721
8 1.000 1.000 0.999 1.000 0.995 0.986 1.000 1.000 0.998 0.967
9 1.000 1.000 0.918 1.000 0.993 0.941 1.000 0.999 0.749 0.999

C8
ResNet-152

10 1.000 1.000 1.000 1.000 0.992 0.910 1.000 0.998 0.897 0.886

1 0.996 0.430 1.000 0.973 0.996 0.991 0.999 0.855 0.586 0.832
2 0.540 0.976 1.000 0.913 0.925 0.896 0.999 0.964 0.693 0.963
3 0.998 0.531 1.000 0.997 1.000 0.910 1.000 1.000 1.000 0.949
4 0.987 0.997 1.000 0.983 0.998 0.802 0.212 0.998 0.389 0.485
5 1.000 1.000 1.000 0.959 0.999 0.819 0.999 0.854 0.226 0.652
6 1.000 1.000 0.869 0.992 1.000 0.890 1.000 0.833 0.450 0.877
7 0.987 0.996 0.999 1.000 0.968 0.605 0.944 1.000 0.371 0.617
8 0.917 0.995 1.000 0.858 0.999 0.931 0.997 1.000 0.954 0.941
9 1.000 0.989 0.861 0.989 0.899 0.301 1.000 1.000 0.901 0.922

C9
VGG-16

10 0.977 1.000 1.000 0.994 0.992 0.974 1.000 0.998 0.840 0.564

1 1.000 0.959 1.000 0.669 1.000 0.740 1.000 0.989 0.466 0.879
2 0.993 0.996 0.999 0.947 0.939 0.756 0.999 0.970 0.785 0.818
3 1.000 0.740 1.000 0.998 0.998 0.935 1.000 1.000 1.000 0.861
4 0.996 0.952 1.000 0.890 0.997 0.684 0.468 0.992 0.828 0.291
5 1.000 0.999 1.000 0.743 0.999 0.499 0.999 0.252 0.587 0.794
6 1.000 1.000 0.999 0.993 1.000 0.735 0.999 0.952 0.693 0.846
7 0.999 0.998 0.999 0.999 0.903 0.656 0.988 1.000 0.370 0.494
8 1.000 0.999 1.000 0.987 0.998 0.744 0.994 1.000 0.996 0.795
9 1.000 1.000 0.610 0.999 0.974 0.550 1.000 1.000 0.552 0.818

C10
VGG-19

10 0.998 1.000 1.000 0.999 0.995 0.791 1.000 0.994 0.758 0.761

Table A3. In Step 1 and 2 of Scheme (11), the Nearest degrading interpolation function is employed for
resizing images to match the input size of CNNs before they are fed into the CNNs. For 1 ≤ p ≤ 10,
the ancestor category caq -label values given by the 10 CNNs of the image Ap

q pictured in Figure A1.
A label value in red indicates that the category caq is not the dominant one.

CNNs p Abacus Acorn Baseball Broom Brown Bear Canoe Hippopotamus Llama Maraca Mountain Bike

1 1.000 0.981 0.997 0.999 0.995 0.992 0.999 0.997 0.607 0.942
2 1.000 0.997 0.989 1.000 0.670 0.909 0.998 0.987 0.883 0.987
3 0.998 0.845 1.000 1.000 0.996 0.836 0.987 0.997 1.000 0.891
4 0.996 0.997 1.000 1.000 0.997 0.620 0.239 0.984 0.312 0.619
5 1.000 0.999 1.000 0.998 0.955 0.811 1.000 1.000 0.145 0.986
6 1.000 1.000 0.957 0.998 1.000 0.990 0.997 0.916 0.692 0.999
7 0.998 0.999 0.999 0.973 0.937 0.525 0.985 0.974 0.902 0.940
8 1.000 0.999 0.993 0.993 0.995 0.913 1.000 1.000 0.999 0.962
9 1.000 0.998 0.981 1.000 0.997 0.820 0.999 1.000 0.999 0.992

C1
DenseNet-121

10 1.000 0.996 1.000 0.999 0.995 0.923 0.999 0.886 0.572 0.870

1 0.999 0.978 1.000 0.999 0.999 0.997 0.997 0.999 0.952 0.873
2 1.000 0.999 0.998 0.992 0.535 0.764 0.998 0.999 0.995 0.861
3 1.000 0.998 1.000 1.000 0.999 0.880 1.000 0.994 1.000 0.977
4 0.990 0.996 1.000 1.000 1.000 0.549 0.553 0.981 0.583 0.973
5 1.000 1.000 1.000 0.994 1.000 0.915 1.000 0.994 0.530 0.997
6 1.000 1.000 0.998 1.000 1.000 0.997 0.995 0.975 0.091 0.991
7 1.000 1.000 1.000 1.000 0.954 0.827 0.996 1.000 0.964 0.945
8 1.000 1.000 0.998 0.998 0.999 0.951 0.999 1.000 1.000 0.975
9 1.000 1.000 0.943 1.000 0.999 0.905 1.000 1.000 0.993 0.964

C2
DenseNet-169

10 0.970 1.000 0.999 1.000 0.997 0.952 0.999 0.998 0.608 0.507

1 0.999 0.975 0.998 1.000 0.990 0.990 0.998 0.996 0.584 0.986
2 1.000 1.000 0.984 1.000 0.844 0.957 0.996 0.996 0.993 0.997
3 0.987 0.950 1.000 1.000 0.998 0.669 0.999 0.994 1.000 0.886
4 0.886 0.994 1.000 1.000 0.998 0.822 0.870 1.000 0.541 0.947
5 1.000 1.000 0.999 0.983 0.980 0.586 1.000 0.998 0.141 0.980
6 1.000 1.000 0.995 1.000 1.000 0.994 0.999 0.724 0.693 0.996
7 1.000 1.000 1.000 1.000 0.998 0.865 0.997 0.970 0.973 0.917
8 1.000 1.000 0.993 1.000 0.874 0.978 0.990 0.999 0.997 0.993
9 1.000 0.999 0.877 1.000 0.984 0.995 1.000 0.999 0.987 0.988

C3
DenseNet-201

10 1.000 1.000 0.998 0.999 0.978 0.984 0.987 0.963 0.365 0.983
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Table A3. Cont.

CNNs p Abacus Acorn Baseball Broom Brown Bear Canoe Hippopotamus Llama Maraca Mountain Bike

1 0.945 0.589 0.770 0.829 0.966 0.560 0.933 0.480 0.556 0.854
2 0.903 0.948 0.981 0.955 0.669 0.903 0.707 0.725 0.932 0.967
3 0.922 0.850 0.935 0.971 0.985 0.830 0.958 0.938 0.999 0.985
4 0.934 0.971 0.977 0.972 0.924 0.820 0.711 0.975 0.586 0.851
5 0.896 0.981 0.905 0.653 0.982 0.787 0.953 0.846 0.498 0.910
6 0.990 0.976 0.881 0.973 0.913 0.818 0.989 0.774 0.355 0.935
7 0.982 0.979 0.838 0.923 0.791 0.750 0.748 0.978 0.884 0.379
8 0.964 0.919 0.860 0.798 0.941 0.823 0.806 0.995 0.962 0.928
9 0.997 0.851 0.730 0.996 0.943 0.692 0.970 0.988 0.848 0.758

C4
MobileNet

10 0.968 0.994 0.835 0.780 0.886 0.948 0.992 0.568 0.416 0.883

1 0.940 0.945 0.885 0.948 0.892 0.925 0.914 0.945 0.288 0.869
2 0.947 0.946 0.905 0.892 0.454 0.932 0.829 0.951 0.957 0.902
3 0.903 0.884 0.889 0.978 0.948 0.702 0.926 0.754 0.911 0.923
4 0.844 0.929 0.895 0.961 0.910 0.513 0.656 0.928 0.993 0.667
5 0.943 0.930 0.886 0.914 0.936 0.586 0.921 0.976 0.734 0.972
6 0.973 0.945 0.949 0.972 0.925 0.792 0.846 0.936 0.085 0.854
7 0.983 0.897 0.842 0.944 0.872 0.869 0.893 0.941 0.885 0.781
8 0.962 0.950 0.870 0.908 0.887 0.864 0.824 0.965 0.930 0.904
9 0.975 0.904 0.691 0.949 0.925 0.783 0.925 0.949 0.965 0.957

C5
NASNet
Mobile

10 0.861 0.957 0.851 0.955 0.809 0.860 0.941 0.929 0.397 0.495

1 1.000 0.795 0.998 0.841 0.999 0.998 0.999 0.999 0.801 0.986
2 0.411 1.000 1.000 1.000 0.931 0.991 1.000 0.998 0.850 0.995
3 1.000 0.901 1.000 1.000 1.000 0.778 1.000 1.000 1.000 0.993
4 1.000 0.993 1.000 1.000 0.999 0.897 0.881 0.999 0.424 0.929
5 1.000 1.000 1.000 0.969 0.996 0.945 1.000 0.381 0.253 0.995
6 0.999 1.000 1.000 0.999 0.999 0.995 1.000 0.771 0.211 0.941
7 1.000 1.000 1.000 0.988 0.992 0.743 1.000 1.000 0.969 0.892
8 1.000 0.998 0.998 0.999 0.997 0.993 0.962 1.000 0.999 0.987
9 1.000 1.000 0.695 1.000 0.999 0.971 1.000 1.000 0.998 0.999

C6
ResNet-50

10 1.000 0.999 1.000 0.999 0.959 0.994 0.970 0.723 0.385 0.965

1 1.000 0.982 0.999 0.995 0.999 0.999 1.000 1.000 0.984 0.969
2 1.000 1.000 0.973 1.000 0.941 0.986 1.000 0.988 0.975 0.997
3 1.000 0.929 1.000 1.000 1.000 0.882 1.000 1.000 1.000 0.895
4 0.778 0.999 1.000 1.000 0.993 0.525 0.680 0.999 0.894 0.970
5 1.000 1.000 1.000 0.991 0.945 0.835 1.000 0.940 0.557 0.990
6 1.000 1.000 0.994 0.998 0.999 0.996 1.000 0.722 0.599 0.998
7 1.000 1.000 1.000 1.000 0.911 0.961 1.000 1.000 0.772 0.756
8 1.000 1.000 1.000 0.996 0.910 0.994 0.976 1.000 0.995 0.990
9 1.000 1.000 0.979 1.000 0.997 0.848 1.000 1.000 0.959 0.980

C7
ResNet-101

10 1.000 0.993 1.000 1.000 0.927 0.975 0.996 0.917 0.537 0.984

1 1.000 0.998 1.000 0.996 0.992 0.987 0.999 0.999 0.954 0.991
2 0.713 1.000 0.997 1.000 0.513 0.983 1.000 1.000 0.956 0.998
3 1.000 0.665 1.000 1.000 1.000 0.794 0.999 1.000 1.000 0.969
4 0.998 0.997 1.000 1.000 1.000 0.626 0.872 0.972 0.885 0.960
5 1.000 1.000 1.000 1.000 0.999 0.841 1.000 0.927 0.219 0.993
6 1.000 1.000 1.000 0.994 1.000 0.997 0.999 0.805 0.436 0.986
7 1.000 1.000 1.000 1.000 0.996 0.557 0.995 1.000 0.959 0.860
8 1.000 1.000 1.000 1.000 0.951 0.965 0.999 1.000 1.000 0.991
9 1.000 1.000 0.857 1.000 0.978 0.979 0.992 1.000 0.949 0.999

C8
ResNet-152

10 1.000 1.000 1.000 1.000 0.861 0.871 1.000 0.872 0.818 0.961

1 0.999 0.392 1.000 0.725 0.997 0.990 0.999 0.940 0.592 0.862
2 0.952 0.997 1.000 0.918 0.922 0.918 1.000 0.968 0.683 0.979
3 0.998 0.688 1.000 1.000 1.000 0.896 1.000 1.000 1.000 0.952
4 0.996 0.999 1.000 0.993 0.998 0.764 0.214 0.999 0.703 0.740
5 1.000 0.999 1.000 0.913 0.997 0.678 1.000 0.918 0.175 0.936
6 1.000 1.000 0.674 0.972 0.999 0.883 1.000 0.828 0.470 0.952
7 0.999 0.998 0.999 0.999 0.947 0.595 0.935 1.000 0.358 0.640
8 0.987 0.995 1.000 0.844 0.999 0.952 0.999 1.000 0.979 0.973
9 1.000 0.999 0.896 0.992 0.915 0.382 1.000 1.000 0.918 0.895

C9
VGG-16

10 0.998 1.000 1.000 0.998 0.964 0.981 1.000 0.998 0.745 0.614

1 1.000 0.959 1.000 0.503 1.000 0.547 1.000 0.977 0.507 0.909
2 0.990 0.998 0.999 0.957 0.984 0.812 1.000 0.983 0.514 0.903
3 1.000 0.767 1.000 0.996 1.000 0.946 1.000 1.000 1.000 0.912
4 0.995 0.980 1.000 0.994 0.996 0.663 0.241 0.995 0.821 0.270
5 1.000 0.999 1.000 0.617 0.997 0.716 1.000 0.463 0.436 0.934
6 1.000 1.000 0.998 0.975 0.999 0.779 0.999 0.932 0.713 0.957
7 1.000 0.999 1.000 0.999 0.881 0.586 0.995 1.000 0.336 0.422
8 1.000 1.000 1.000 0.956 0.997 0.846 0.997 1.000 0.994 0.930
9 1.000 1.000 0.575 0.991 0.988 0.441 1.000 1.000 0.660 0.752

C10
VGG-19

10 0.999 1.000 1.000 1.000 0.993 0.859 0.999 0.966 0.731 0.862

Appendix B. Choice of (ρ, λ, ρ) Based on a Case Study

Our previous papers [29,30] showed the sensitivity of tentative adversarial images
to the choice of the degrading and enlarging functions. In the present Appendix B, we,
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therefore, want to find out which degrading and enlarging functions ρ and λ, and which
combination (ρ, λ, ρ), used in Scheme (11), provide the best outcome in terms of image
quality and of adversity. For this purpose, we perform a case study.

Based on the results of [29,30], the study is limited to the consideration of the “Lanczos”
(L) and “Nearest” (N) functions, either for the degrading function ρ or for the enlarging
function λ. This leads to 8 combinations for (ρ, λ, ρ), namely (with obvious notations)
L-L-L, L-L-N, L-N-L, N-L-L, L-N-N, N-L-N, N-N-L and N-N-N.

For each such combination (ρ, λ, ρ), the study is performed on the 100 clean images Ap
q

represented in Figure A1, with the EA-based targeted attack against the CNN C = C9 = VGG-16,
according to the pairs (ca, ct) specified in Table 2.

However, although the images Ap
q are picked from the ImageNet validation set in the

categories caq , VGG-16 does not systematically classify all of them in the “correct” category
caq in the process of Steps 1 and 2 of Scheme (11). Indeed, Tables A2 and A3 in Appendix A
show that VGG-16 classifies “correctly” only 93 clean images Ap

q , and classifies “wrongly”
7 when the degrading function used in Step 1 is ρ = L or is ρ = N. Let us observe that
although the number of “correctly” classified and of “wrongly” classified images are the
same independently on the ρ function used, the actual such images Ap

q are not necessarily
the same. The rest of the experiments are therefore performed on the set SVGG-16

clean (ρ) = 93
of “correctly” classified clean images.

With this setting, the targeted attack aims at creating 0.55-strong adversarial images in
the R domain (hence meaning that it aims at creating images for which τ̃t ≥ 0.55).

As explained in Section 4.4, the attack succeeds when a 0.55-strong adversarial image
in the R domain is obtained within 10,000 generations. In the present case study, we also
keep track of the unsuccessful such attacks. More precisely, for the SVGG-16

clean (ρ) = 93 images
considered, we also report the cases where either the best tentative adversarial image in the
R domain, obtained after 10,000 generations, is classified in ct but with a label value <0.55,
or is classified in a category c ̸= ca, ct, or is classified back to c = ca.

Note en passant that, although unsuccessful for the 0.55-target scenario, the attack
in the R domain is successful at creating good enough adversarial images in the first
case considered in the previous paragraph, respectively for the untarget scenario in the
second case.

In the present study, Scheme (11) continues with Steps 4 to 8 only for the adversarial
images that correspond to the first or the second component of the quadruplet in R, namely
those obtained in Step 3 that are classified in ct. Note that we compute the average of the
τ̃c = τ̃t for these images.

At the end of Step 8, we collect the following data: the number of HR tentative
adversarial images classified in ct (hence adversarial for the target scenario), classified in
c ̸= ca, ct (hence adversarial for the untarget scenario), classified back in ca (not adversarial
at all). For the images that remain in ct or c ̸= ca, ct, we report their ct-label values τt,
the value of the loss function, and the values of the two Lp distances where p = 0, 1, 2, ∞
(written as Lp,R and Lp,H to simplify the notations) as specified in Section 3.2.

The outcomes of these experiments are summarized in Tables A4 and A5 for all (ρ, λ, ρ)
combinations. Comprehensive reports on these experiments can be accessed via the following
link: https://github.com/aliotopal/Noise_blowing_up (accessed on 14 April 2024).

https://github.com/aliotopal/Noise_blowing_up
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Table A4. The average, maximum, and minimum dominant category label values before and after the application of the noise blowing-up technique (τ̃c, τ), along
with Lp norms (where p = 0, 1, 2, ∞) and loss L for each combination of (ρ, λ, ρ). In this summary, the calculations include good-enough adversarial images.

ρ, λ, ρ

Step 1–3 Step 4–8 Lnorm
0 Lnorm

1 Lnorm
2 L∞

Lτ̃c τc Lnorm,adv
0,R Lnorm,adv

0,H Lnorm,clean
0,H Lnorm,adv

1,R Lnorm,adv
1,H Lnorm,clean

1,R
Lnorm,adv

1,H
Lnorm,clean

1,H

Lnorm,adv
2,R Lnorm,adv

2,H Lnorm,clean
2,R Lnorm,adv

∞,R Lnorm,adv
∞,H Lnorm,clean

∞,R

LLL
Avg 0.548 0.504 0.955 0.94 0.99 0.03 0.02 0.02 1.77 9.9 × 10−5 4.5 × 10−5 5.3 × 10−5 46.6 46.2 125 0.043
Min 0.294 0.273 0.910 0.88 0.90 0.01 0.01 0.00 0.25 4.7 × 10−5 7.0 × 10−6 5.4 × 10−6 21 22 18 0.007
Max 0.554 0.543 0.974 0.97 1.00 0.04 0.04 0.11 13.5 1.6 × 10−4 9.7 × 10−5 2.0 × 10−4 77 74 200 0.116

LLN
Avg 0.548 0.456 0.955 0.95 0.85 0.03 0.02 0.03 0.98 9.9 × 10−5 4.5 × 10−5 7.9 × 10−5 46.6 46.2 196 0.499
Min 0.294 0.073 0.910 0.88 0.35 0.01 0.01 0.00 0.23 4.7 × 10−5 7.0 × 10−6 7.8 × 10−6 21 22 113 0.256
Max 0.554 0.999 0.974 0.97 0.97 0.04 0.04 0.12 3.86 1.6 × 10−4 9.7 × 10−5 2.3 × 10−4 77 74 255 0.554

LNL
Avg 0.548 0.290 0.955 0.95 0.85 0.03 0.03 0.03 1.06 9.9 × 10−5 4.9 × 10−5 7.9 × 10−5 46.6 46.6 196 0.349
Min 0.294 0.080 0.910 0.89 0.35 0.01 0.01 0.00 0.25 4.7 × 10−5 7.7 × 10−6 7.8 × 10−6 21 21 113 0.100
Max 0.554 0.862 0.974 0.97 0.97 0.04 0.04 0.12 4.22 1.6 × 10−4 1.0 × 10−4 2.3 × 10−4 77 77 255 0.551

NLL
Avg 0.548 0.423 0.956 0.95 0.99 0.03 0.02 0.03 1.25 1.0 × 10−4 4.6 × 10−5 7.3 × 10−5 46.8 46.7 196 0.478
Min 0.350 0.053 0.928 0.92 0.90 0.01 0.01 0.00 0.29 5.5 × 10−5 7.0 × 10−6 6.9 × 10−6 25 25 56 0.129
Max 0.553 0.997 0.974 0.97 1.00 0.04 0.04 0.13 4.61 1.5 × 10−4 9.5 × 10−5 2.7 × 10−4 74 69 320 0.553

LNN
Avg 0.548 0.536 0.955 0.95 0.85 0.03 0.03 0.03 1.06 9.9 × 10−5 4.9 × 10−5 7.9 × 10−5 46.6 46.6 196 0.526
Min 0.294 0.076 0.910 0.89 0.35 0.01 0.01 0.00 0.25 4.7 × 10−5 7.7 × 10−6 7.8 × 10−6 21 21 113 0.294
Max 0.554 0.999 0.974 0.97 0.97 0.04 0.04 0.12 4.22 1.6 × 10−4 1.0 × 10−4 2.3 × 10−4 77 77 255 0.554

NLN
Avg 0.548 0.416 0.956 0.95 0.99 0.03 0.02 0.03 1.25 1.0 × 10−4 4.6 × 10−5 7.3 × 10−5 46.8 46.7 196 0.138
Min 0.350 0.155 0.928 0.92 0.90 0.01 0.01 0.00 0.29 5.5 × 10−5 7.0 × 10−6 6.9 × 10−6 25 25 56 0.0002
Max 0.553 0.550 0.974 0.97 1.00 0.04 0.04 0.13 4.61 1.5 × 10−4 9.5 × 10−5 2.7 × 10−4 74 69 320 0.395

NNL
Avg 0.548 0.531 0.956 0.95 0.69 0.03 0.03 0.03 1.03 1.0 × 10−4 5.0 × 10−5 9.5 × 10−5 46.8 46.8 224 0.532
Min 0.350 0.057 0.928 0.92 0.25 0.01 0.01 0.00 0.30 5.5 × 10−5 7.6 × 10−6 9.0 × 10−6 25 25 127 0.350
Max 0.553 0.999 0.974 0.97 0.92 0.04 0.04 0.14 3.80 1.5 × 10−4 1.0 × 10−4 2.9 × 10−4 74 74 255 0.553

NNN
Avg 0.548 0.402 0.955 0.95 0.69 0.03 0.03 0.03 1.01 9.9 × 10−5 4.9 × 10−5 9.5 × 10−5 46.6 46.6 225 0.262
Min 0.350 0.098 0.928 0.92 0.25 0.01 0.01 0.00 0.30 5.5 × 10−5 7.6 × 10−6 9.0 × 10−6 25 25 127 9.5 × 10−5

Max 0.556 0.979 0.974 0.97 0.92 0.04 0.04 0.14 3.80 1.5 × 10−4 1.0 × 10−4 2.9 × 10−4 74 74 255 0.552
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Table A5 summarizes the main findings from the comparison study for different
interpolation techniques. The table includes information on the interpolation methods
utilized, Lanczos (L) and Nearest (N), which are shown in Column 1. The remaining
columns present the following data: Column 2: the number of adversarial images used
for testing noise blowing-up technique, Column 3: the number of images classified in
the target category, Column 4: the number of images that remained adversarial in the
untargeted category, Column 5: the number of images classified in the ancestor category
after employing the noise blowing-up technique, and Column 6: the resulting average loss
in target category dominance.

Table A4 indicates that there are no significant differences observed when using
different combinations of (ρ, λ, ρ) in relation to Lp norms (where p = 0, 1, 2, ∞). However,
Table A5 demonstrates that the combination of L-L-L produces optimal results in terms of
both the loss function (L) and the number of adversarial images remaining in the target
category (ct) when utilizing the noise blowing-up technique for generating high-resolution
adversarial images. Therefore, in our experiments (see Scheme (11)), we employ the L-L-L
combination for (ρ, λ, ρ).

Table A5. The table presents the results of a case study conducted on 92 adversarial images obtained
with EAtarget,C for C = VGG-16 and τ̃t ≥ 0.55 (with notations consistent with Section 3). The technique
involves manipulating the adversarial images by extracting noise and applying different combinations
(ρ, λ, ρ) in Steps 1, 5, and 7 (see Section 3.1).

ρ, λ, ρ Number of D̃VGG16
targeted(Aa)

Number of Dhr,VGG16
targeted (Ahr

a )
Average Loss L

c = ct c ̸= ca , ct c = ca

L-L-L 92 92 0 0 0.0439
L-L-N 92 10 25 57 0.5019
L-N-L 92 59 11 22 0.3501
N-L-L 92 16 21 55 0.4802
L-N-N 92 6 23 63 0.5295
N-L-N 92 89 0 3 0.1384
N-N-L 92 1 21 70 0.5345
N-N-N 92 62 10 20 0.2615
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Appendix C. Enhancing the Noise Blowing-Up Method: Exploring its Performance with
Varied Strength Levels of Adversarial Images
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Figure A2. Evaluating the performance of the noise blowing-up method for EA in untargeted
scenarios with the increased strength of adversarial images per each CNN. The charts display ∆
values at the bottom, along with the corresponding number of images used for the tests at the top.
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Figure A3. Evaluating the performance of the noise blowing-up method for AdvGAN in untargeted
scenarios with the increased strength of adversarial images per each CNN. The charts display ∆
values at the bottom, along with the corresponding number of images used for the tests at the top.
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Figure A4. Evaluating the performance of the noise blowing-up method for AdvGAN in target
scenarios with the increased strength of adversarial images per each CNN. The charts display ∆
values at the bottom, along with the corresponding number of images used for the tests at the top.
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Appendix D. Overall FID Results

In Tables A6 and A7, we present the average FID values (lower is better) for suc-
cessfully generated high-resolution adversarial images, presented per attack and CNN.
Specifically, Table A6 shows FID values for the images generated by targeted attacks (EA,
BIM, PGD Inf, PGD L2), while Table A7 displays FID values of the images generated by
untargeted attacks (EA, AdvGAN, SimBA, FGSM, BIM, PGD Inf, PGD L2).

Table A6. FIDadv
H values assessing the human imperceptibility of the crafted adversarial images for

the target scenario.

Targeted EA BIM PGD Inf PGD L2

C1 12.586 4.605 11.873 5.439
C2 12.043 4.654 12.146 6.527
C3 14.038 4.944 13.574 6.917
C4 13.873 3.438 9.345 5.037
C5 17.848 3.065 6.437 5.006
C6 14.572 3.671 6.617 5.434
C7 16.277 3.867 7.494 5.970
C8 15.926 4.133 7.801 6.137
C9 27.902 9.705 29.225 15.025
C10 31.200 10.933 32.713 15.681

Avg 17.627 5.302 13.723 7.717

Table A7. FIDadv
H values assessing the human imperceptibility of the crafted adversarial images for

the untargeted scenario.

Untargeted EA AdvGAN SimBA FGSM BIM PGD Inf PGD L2

C1 3.677 17.974 3.857 41.697 4.435 23.385 6.64
C2 2.110 14.886 2.624 42.452 4.212 16.749 6.283
C3 3.568 14.915 13.548 44.555 4.436 21.838 7.141
C4 2.614 15.823 5.117 37.838 4.006 11.463 5.240
C5 2.142 10.517 13.879 42.274 3.244 7.250 4.996
C6 2.222 11.638 12.871 47.503 4.862 13.424 7.522
C7 3.575 20.894 7.233 48.869 5.138 14.150 7.407
C8 NA 14.588 7.956 45.522 4.834 13.513 7.453
C9 6.313 15.235 9.191 71.849 10.231 56.493 16.181
C10 3.754 14.172 8.221 72.283 11.515 61.131 19.001

Avg 3.754 15.064 8.450 49.484 5.691 23.940 8.786
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