
Citation: López-García, D.A.;

Torreglosa, J.P.; Vera, D.;

Sánchez-Raya, M. A P2P Scheme for

Debating and Voting with

Unconditional Flexibility. Appl. Sci.

2024, 14, 3502. https://doi.org/

10.3390/app14083502

Academic Editors: Konstantinos

Rantos, Konstantinos Demertzis and

George Drosatos

Received: 13 March 2024

Revised: 14 April 2024

Accepted: 16 April 2024

Published: 21 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A P2P Scheme for Debating and Voting with Unconditional
Flexibility
Diego Antonio López-García 1,*,† , Juan Pérez Torreglosa 2,† , David Vera 3,† and Manuel Sánchez-Raya 1,†

1 Department of Electrical Engineering, Computing and Automatics, Superior Technical College of Engineering,
University of Huelva, Campus El Carmen, Avda. de las Fuerzas Armadas, s/n, 21007 Huelva, Spain;
msraya@uhu.es

2 Department of Electrical Engineering, Superior Technical College of Engineering, University of Huelva,
Campus El Carmen, Avda. de las Fuerzas Armadas, s/n, 21007 Huelva, Spain; juan.perez@die.uhu.es

3 Department of Electrical Engineering, Superior Polythechnic College of Engineering of Linares, University of
Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain; dvera@ujaen.es

* Correspondence: diego.lopez@diesia.uhu.es
† These authors contributed equally to this work.

Abstract: Most e-voting schemes make use of central servers. Users are obliged to trust these servers,
which represent a vulnerability of the scheme. In the last few years, a very small group of schemes
has been published that overcomes this handicap by using a peer-to-peer (P2P) approach. These
are known as boardroom e-voting schemes, whereby users take the role of the servers. They act
as managers of the process: they cast votes, keep a record of them, and verify the cryptographic
operations made by others. Nevertheless, ballots must fulfill certain constraints which conflict with
the possibilities of recent debate tools. These tools allow users to decide what to vote on, thus enabling
the ballot frame to remain unknown before the voting process. The scheme presented here is a new
boardroom voting protocol. It provides privacy, eligibility, and verifiability among other relevant
features. The key advantage of this system is its high degree of flexibility, due to the absence of a
need to impose any constraint on the ballots. This paper includes experimental results with two
debate groups.

Keywords: boardroom e-voting; mixnets; anonymous channel; blind signature; P2P; decentralized;
flexibility

1. Introduction

Many e-voting systems have been developed over the last few decades [1,2]. Most
of these provide privacy, eligibility, verifiability, and other features needed in common
elections, but they rely on the integrity and trustworthiness of single points of failure. This
vulnerability derives from their centralized nature. If the servers are few, collusion or
failure becomes feasible. If there are many, the process turns slow and inefficient (especially
for small groups). A decentralized e-voting system may be the answer; nevertheless, this
approach poses additional challenges to the common problems of centralized e-voting
systems [2]. The role that central entities generally play (bulletin boards, votes validation,
break traceability, and so on) becomes collective. Following this idea some traditional
e-voting methods could be adapted to a P2P network. For example, a mixnet [3] can be
composed of all the users, turning a centralized system into a fully decentralized one.
Nevertheless, in a naive implementation, the failure of a single user disrupts the process,
ballots must follow a fixed size and frame, and each voting session needs predefined periods
in which all the ballots are collected before starting the decryption process. Some of these
problems have been addressed in improved methods such as in [4] where users interact
with mixnet nodes to verify the process, in [5] where a pseudorandom disclosure over
the permutation is shown, or in [1,6], where the use of threshold secret-sharing schemes

Appl. Sci. 2024, 14, 3502. https://doi.org/10.3390/app14083502 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083502
https://doi.org/10.3390/app14083502
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3752-8602
https://orcid.org/0000-0002-7239-370X
https://orcid.org/0000-0002-2833-5051
https://orcid.org/0000-0001-6883-4317
https://doi.org/10.3390/app14083502
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083502?type=check_update&version=2

Appl. Sci. 2024, 14, 3502 2 of 21

improves robustness. Nevertheless, the solutions take a substantial computational effort
for every user and predefined periods are compulsory for every round of votes. Protocols
that do not need mixnets [7] tend to incorporate homomorphic encryption instead [8,9], but
this property implies a predefined and established ballot, resulting in inflexible systems.

As has been recently claimed in [10], it is difficult to find research related to decen-
tralized e-voting. As far as we are aware, no such system has been designed that fulfills a
minimum set of security requirements (privacy, eligibility, verifiability) along with flexibil-
ity. Early attempts come from the area of distributed systems which require synchronization
and mutual exclusion in order to access shared resources. Examples of this kind of voting
scheme are proposed by [11,12]. Other voting systems based on P2P have been proposed
as a solution to the problem of malicious peers [13]. Such systems, however, do not address
the issues of privacy or eligibility.

A field of interest is Byzantine fault-tolerant algorithms (BFTs). Anonymity in BFTs
has been studied from different points of view, which are not exactly the case for e-voting
systems. For example, Bitcoin has been compared to a BFT problem where participants are
anonymous and it is solved by a proof of work [14]. But in this case participants have no
constraints, they do not have to be members of any census. Privacy is also used as a tool in
BEAT to avoid certain attacks [15], but only on the client side. In other paper, identities are
checked by zero-knowledge proofs and devices could remain anonymous [16], but there
are not published results. Therefore, it seem not easy extrapolate BFT models to e-voting.

As a response to these issues, a set of e-voting schemes called “boardroom voting
protocols” have been developed [17]. For example, Kiayias [18] proposed a scheme in
which every user broadcasts a pair of keys for the rest of the users who can then build
a ballot with these keys and broadcast them in such a way that the product of all the
ballots contains the tally. This scheme was improved in [19–21], but cannot avoid the
homomorphic nature of these methods, which results in inflexibility. A solution to this
problem is provided by [22], which uses a mixnet approach to introduce more flexibility
into the ballot design by allowing priority ranking and write-in ballots. Nevertheless, the
ballot frame must be defined at the beginning of the voting session and cannot be altered
during the process.

Another area of research for e-voting is block-chain [23]. All methods taking this
approach achieve partial decentralization in comparison to classic methods. Specifically,
the bulletin board is substituted by the block-chain, a sequence of blocks where all public
data is stored [24]. Even the processes involved can be established in the block-chain by
the use of smart contracts [25]. Nevertheless, there are always certain functions that must
be carried out by a third party or in a centralized manner. In [26], registration servers,
authentication servers and a web server are needed. In [27], voters use a network of
“Bootnodes” and “District nodes” that a third party must set up. The work published
in [28] would seem to be the most decentralized scheme, but it requires a census authority
to assign a secret number to each voter, which implies that this entity can reveal the vote of
any participant (limited privacy). In other block-chain methods the problem stems from the
homomorphic encryption and its inherent inflexibility [29]. All of these methods improve
decentralization, but none of them achieves the flexibility of enabling variable-length ballots
and the submission of new proposals or candidates for voters during the election process.

The purpose of this work is to provide flexibility to decentralized e-voting systems.
The outcome is a new boardroom e-voting scheme free of message constraints. It is based
on anonymous keys, as in the centralized method [30], but is fully distributed and retains
the advantage of flexibility. The method works as an encryption layer that guarantees
anonymity while preventing double voting or access to unregistered users. Thus, this
layer provides the common e-voting security features to the application layer on which any
debate software can sit. Therefore, it is not only suitable for voting on a list of candidates, but
also for negotiating the minutes of meetings, collaborating on budgets, sharing documents,
and so on. The drawback, as occurs with other decentralized e-voting schemes, is the
computational cost, which increases with the number of participants.

Appl. Sci. 2024, 14, 3502 3 of 21

In summary, the main contributions of this paper are

1. A new boardroom e-voting scheme with unconditional flexibility, suitable for any P2P
debate tool.

2. A security study that determines its strength.
3. A list of features with the degree of compliance in each of them.
4. Experiments that measure the computational cost for different scenarios.

The paper is organized as follows. Section 2 explains key aspects required to under-
stand the new scheme. This is detailed in Section 3. Section 4 analyzes its main features.
Section 5 presents and discuss experimental results. Section 6 closes with the conclusions.

2. Preliminaries

Before explaining the new scheme, it is necessary to comment on certain aspects that
are basic to understanding it. This section is dedicated to clarifying them.

The key idea of this scheme is that of the blind signature by an “alias” in the form of a
public key, whether it belongs to Rivest–Shamir–Adleman cryptosystem (RSA) or ElGamal.
Other studies have exploited blind signatures in voting schemes applied to ballots or
tokens [31,32], but not applied to another key. With this alias key, users can interact with
others as no privacy was needed. Privacy is solved by the alias validated from a blind
signature and an untraceable physical access, such as The Onion Router network (TOR),
Freenet, virtual private networks (VPNs), public wireless access points (AP), etc. There
are two required functions: alias blind signature of valid users and vote checking of valid
aliases. In this scheme, these functions are replicated by all the users. With this general
idea the next subsections detail the elements needed in the present scheme.

2.1. Blind Signature

A blind signature is similar to a digital signature except that it allows an entity (a user)
to obtain another entity (usually the authority that checks the identity of the user) to sign a
message without revealing its content. Blind signature [33] is used to authenticate the user
without disclosing the content of a ballot. Hence, the authority, whose function is to verify
the eligibility of a user, will not know who is voting. The security level of blind signature
has been analyzed with satisfactory results [34].

To ensure the secrecy of their message, users generate a random number r in a blinding
function and send it to the authority. For example, if the authority A has a pair of RSA
private and public keys denoted by {K−1

A , KA}, the blind function for m (where m is the
hash of a message M), Blind(m, r, KA), can be defined as:

Blind(m, r, KA) ≡ m · rKA ≡ m′ (mod nA) (1)

This (1) and the following equations represent operations in modular arithmetic. The
authority receives this blinded message and cannot disclose it without r. Next, the authority
signs the blinded message with its private key K−1

A and retrieves it to the user:

Sign(m′, K−1
A) ≡ (m′)K−1

A ≡ (m · rKA)K−1
A ≡

mK−1
A · r (mod nA) (2)

Finally, the user removes the blinding factor r by multiplying all by r−1 and obtains
the message signed by the authority:

Sign(m′, K−1
A) · r−1 ≡ mK−1

A · r · r−1 ≡ mK−1
A ≡

Sign(m, K−1
A) (mod nA) (3)

In the method presented here, every user contacts with the other users, revealing
his/her identity by means of a digital certificate. The other users check that user against a

Appl. Sci. 2024, 14, 3502 4 of 21

list and make just a blind signature per user (n − 1 signatures where n is the total number of
users), playing the role of authorities. Blinded messages can be stored but signers will not
be able to disclose them. Therefore, privacy is guaranteed. Although RSA cryptography has
been used in this example, other cryptographic systems capable of implementing blinding
and signing functions may also be valid.

2.2. Physical Traceability

In the first stage users must be identified to allow blind signatures. Users then
participate in the second stage using an alias to protect their identity. Although blind
signatures provide privacy at application layer, users can nevertheless be identified by
correlating the transmission of the aliases with the IP addresses of the packets. This means
that another tool for privacy is required at the network layer. This problem is solved
by anonymous channels, that is, channels in which the sender of a message cannot be
identified. Various proposals have been made for anonymizing channels:

1. Network Address Translation (NAT) [35]: One defense consists of using the same IP
address for multiple users, which is private and dynamic. A border router maintains
the NAT tables, which must therefore be protected in order to maintain privacy.

2. Mixnets [6,7]: Mixnets are devices that receive a list of encrypted messages which are
then shuffled and decrypted. Here, security depends on trusting in at least one node
of the mixnet. Their shortcoming is that they cannot work until all the messages have
been received, making it difficult to adapt to dynamic online debates.

3. DC-nets [36]: In a DC-net, users cooperate to behave as a virtual broadcast network.
Every message is processed by all the users in the network. The problems in this case
are twofold: scalability and the fact that one single user can block communications.

4. Public places: Public places, such as libraries, hotels, universities, Internet cafes,
venues, etc., are points from which users can safely connect. Should an attacker
manage to trace the IP address of an alias, this will show the public place, which cannot
easily be related to a particular user, more so in the case of broadcast communications
like Wi-Fi networks, for which authorities could offer access points.

5. Private proxies/VPN [37]: A proxy is an intermediary between users and the Internet.
The connection with users can be protected by a VPN (encrypted channel), such
that an attacker can follow the alias submissions to the proxy, but not beyond. This
solution depends on the trustworthiness of the proxy. Even with this protection,
however, statistical analysis over the network can correlate the times of outgoing alias
submissions with user submissions entering the proxy. Nevertheless, this kind of
attack is extremely difficult because the attacker must be able to manage most of the
routers along the path (usually owned by different companies), and take advantage
of low traffic conditions.

6. TOR network [38]: The idea behind TOR is to connect to a web server by tracing a
route through a series of nodes. The user chooses the sequence of TOR nodes to follow
from a list. Each node receives a request to send encrypted data to the following node,
such that each one knows only the immediately previous and subsequent nodes, but
cannot reveal the sequence, the sender or the destination. The higher the number
of nodes the greater the latency, but also the better the security. TOR is constantly
scrutinized and is vulnerable to statistical analysis, but is widely used as a secure
privacy provider.

7. Invisible Internet Project (I2P) [39]: I2P provides a similar solution to TOR, but is more
resistant to traffic analysis and incorporates different node sequences for incoming
and outgoing packets, thus increasing security.

Other solutions are available (e.g., Freenet, GNUnet, RetroShare), which can be com-
bined (proxy with TOR) to increase security. Nevertheless, this question can be freely
decided by the users as long as the e-voting scheme is properly designed.

Appl. Sci. 2024, 14, 3502 5 of 21

3. Scheme

This scheme considers a set of n users. Each one has a digital certificate DCi whose
public key Ki is known to the others, or signed by a third party trusted by them, and whose
private key K−1

i is secret. The process starts when a user decides to propose a debate. This
user then sends a signed message to the rest. This message contains: the list of users (list of
public keys of their digital certificates), the periods for each stage (blind signature, vote,
checking, etc.) and other data related to the question to be debated. If the receiving users
accept these conditions, then the first phase of the scheme starts. If any of them does not,
they can notify this to the rest, who will decide whether to continue (a message with a
new list must be sent) or not. At this point users can discuss openly and warn others of
any misbehavior on the part of the initiator. They will only accept if they all agree to the
conditions, which must be the same for all users (this is checked in the following steps).

3.1. Phase 1: Obtaining an Alias

The objective in this stage is to provide users with an alias key signed by themselves.
All the steps are depicted in Figure 1. For each user the steps are the same:

1. Each user establishes a private channel with each of the other users. Transport
Layer Security protocol (TLS) can provide it, but in the future there could be better
solutions [40,41]. In general, user Ui builds a channel with user Uj where j ∈ [1, n]
and j ̸= i. This makes a total of n − 1 channels for user Ui. Basically, they use their
digital certificates DCi and DCj to prove their identity by signature checking and
negotiate a symmetric key.

2. They compare the message received from the initiator. If there is a mismatch, they
check the initiator signature, determining who is being deceptive, whether the user
(only one coherent signature) or the initiator (two different and coherent signatures).
If initiator is being deceptive or the number of users trying to deceive is greater
than

√
n + 1 − 1 the process ends, namely this user will warn the rest and will close

connections. Otherwise the process continues.
3. Each user generates a pair of RSA keys. For example, user Ui generates the pair

{A−1
i , Ai}, from now on ‘alias’ keys. The hash of the public alias key, ai = hash(Ai),

is then computed.
4. Each user Ui blinds their public alias key hash ai with a random number rij and

encrypts it with the public key of the other users. Therefore, user Ui computes a
maximum of n − 1 blind messages, mij = Blind(ai, rij, Kj) according to Equation (1).
These messages are then sent through the private channels to the corresponding peer
(the user who owns the private key used in blinding in each message, that is, Uj).

5. Each user Uj receives these messages: blinded alias of the other users. Then each one
shows others a table with just one received message per user. If there are any mistakes
it can be solved publicly with a signature by the sender (any user can check what is
sent by the signature and what is stored by the published table). Finally, everyone
knows what messages have been sent to the others and that their own have been
logged correctly.

6. Each user Uj signs with her/his private key K−1
j the received messages and gives

back the results. That is, Uj sends Sign(mij, K−1
j) back to Ui. If any user Uj refuses to

sign or sends a wrong signature, the affected Ui can claim publicly and force Uj to
compute a right signature, because it can be checked by the other users.

7. Each user Ui removes the blinding factor r of the message and obtains his/her alias
key signed by Uj. Therefore, at the end of the process each user Ui has the hash of
their alias public key signed by the other n − 1 users, which allows building n − 1
alias certificates ACij.

Appl. Sci. 2024, 14, 3502 6 of 21

DCi

DCj

User Ui

1

3

User Uj

TLS protocol initialization

Create RSA pair

{Ai, Ai
-1}, (Alias)

Compute

ai=hash(Ai)

Choose random rij

Blind(ai, rij, Kj)=mij

Sign(mij, Kj
-1)

Sign mij

Store {Ui,mij}

Sign(mij, Kj
-1)

× rij
-1

Sign(ai, Kj
-1)⇒ACij

4

5

6

Check

DCi

Check

DCj

2

m_initij

m_initji

CheckCheck

Figure 1. Phase 1: Each pair of users (Ui, Uj) builds a secure communication channel (1,2) and
generates their alias keys (3). Then they transmit their hidden alias thanks to a random number. For
example, Ui sends ai hidden by rij (4). The receiving user (Uj) signs and returns it (5). Removing the
rij factor gives the signed alias ACij (6).

3.2. Phase 2: Alias Checking and Debating

The second phase groups the operations required to accept alias keys from the other
users (Figure 2). This phase makes use of anonymous channels that prevent physical
traceability (see Section 2). Users connect to the others through these channels, identifying
themselves with their alias key only, and proving their eligibility with the corresponding
signatures obtained in the previous phase. The steps are threefold:

1. User Ui runs the TLS protocol over an anonymous channel using the alias certificate
ACij with each user Uj. In this link Ui acts as a client and Uj as a server. User Ui
must check the digital certificate DCj of user Uj and user Uj must check his/her own
signature on alias hash, namely Sign(ai, K−1

j) shown in alias certificate ACij. If it
passes the test, the alias is accepted. At the end of this process each user has two TLS
channels with each of the other users: one as an alias client to send messages and the
other as a public server to listen to other aliases.

2. Now users can interact with others to argue, propose, and vote. This can be conducted
in many ways, depending on the software that manages the debate. Any of them
will allow users to make contributions (opinions, proposals, arguments, candidates,
votes, etc.), which can vary in types, length and quantity. However, regardless of
their features (unconditional flexibility), these contributions are messages that can be
sent by a secure TLS channel which uses symmetric encryption or, when available, a
broadcast anonymous channel. Thus, using these channels, any debate software can
be used. Notice that this software works in a centralized way with respect to the rest
of aliases.

3. The end of the debate and voting is determined by the time defined at the beginning
with the initiator. At this point, all the contributions of an alias Ai can be compiled in
a list. Users can check whether all their contributions (as aliases) have been registered
in this list, and provide anything missing if necessary. When the list is complete, its

Appl. Sci. 2024, 14, 3502 7 of 21

hash signed with A−1
i is sent by each alias and checked by the receiver. This ends

alias interaction.
4. Each user gathers all data sent by aliases, signs it with his/her digital certificate, and

sends it to the other users. This signature prevents users from sending different data
to different users without being detected. Then they compare what they have received.
If there is a consensus the process ends. If there is a mismatch, signatures of users
are compared to detect inconsistencies, and the aliases are revised. Aliases which
are present more than n + 1 −

√
n + 1 times are accepted and the tally is computed

with them.

Check

ACij

DCj

Alias Ai (User Ui) User Uj

TLS protocol initialization

Proposals, opinions, votes…

Sign(hash(Ai list), Ai
-1)

Check

ACij

Check

DCj

Check

signature

Tally

1

2

3

4

{Signatures of A1,A2…An}
Check

Tally

Time t1 is over

Time t2 is over

User UjUser Ui

Ai

list

Figure 2. Phase 2: Users show their alias certificate ACi to establish anonymous TLS channels (1).
Then they can debate (2). When the time is over they sign their list of contributions (3). Signatures
are checked to solve inconsistencies (4) and the tally is computed.

4. Analysis

In this section, the security of this scheme is analyzed in the light of critical assump-
tions. The first of these is that the time required for adversaries to break asymmetric keys is
longer than the time required to carry out the poll, and that in which any consequences
to the vote owners might accrue. The assumption is based on using adequate key lengths
regarding the computational capability of any adversary. The second assumption is that
the voter group has fewer adversaries than honest members. The limit is explained below.
The third is that devices are free of any malware. This can be achieved by following the
appropriate security policies, such as using live CDs recorded with verified software, so
that users start with a secure operative system (OS) and debate application. Hackers should
be deterred by having to find vulnerabilities in a system tested by experts, and dedicated
solely to the process of voting (with no additional services or ports open). Should vul-
nerabilities exist, the opportunity to exploit them should be limited to the short interval
in which voting is carried out. The fourth assumption is that network services guarantee
communications among users. Problems related to service failures are not considered in
the protocol. Lastly, the selected anonymous channel does not provide any information
about senders. Features of messages received (time, frequency, size, sequence, etc.) cannot
attribute more probability to one user than another. As mentioned above (Section 2), there
are different tools to avoid physical traceability whose strength is not considered in this
paper. Users can choose these anonymous channels according to security level and speed.

Appl. Sci. 2024, 14, 3502 8 of 21

4.1. Threat Model

From these assumptions, we can study a specific threat model in which the capabilities
of adversaries are:

1. They can participate as any other user, but they cannot exceed
√

n + 1 − 1, where n is
the total number of users.

2. They can send any message, without constraints about the content, or choose not to
send anything, to any user.

3. They cannot alter the hardware or software of any user.
4. They cannot compute the inverse hash of any number. They could choose any value,

compute the hash and compare it with a given hash, but the odds of matching
are negligible.

5. They cannot deduce the private key of any user, nor compute the encryption of a given
value with the private key. Therefore they cannot compute honest users’ signatures.

6. They cannot stop communications between honest users.
7. They cannot obtain any information from network traffic when using anonymous

channels.

From now on, for the following lemmas and theorems, these assumptions and models
will be considered.

4.2. Preliminaries

The process starts with a user who proposes the debate to a group. If this user is an
adversary, he/she could send any message with any parameter set to the others. However,
in the second step of phase 1 users will look for differences in the received message, which
has been signed. Thus, any mismatch is detected and attributed to its author. Users cannot
deceive either in this checking process either, because with any fake message (attempting
to inform against the initiator) they must show a coherent signature that only initiator can
compute. Participants must connect to each other in this phase, and hence the absence of
any of them is detected. The initiator can deliver different participant lists to users, but
coherence among the members of the same list must be observed in order to pass onto the
second step. Even so, users can refuse to participate if they judge that the list or any other
parameter is not right.

At the beginning of each phase, each user contacts the others establishing secure
channels, following the TLS protocol. This secure channel is based in asymmetric keys
and collision free hash functions that provide authentication, confidentiality, and integrity.
Hence, under the threat model assumptions, adversaries outside the user list cannot usurp
legitimate user identities (man-in-the-middle attacks), or alter information without being
detected or revealing the content of what is sent once the channel has been established.
This applies not only to the first phase, which uses digital certificates, but also to the second
phase, where alias keys are used instead.

The next part of the paper considers attacks from adversaries that are group members.
As valid users they can achieve signatures from the others, but only one from each honest
user. They can sign multiple aliases among themselves, but the rest of the users will only
admit their own signature on each alias in phase 2. Therefore, as it is established in lemma
1 below, adversaries cannot login with additional aliases.

Lemma 1. Adversaries cannot obtain more signed alias keys from any honest user than there are
eligible users among said adversaries.

Proof. To obtain an extra alias key means achieving the following set {Ae, A−1
e , sign(ae, K−1

i)}
where {Ae, A−1

e } must be a pair of asymmetric keys, ae = hash(Ae) and K−1
i is the private

key of any honest user. From ae it is not possible to obtain Ae (condition 4 of Section 4.1), nor
is it possible from Ae to deduce A−1

e (condition 5). Therefore, adversaries obtain an extra
alias key, the hash ae must be computed from it, and the reverse path is not possible. Thus,
adversaries must find a way to obtain the signature of a given number ae, that could be any

Appl. Sci. 2024, 14, 3502 9 of 21

value in the interval defined by the hash function. Nevertheless, were they to achieve this,
there would be a method to obtain the signature of any number, which violates condition
5. Thus, for any given hash, the only way to obtain a signature is that the legitimate user
signs it, and an honest user will sign just one per participant.

During the debate, adversaries can show only the same number of alias keys as there
are per user (Lemma 1). Any contribution (votes) is associated with one alias key and
cannot be duplicated (uniqueness). The TLS channel and the signature of the contributions
at the end prevents users from impersonating other aliases. Nevertheless, adversaries
can use different aliases with each user. This way, they can vote differently in each user
bulletin board, looking for inconsistency among the group. Therefore a threshold of alias
appearances in bulletin boards must be established in order to admit them, and it is not as
straightforward as choosing n/2. The next attack example shows the problem.

Attack Example

Let there be a group of six members: four honest and two adversaries. At the end of
the first stage each one shows his/her own list of accepted aliases to the rest, resulting in
the set of published lists in Figure 3.

A1 A1 A2 A2 A1 A1

A3 A3 A4 A4 A2 A2

H1 H1 H1 H1 A3 A3

H2 H2 H2 H2 A4 A4

H3 H3 H3 H3 H1 H1

H4 H4 H4 H4 H2 H2

U1 U2 U3 U4 U5 U6

Figure 3. Attack example: Bulletin boards of users Ui shown as columns. Hi are alias of honest
users; Ai are alias of adversaries (U5, U6). If the acceptance criterion is to be in at least 4 columns, the
adversaries may vote double.

Each column of Figure 3 corresponds to the list shown by each user. For example, the
first column corresponds to the aliases accepted by the first user, which in this case belongs
to the honest group {U1, U2, U3, U4}. The bottom part of this column contains the aliases
sent by honest users {H1, H2, H3, H4}. As they are honest, they have used the same alias in
all the processes. The upper part shows the aliases that adversaries have sent. With this
user in particular, U1, they have sent the aliases A1 and A3.

Adversaries can send different aliases to different users, for example U1 and U2 receive
A1 and A3, while U3 and U4 receive A2 and A4. Also, they can show whichever set of
aliases in their own list. In this case they choose to show A3 and A4 instead of H3 and H4.
At the end, honest users realize that there are adversaries because there are more aliases
than users, but cannot deduce who are them. Ai appears the same number of times as H3
or H4, which means that most users (more than n/2 = 3 in this case) accept these aliases.
Therefore there must be a limit for adversaries and a threshold for accepting aliases higher
than n/2, so that extra aliases are banned. With no extra aliases adversaries can neither
vote twice nor lead to inconsistencies. The next lemma establishes the minimum amount of

Appl. Sci. 2024, 14, 3502 10 of 21

adversaries to achieve this kind of attack and explains the threshold used in the last step of
the protocol:

Lemma 2. Adversaries are not able to force different results (inconsistency) among honest users if
they number less than

√
n + 1 − 1 where n is the total number of users.

Proof. If half the honest users vote exactly the opposite to the other half, one adversary
vote is able to decide the result. If adversaries manage to register this vote with a different
value in different users, the result will differ among users. It would therefore appear that
inconsistency can be achieved by changing just one vote. However, adversaries cannot
vote differently with the same alias because at the end users will compare the contributions
of each alias (Section 3.2 4.) and detect discrepancies. Registering different votes thus
implies using different aliases. Furthermore, each honest user will accept just one alias
per adversary, but they cannot detect that these accepted aliases are the same for every
honest user. In other words, adversaries can use different alias for each honest user. Let us
consider that there is the minimum number of adversaries m that achieves inconsistency.
The rest h = n − m are honest. Then, aliases from honest users will be present in at least h
user bulletin boards. Let us choose this value as a minimal presence for any alias in order
to be accepted (this is just the threshold to be calculated). For this purpose, adversaries
can use the room in honest users’ bulletin boards assigned to them (let us call this area 1,
which corresponds to the upper left-hand corner of Figure 4), who can accept m · h blind
signatures, and the room in their own bulletin boards as valid users (let us call this area 2,
which corresponds to the right-hand side of Figure 4), n · m, where they can show any alias
list. Aliases cannot be repeated in the same user bulletin board (same column in Figure 4).
With this constraint each adversary alias will collect no more than m signatures in area 2.
If the objective of adversaries is to establish as many aliases as possible, they will fill area
2, which is larger than area 1, with different aliases (the maximum would be n). The rest
of the signatures for each alias must be present in area 1 at least h − m = n − 2m times.
Dividing area 1 (m(n − m)) between n − 2m the maximum number of aliases defined by
this method without exceeding n is obtained. If adversaries achieve more aliases than there
are eligible users among said adversaries, that is, at least m + 1, inconsistency is possible,
which can be expressed as:

m(n − m)

n − 2m
≥ m + 1 ≡ m ≥

√
n + 1 − 1 (4)

Therefore, if m <
√

n + 1− 1 adversaries cannot register different aliases, and inconsistency
is not possible.

In the previous example n = 6, therefore the threshold is m <
√

6 + 1 − 1 = 1.6. In
other words, when there are six users the maximum number of adversaries is one and a
minimum of five signatures are required for any alias. A single adversary would need
four signatures for each alias from honest users besides his/her own. For two aliases it
would be eight, and he/she can achieve only five. On the other hand, the example shows
that a successful attack can be carried out with two adversaries, just one over the threshold.

As can be seen, phase one and the beginning of the next are devoted to obtain valid
aliases in the sense that they must accomplish three conditions: representing an eligible
user, just one per user, and keeping privacy.

Appl. Sci. 2024, 14, 3502 11 of 21

Figure 4. Aliases {Ai, Hi} registered by each user Ui depicted in columns. There are n users where m
are adversaries and h = n − m are honest. Each adversary alias Ai needs to be present in at least h
different columns in order to be accepted, just the number of times any honest alias will appear.

Definition 1. A digital certificate is a valid alias if the next conditions are achieved: (1) The private
key belongs to an eligible user. (2) The public key has been sent to the rest of users by a method that
prevents them of knowing the sender (privacy). (3) The public key has been checked by the rest of
users by a method that avoids multiple aliases for the same user (uniqueness).

Theorem 1. Users will obtain a valid alias per honest user and no more aliases than there are
adversaries.

Proof. As mentioned above, TLS channels and digital certificates prevent adversaries out
of the user list from participating in this scheme; therefore, only eligible users can send
their aliases to the rest. In other words, any alias received in this scheme belongs to an
eligible user, so first property of valid aliases is accomplished. As aliases reach users by
anonymous channels in phase 2, there is no way to relate user with alias by means of how
the data is sent (physical traceability). Considering the data there are two exchanges: a
blinded message b from a known sender in phase 1 and a public key, the alias a, signed
by the receiver from an unknown sender in phase 2. Individually, none of them is enough
to reveal the author: b is computed with a random and unknown number, a has nothing
linked to the author except an unknown private key, and the signature on a only throws
that he/she is one of the eligible users who were signed in phase 1. (An adversary could
make only one signature in this phase to reveal one alias, but he/she will be detected in
step 6 and banned.) However, taken together, there is a mathematical relation between a
and b: b = a · rKi (mod ni). But r is a random and unknown number. Let x be any other
alias public key and let s be (x−1 · a)K−1

i · r(mod ni). Then, if s is chosen to build the blind
signature with x it follows:

Blind(x, s, Ki) = x · sKi = x · ((x−1 · a)K−1
i · r)Ki (mod ni) =

a · rKi (mod ni) = Blind(a, r, Ki)

In other words, for any alias x there is a number s such that the blind signature Blind(x, s, Ki)
matches b. Therefore, exchanged data cannot be used to deduce the owner of a. As the
receiver cannot link alias with user, the second property of valid aliases is accomplished
too. The last property (uniqueness) is satisfied in honest users because they will send

Appl. Sci. 2024, 14, 3502 12 of 21

only one alias to the others. Taking into account that adversaries are less than
√

n + 1 − 1
(security model) and Lemma 2, inconsistency is not possible. As in the proof of Lemma 2 is
described, this means that honest users cannot accept more aliases from adversaries than
they are.

The consequence of this theorem is that either adversaries send a valid alias to honest
users behaving like them, or they achieve less aliases accepted than they are, which is
against adversary interest.

Definition 2. An authenticated anonymous channel is a secure and anonymous channel built with
a valid alias on one side and with the public digital certificate of a known user on the other.

The term “secure” in this context must be identified with the three services provided
by TLS protocol: confidentiality, integrity, and authentication. Therefore, this definition
matches the channels described in phase 2.

Theorem 2. Authenticated anonymous channels allows for (1) authenticity for a known user on
one side, (2) authenticity of membership for the other, and (3) anonymity for any data sent from the
last one.

Proof. The scheme describes that these channels are built with TLS protocol over anony-
mous channels. As TLS protocol provides authentication based on digital certificates, the
user that shows the known one is identified, satisfying the first property. The other user
shows a valid alias. The first requirement of a valid alias is belonging to an eligible user.
Therefore, a valid alias proves the membership to the group of eligible users, satisfying
property 2. The last one is accomplished if nothing in the channel itself or the data ex-
changed identifies the sender. As it was explained in the proof of theorem 1, anonymous
channels break physical traceability and data exchanged until alias acceptance cannot reveal
the sender. Next, the TLS protocol needs only the alias certificate and random numbers
to build the channel, nothing else from the sender is used. Therefore, the channel is built
without revealing the sender, and any data can be sent through it.

4.3. Security Requirements

Some of the security features usually analyzed in other voting systems [2,34] are
uniqueness (mentioned above), privacy, eligibility, verifiability, dispute-freeness, accu-
racy, fairness, mobility, incoercibility, robustness, and scalability. These requirements and
consistency are analyzed in the next subsections and summarized in Table 1.

Table 1. Summary of requirements.

Property Degree of Compliance

Uniqueness Satisfied.
Privacy Maximum privacy at logical level.
Eligibility Satisfied.
Verifiability Individual and universal verifiability.
Accuracy Satisfied.
Dispute-freeness Satisfied.
Fairness Requires vote encryption and disclosing at the end.
Mobility Satisfied.
Robustness Adversaries <

√
n + 1 − 1.

Consistency Adversaries <
√

n + 1 − 1.
Incoercibility Unsatisfied.
Flexibility Unconditional flexibility.
Scalability Unsatisfied.

Appl. Sci. 2024, 14, 3502 13 of 21

4.3.1. Privacy

In e-voting systems, any traceability between the user and their vote must be removed.
Clearly, if the rest of the users reveal their vote, the latter would be exposed. When this is
the only case in which a vote can be associated with its user, the highest level of privacy
is achieved, called ‘maximum privacy’. However, this scheme protects messages without
constraints until they are published. Messages could provide information about users
in different ways (style of text, content of messages, alias profile, Italian attacks, etc.).
Depending on the context, this data leakage is possible or not. In a open debate users can
include revealing details in their opinion or proposals. Nevertheless, a simple yes/no vote
cannot reveal anything about its author except the case of maximum privacy. Therefore,
the following property is stated.

Proposition 1. Under the conditions of the security model and as long as the content of the
messages does not reveal anything about the users, any two of them are indistinguishable in phase 2.

Proof. In this context, all the information that adversaries can accumulate is the following:
a list of blind messages (mij = Blind(ai, rij, Kj)) that are linked with their users, a list of
blind signatures, a list of signed aliases (ai), and the contributions (proposals, votes) signed
by each alias. Since the premise of the proposition discards the information obtained from
the contributions, only the information related to the alias itself remains. Distinguishing
one user from another in phase 2 means distinguishing their aliases. However, considering
all the information available to adversaries, there is only one element in which the user and
alias are involved, which is the blinded message. If adversaries manage to distinguish two
users, U1 and U2, then they are able to guess the relationship between user and alias, which
implies that they know two sets of values, r1j and r2j, such that:

m1j = Blind(a1, r1j, Kj) = a1 · r
Kj
1j (mod nj)

m2j = Blind(a2, r2j, Kj) = a2 · r
Kj
2j (mod nj)

The other option is that they are able to show that there is no set of values s1j capable of
satisfying m1j = Blind(a2, s1j, Kj). However, given rij, users could have chosen sij, defined

as sij = (a−1
h · ai)

K−1
j · rij, for any other alias h. Specifically, if the values 1 and 2 are chosen

for i and h:

Blind(a2, s1j, Kj) = a2 · s
Kj
1j = a2 · ((a−1

2 · a1)
K−1

j · r1j)
Kj(mod nj) = Blind(a1, r1j, Kj) = m1j

Blind(a1, s2j, Kj) = a1 · s
Kj
2j = a1 · ((a−1

1 · a2)
K−1

j · r2j)
Kj(mod nj) = Blind(a2, r2j, Kj) = m2j

In other words, depending on what values users U1 and U2 would have chosen, they could
very well be the authors of either alias a1 or alias a2. There is no unique mathematical
link between blinded messages and aliases. Consequently, adversaries have no way to
distinguish one user from another with the information they have.

As a result of this proposition, if content of messages do not reveal its authorship
(e.g., yes/no votes) maximum privacy is preserved.

4.3.2. Eligibility

This refers to the ability of a system to determine whether users have the right to
participate or not. Usually, this means that the user belongs to the list of registered users
(census). To this end, somebody would have to impersonate a valid user at the starting
phase or afterwards:

1. In the first case any adversary must show a digital certificate of a user featured on the
list. This list is composed of the user who proposes the debate to the others, and in this
phase users can check the list and choose to reject the debate. Thus, including a fake

Appl. Sci. 2024, 14, 3502 14 of 21

user in the list requires deceiving all other users. The alternative is to use the digital
certificate of a valid user. This requires cracking the RSA key of the certificate, to steal
the digital certificate from the user, or to make a new certificate by using the private
key of the third party. The first two options violate the assumptions of the threat model
(keys are considered safe and user devices are free of malware). The third option deals
with the trust on a third party. Any centralized voting system requires trust in at least
one entity. Nevertheless, even this requirement can be avoided in this scheme. The
solution is that each user makes their own key pair (as in a digital certificate), and
then communicates the public one to the others by channels considered safe (phone
calls, physical meetings, encrypted e-mails, etc.).

2. In the second case the level of security depends again on the strength of the RSA
keys. Contributions (votes, proposals, and so on) are accepted when they came from
a TLS channel built with a signed alias key. Therefore, any adversary who wants to
impersonate another user must know the private alias key, which goes against the
assumptions of the threat model. The alternative is to achieve acceptance for a fake
alias, and this is not possible according to Lemma 1.

4.3.3. Verifiability

This is the user’s ability to verify that their vote has been correctly recorded and
accounted for in the final tally. There are two definitions [4]. One is individual verifiability
where only the user can verify their vote in the tally. The second is universal verifiability
where, after the tally has been published, anyone can verify that all valid votes were
included and the tally process was accurate.

In this scheme every user has a file which fulfills the role of bulletin board with all the
contributions. Users can compare their files in order to detect and add missed contributions
(Section 3, phase 2, item 3). Further, in the final step everybody can add a signature when
they have checked that all their contributions have been included. Thus, at the end of
the process, everyone must have the same file, and users can check their contributions
(individual verifiability) in it. On the other hand, fake contributions are avoided by the
TLS channel security and the alias signature. It is not possible to sign a fake contribution
of another user without knowing their private alias key. The owner of an alias is the only
one capable of inserting contributions, but they will be associated with the same alias and
will not affect the others. Thus, all the users can check every contribution and its signature,
relate these contributions with its alias, and check if any alias has submitted more than one
vote per proposal or any other irregularity (universal verifiability). The tally is computed
by each user. Thus, there is individual and universal verifiability.

Verifiability is concerned with accuracy, which is mentioned in other papers as an
additional feature. An e-voting system must be error free, that is, votes must be registered
correctly and votes of invalid users must not be counted. The way to achieve this accuracy
is by verifiability, such that if an error happens, it can be detected and corrected.

4.3.4. Dispute-Freeness

Voting methods must provide a mechanism to resolve disputes. Nevertheless this
method avoids them because every user is in some respect the absolute manager of the
whole process. In fact, every user can reject any received message. They have tools
for verifying that every step by the other users is performed correctly, and for rejecting
misbehavior. Ultimately, those who follow the rules have the capacity to learn the will of
the other users who comply with them too.

4.3.5. Fairness

In order to conduct fair voting, no one should be able to compute a partial tally as the
election progresses. This scheme is designed for debating tools, where knowing the most
voted proposals (by showing a partial tally) could help the rest of the users to focus on the
most important decisions for the group and be shielded from a flood of futile proposals.

Appl. Sci. 2024, 14, 3502 15 of 21

Thus, fairness might not always be a desirable feature. However, an easy improvement can
be made so that fairness is achieved. This consists of encrypting each vote with a symmetric
alias key. When the period for contributions has finished (no more votes are accepted and
the hash of the contributions list is signed by each alias) these symmetric keys are sent in a
predefined interval, and votes can be decoded. Adversaries could wait to the end of the
process to send their keys in order to have those of the rest. This would allow them to
decrypt and know the tally before the rest, although they would not be able to change their
vote in consequence. They could refuse to send their keys, but this would only exclude
their votes from the tally. Therefore, with this improvement fairness is achieved.

4.3.6. Mobility

This scheme is designed to operate on the Internet. For this purpose, a digital certificate
is needed. This can be signed by a trusted third party (a prestigious firm, a government
office) or even among the users themselves. Once this certificate is signed, all security
requirements can be achieved from any place in the world and multiple debates and
decisions can be carried out with the same digital certificate. However, there are alternative
means of managing identification, such as those based on blockchain [42].

4.3.7. Robustness

This parameter measures the strength against passive attacks, when corrupt users skip
one or more steps of the protocol. At the first stage, if the alias owner does not follow the
protocol, this user will lose the blind signature and the access to the signer in the second
stage. If it is the signer who fails, then the affected user will publicly claim in step 6 and
if the signer does not send a right signature he/she will be banned. At the second stage,
if users acting as aliases fail, they will not be able to send their votes. If it is the known
user who fails, he/she will not be able to know the votes of an eligible user. In any case,
lack of action or misbehavior from any user does not stop the process for the rest and only
affects the liable user. Nevertheless, a minimum number of signatures per alias is required,
as shown in Lemma 2, namely there must be a minimum number of honest users who
follow the protocol. Therefore robustness is limited to the maximum number of tolerable
adversaries which is under

√
n + 1 − 1 (Lemma 2).

4.3.8. Consistency

This is defined as the ability of honest users to obtain the same results. Due to the
decentralized nature of this method, it could be possible that some users have different
data than others and compute different tallies. However, this is not possible if adversaries
do not reach

√
n + 1 − 1 (Lemma 2). Therefore, consistency is conditional on this value.

4.3.9. Incoercibility

Incoercibility refers to the difficulties that an adversary finds when trying to buy users.
Some researchers prefer the term “coercion-resistance” that measures coercer opportunities
in comparison with a traditional system with no corrupt authorities [43]. Voting via
the Internet means that any adversary can position themselves close to another user to
observe what that user sees, and consequently check whether he/she follows their will.
Therefore, there are no voting systems able to prevent coercion when mobility is imposed
(no booths are used). However, some papers claim a degree of coercion resistance under
certain constraints, such as untappable channels [4] or voters’ refusal to share their private
keys [44]. In this sense, the scheme presented here can show certain coercion resistance
under certain conditions, such as inviolability of the user’s equipment, restricted messages
(yes/no votes), absence of coercers at the end of the process, and simultaneous sending of
votes. Since these conditions are far from those that can be assumed in real environments,
this scheme does not exhibit significant coercion resistance (as is the case in other boardroom
e-voting schemes).

Appl. Sci. 2024, 14, 3502 16 of 21

4.3.10. Flexibility

This parameter indicates how many conditions votes must fulfill. Many voting
schemes need a fixed format for the ballots or at least a predefined list of candidates
before the poll. This scheme does not require any of these. Rather, it provides a security
layer over which any software can exchange data. All this data (proposals, candidates,
votes) is protected without any constraint by an alias key in the same way as TLS channels
provide security without restrictions on the application data by means of digital certificates.
Therefore, this scheme achieves unconditional flexibility.

4.3.11. Scalability

Like other boardroom e-voting schemes, this method does not provide scalability. The
reason is the number of exponentiations that users must compute for every member of the
group. This is detailed below.

4.4. Time Complexity

Establishing a TLS channel requires one private and one public key encryption per
user, which means two exponentiations per user and one more for verifying the digital
certificate. Each pair of users will require one channel in phase 1 and two channels in
phase 2 (as alias and as server). Blinding and checking implies two exponentiations on one
side, while the signature on the other side consumes one more. These operations must be
conducted with each user. Adding the signature and check per alias at the end, each user
must compute 14(n − 1) + 1 exponentiations, where n is the number of users. In addition
to this, users must generate an alias key, but no knowledge proofs are required.

When comparing with previous boardroom e-voting methods, the fastest [21] requires
only 3+ Nc exponentiations [10], where Nc is the number of adversaries. However, in these
schemes users must compute different types of knowledge proofs and verify them for every
user. For example, ref. [21] requires Nc discrete logarithm equality proofs, which means
n− 1+ n− 2+ . . . + n− Nc = Nc(n− (Nc + 1)/2) verifications per user. Each check of this
type implies ten exponentiations (Section 2.3 in [21]). Additionally users must compute a
discrete logarithm for the tally. As claimed in [10] there are algorithms that can reduce this
time, but at the cost of weaker checks [44]. Moreover, adversaries increase the number of
rounds. By contrast, the method presented here does not depend on this number, because
adversaries are automatically excluded when they do not follow the protocol.

5. Experiments and Discussion

The following experiments are oriented towards measuring the suitability of this
method to carry out boardroom debates and voting. The debate tool has been selected
on the basis of its features which include flexibility and the lack of a moderator [45]. In
this debate tool, participants can send proposals, opinions, and votes. In this approach,
only proposals and votes must be protected by the system. Figure 5 shows these kinds of
contributions in relation to two different experiences. The first, case A, (charts (a) and (b) in
Figure 5) corresponds to a group of 18 students who debated for 20 min. The second, case B,
(charts (c) and (d) in Figure 5) was another debate carried out by 23 students in a period of
44 min. Charts (a) and (c) in Figure 5 show the activity in each interval related to sending
proposals (black line) or sending votes (columns). Box plots (b) and (d) in Figure 5 show the
average interval and its distribution between deliveries (votes and proposals) measured in
each experience.

Appl. Sci. 2024, 14, 3502 17 of 21

(a) Proposals and votes sent for the case A.

(b) Case A: Time between sendings.

0

20

40

60

80

100

120

140

160

180

200

Proposals Votes

Ti
m

e
 b

e
tw

e
e

n
 s

e
n

d
in

gs
 (

s)

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 1011121314151617181920

C
o

n
tr

ib
u

ti
o

n
s

Time interval

Votes Proposalsx10

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 1011121314151617181920

C
o

n
tr

ib
u

ti
o

n
s

Time interval

Votes Proposals

0

20

40

60

80

100

120

Proposals Votes

Ti
m

e
 b

e
tw

e
e

n
 s

e
n

d
in

gs
 (

s)

(c) Proposals and votes sent for the case B.

(d) Case B: Time between sendings.

Figure 5. Debate experiences. Case A: 18 students. Case B: 23 students.

These two experiences offer an estimation of the activity in a debate group. Specifically,
the average number of proposals from each user which could be voted on was 2.47. The
boardroom voting system has to deal with this level of activity, so the process time will
be analyzed in these scenarios. The first phase is to obtain the signing of the aliases,
which implies generating the alias keys, blinding, signature, removing the blind factor, and
checking. All of these steps were measured for only two users using different key sizes
(from 768 bits to 2048 bits), and the result presented in chart (a) in Figure 6. These times
were measured in computers with Intel Core i-3 processors, 3.1 GHz, and 4 GB of RAM. The
chart shows that the heaviest processes were key generation and signature. Nevertheless,
the slowest case takes only 1.71 s.

Additionally, all the traffic crosses a TLS channel between each pair of users. Chart
(b) in Figure 6 presents the time needed to establish a TLS channel for two RSA key sizes.
The dispersion of time intervals is caused by the different keys and the operating system
(Windows 10) which had to manage many threads. The highlight of this chart is the
obtention of a reference for two magnitudes: the actual duration of setting a TLS channel
and the expected delay added by other common processes. Chart (c) reveals the time in
seconds that each user took to initialize when there were more than two users (case of
chart (a)). This increased following a curve (it is non-linear) as the key size increases, and
following a straight line when group size increased. For instance, the group of 18 users
(case A) generated a starting time from 10.38 s (key size of 768 bits) to 13.94 s (key size of
2048 bits). Case B varied from 13.4 s to 17.57 s. This increased with the number of users to
frustratingly lengthy times (73.45 s for 100 users and 2048 bits).

Appl. Sci. 2024, 14, 3502 18 of 21

120

140

160

180

200

220

240

260

280

768 2048

Ti
m

e
 (

m
s)

RSA Key Size (bits)

0

200

400

600

800

1000

1200

1400

1600

1800

768 1024 1280 1536 1792 2048

Ti
m

e
 (

m
s)

Key size (bits)

Check

Unblind

Signature

Blind

GenKeys

768

1280

1792
0

20

40

60

80

10 20 30 40 50 60 70 80 90 100

Ti
m

e
 (

s)

Group A
18 users

Group B
23 users

768

1280

1792
0

50
100
150
200
250
300

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Ti
m

e
 (

s)

Group A
18 users

Group B
23 users

(a) Time spent per user in each task. (b) Time to establish a TLS channel.

(c) Minimum initialization time. (d) Initialization over Tor channels.

Figure 6. Length of the cryptographic processes to be performed by each user (a), where some are so
short that their color cannot be appreciated. Duration of setting a secure channel (b). Times required
for phase 1 without considering anonymous channels (c) and considering TOR (d).

Chart (c) shows only the minimum time required in the protocol for initialization,
without considering anonymous channels. These channels can add time or not (Section 2),
and are selected according to the system features (delay, security, mobility, etc.). However,
as an example, chart (d) shows the complete initialization time including the anonymous
channels when they are based on the TOR network. Assuming three hops per circuit, the
average establishing time is 1.9 s. This raises the initialization to a value of 261.6 s. in the
worst case scenario (100 users and 2048 bits for RSA keys).

Nevertheless, this happens only at the beginning of the process. Once the debate is
initialized, the messages are encrypted by symmetric keys (TLS channels), which means a
negligible computing cost compared with usual network delays. The question now is how
much traffic can be managed by common users. On the one hand the experimental results
produced an average number of proposals per user (2.49), which provided the number of
votes cast in a limited time (1920s). On the other hand users have a maximum bit rate to
access the Internet. Assuming a limit of 50 Mbps and frames of 1500 bytes, the maximum
number of users is 1796. That is, more users would increase the average time of a debate.

At the end of the process a signature is required. Each user must compute one and
check n − 1 (faster in RSA). In total this took 200 ms in the worst case (100 users and
2048 key bits).

Summarizing these results for the two discussion groups mentioned above in the case
of the most secure keys (2048 bits) and use of the TOR network, it is shown that group A
would take 46.24 s to initialize, and group B 59.37 s. After that, the interaction of users in
the debate would be fast (only 1.9 s delay in sending messages due to the TOR network).
At the end, the signatures will take just 119 ms for group A and 124 ms for group B. It can
be seen that these initialization times of less than one minute are acceptable and that the
scheme is therefore suitable for groups of this size.

Appl. Sci. 2024, 14, 3502 19 of 21

6. Conclusions

The following is a summary of the most relevant achievements and key aspects of
this document. In order to clarify them, it is necessary to explain the starting point. In
the situation prior to this work, flexible and secure debating in a decentralized manner
was not possible. In fact, for simple decentralized voting there were very few published
systems. The proposed scheme broadens the range of boardroom e-voting systems. It
provides unconditional flexibility because no constraints are imposed on the vote format;
as a consequence this scheme is independent of any debate software. Moreover, other
interactions, such as proposals and opinions, can also be protected, maintaining privacy,
eligibility, verifiability, and the rest of features. This makes it suitable for other uses like
debates or gathering criticism from a group anonymously.

Regarding BFTs systems, in the case of our scheme, it is feasible to use them in phase
2, when anonymity problem is solved. Thus, any of the leaderless (P2P) BFT systems like
DBFT [46], Honey Badger [47], or BEAT [15] could be selected instead of the alias signature
used to achieve consensus. However, it implies the loss of verifiability, which is a desirable
feature in e-voting systems.

The scheme does not include any step that requires the involvement of all the par-
ticipants, so it is robust against adversaries inside the group, and they cannot block
the process.

A flexible debate can be compared to previous voting systems from two points
of view:

1. Each proposal is an independent voting. Then, the user who sends the proposal is
the one who defines the ballot frame. In a debate there are many proposals; therefore,
there will be many polls. Thus, a comparison between our voting system and others
results in the advantage of making multiple polls with the computational cost of
just one.

2. All the proposals are in the same voting. Then, we are considering a unique ballot that
contains the votes for each proposal. This ballot can be huge and extremely complex,
a problem for some schemes as was explained in Section 1. Even more, for other
e-voting systems, this ballot must be defined by an initiator. In other words, users
have not a secure way to choose what to vote.

The experiments and analysis show the ratio between group size, key size, and process
times. These results are based on two specific study cases; therefore, they cannot be
generalized. However, they do illustrate an actual example of debates.

The main constraint of this scheme, as in any boardroom system, is the group size.
However, this alias approach suggests that a hierarchical structure of nets is possible. Thus,
future work will be based on this idea to improve scalability.

Author Contributions: Conceptualization, D.A.L.-G.; Methodology, D.A.L.-G.; Literature review,
D.A.L.-G., J.P.T., D.V. and M.S.-R.; Software, D.A.L.-G., J.P.T., D.V. and M.S.-R.; Validation, J.P.T., D.V.
and M.S.-R.; Writing—original draft preparation, D.A.L.-G.; writing—review and editing, D.A.L.-G.,
J.P.T., D.V. and M.S.-R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets at https://www.uhu.es/diego.lopez/research/dataP2Pevoting1
.xlsx (accessed on 13 March 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.uhu.es/diego.lopez/research/dataP2Pevoting1.xlsx
https://www.uhu.es/diego.lopez/research/dataP2Pevoting1.xlsx

Appl. Sci. 2024, 14, 3502 20 of 21

References
1. Neji, W.; Blibech, K.; Rajeb, N.B. A Survey on e-voting protocols based on secret sharing techniques. In Proceedings of the CARI

2018, Stellenbosch, South Africa, 14–16 October 2018; p. 142.
2. Sampigethaya, K.; Poovendran, R. A framework and taxonomy for comparison of electronic voting schemes. Comput. Secur. 2006,

25, 137–153. [CrossRef]
3. Chaum, D. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 1981, 24, 84–90. [CrossRef]
4. Sako, K.; Kilian, J. Receipt-free mix-type voting scheme. In Proceedings of the International Conference on the Theory and

Applications of Cryptographic Techniques, Saint-Malo, France, 21–25 May 1995; pp. 393–403.
5. Jakobsson, M.; Juels, A.; Rivest, R.L. Making mix nets robust for electronic voting by randomized partial checking. In Proceedings

of the 11th USENIX Security Symposium (USENIX Security 02), San Francisco, CA, USA, 5–9 August 2002.
6. Sampigethaya, K.; Poovendran, R. A survey on mix networks and their secure applications. Proc. IEEE 2006, 94, 2142–2181.

[CrossRef]
7. Stathakidis, E. Formal Modeling and Analysis of Mix Net Implementations. Ph.D. Dissertation, University of Surrey, Guildford,

UK, 2015.
8. Acquisti, A. Receipt-Free Homomorphic Elections and Write-in Ballots. IACR Cryptology ePrint Archive. 2004; p. 105. Available

online: https://ia.cr/2004/105 (accessed on 18 April 2024).
9. Zahhafi, L.; Khadir, O. A Fast Cryptographic Protocol for Anonymous Voting. MathLAB J. 2018, 1, 89–99.
10. Khazaei, S.; Rezaei-Aliabadi, M. A rigorous security analysis of a decentralized electronic voting protocol in the universal

composability framework. J. Inf. Secur. Appl. 2018, 43, 99–109. [CrossRef]
11. Nakajima, A. Decentralized voting protocols. In Proceedings of the ISADS 93: International Symposium on Autonomous

Decentralized Systems, Kawasaki, Japan, 30 March–1 April 1993; pp. 247–254.
12. Hardekopf, B.; Kwiat, K.; Upadhyaya, S. A decentralized voting algorithm for increasing dependability in distributed systems. In

Proceedings of the 5th World Multi-Conference on Systemic, Cybernetics and Informatics (SCI2001), Orlando, FL, USA, 22–25
July 2001.

13. Bocek, T.; Peric, D.; Hecht, F.; Hausheer, D.; Stiller, B. PeerVote: A Decentralized Voting Mechanism for P2P Collaboration Systems.
In Proceedings of the Scalability of Networks and Services: Third International Conference on Autonomous Infrastructure,
Management and Security, AIMS 2009, Enschede, The Netherlands, 30 June–2 July 2009; Proceedings 3, pp. 56–69.

14. Tseng, L. Recent Results on Fault-Tolerant Consensus in Message-Passing Networks. In Proceedings of the Structural Information
and Communication Complexity: 23rd International Colloquium, SIROCCO 2016, Helsinki, Finland, 19–21 July 2016; Revised
Selected Papers 23; Springer International Publishing: Berlin/Heidelberg, Germany; pp. 92–108.

15. Duan, S.; Reiter, M.K.; Zhang, H. BEAT: Asynchronous BFT made practical. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 2028–2041.

16. Chen, J.H.; Chen, M.R.; Zeng, G.Q.; Weng, J.S. BDFL: A byzantine-fault-tolerance decentralized federated learning method for
autonomous vehicle. IEEE Trans. Veh. Technol. 2021, 70, 8639–8652. [CrossRef]

17. Kulyk, O.; Neumann, S.; Budurushi, J.; Volkamer, M.; Haenni, R.; Koenig, R.; von Bergen, P. Efficiency Evaluation of Cryptographic
Protocols for Boardroom Voting. In Proceedings of the 10th International Conference on Availability, Reliability and Security
(ARES), Toulouse, France, 24–28 August 2015; pp. 224–229.

18. Kiayias, M.; Yung, M. Self-tallying elections and perfect ballot secrecy. In Proceedings of the International Workshop on Public
Key Cryptography, Paris, France, 12–14 February 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 141–158.

19. Groth, J. Efficient maximal privacy in boardroom voting and anonymous broadcast. In Proceedings of the International Conference
of Financial Cryptography, Key West, FL, USA, 9–12 February 2004; pp. 90–104.

20. Hao, F.; Ryan, P.Y.; Zielinski, P. Anonymous voting by two-round public discussion. IET Inf. Secur. 2010, 4, 62–67. [CrossRef]
21. Khader, D.; Smyth, B.; Ryan, P.; Hao, F. A fair and robust voting system by broadcast. In Proceedings of the Lecture Notes in

Informatics (LNI), Proceedings-Series of the Gesellschaft fur Informatik (GI), Bregenz, Austria, 11–14 July 2012; pp. 285–299.
22. Kulyk, O.; Neumann, S.; Volkamer, M.; Feier, C.; Koster, T. Electronic voting with fully distributed trust and maximized flexibility

regarding ballot design. In Proceedings of the 6th International Conference on Electronic Voting: Verifying the Vote (EVOTE),
Bregenz, Austria, 29–31 October 2014; pp. 1–10.

23. Abuidris, Y.; Kumar, R.; Wenyong, W. A Survey of Blockchain Based on E-voting Systems. In Proceedings of the 2019 2nd
International Conference on Blockchain Technology and Applications, Xi’an, China, 9–11 December 2019; pp. 99–104.

24. Lee, K.; James, J.I.; Ejeta, T.T.; Kim, H.J. Electronic voting service using block-chain. J. Digit. Forensics Secur. Law 2016, 11, 8.
[CrossRef]

25. Yavuz, E.; Koç, A.K.; Çabuk, U.C.; Dalkılıç, G. Towards secure evoting using ethereum blockchain. In Proceedings of the 6th
International Symposium on Digital Forensic and Security (ISDFS), Antalya, Turkey, 22–25 March 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 1–7.

26. Hsiao, J.H.; Tso, R.; Chen, C.M.; Wu, M.E. Decentralized e-voting systems based on the blockchain technology. In Proceedings of
the Advances in Computer Science and Ubiquitous Computing: CSA-CUTE 17, Kuala Lumpur, Malaysia, 17–19 December 2018;
pp. 305–309.

27. Hjálmarsson, F.Þ.; Hreiðarsson, G.K.; Hamdaqa, M.; Hjálmtýsson, G. Blockchain-based e-voting system. In Proceedings of the
2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; pp. 983–986.

http://doi.org/10.1016/j.cose.2005.11.003
http://dx.doi.org/10.1145/358549.358563
http://dx.doi.org/10.1109/JPROC.2006.889687
https://ia.cr/2004/105
http://dx.doi.org/10.1016/j.jisa.2018.10.010
http://dx.doi.org/10.1109/TVT.2021.3102121
http://dx.doi.org/10.1049/iet-ifs.2008.0127
http://dx.doi.org/10.15394/jdfsl.2016.1383

Appl. Sci. 2024, 14, 3502 21 of 21

28. Yi, H. Securing e-voting based on blockchain in p2p network. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 137. [CrossRef]
29. Khan, K.M.; Arshad, J.; Khan, M.M. Secure digital voting system based on blockchain technology. Int. J. Electron. Gov. Res. (IJEGR)

2018, 14, 53–62. [CrossRef]
30. López-García, D.A. A flexible e-voting scheme for debate tools. Comput. Secur. 2016, 56, 50–62. [CrossRef]
31. Boyd, C. A new multiple key cipher and an improved voting scheme. In Proceedings of the Advances in Cryptology, EURO-

CRYPT’89, Workshop on the Theory and Application of of Cryptographic Techniques, Houthalen, Belgium, 10–13 April 1989;
pp. 617–625.

32. Chaum, D. Elections with unconditionally-secret ballots and disruption equivalent to breaking RSA. In Proceedings of the
Advances in Cryptology, EUROCRYPT’88, Workshop on the Theory and Application of of Cryptographic Techniques, Davos,
Switzerland, 25–27 May 1988; Volume 330, pp. 177–182.

33. Chaum, D. Blind signature system. In Proceedings of the Advances in Cryptology: Proceedings of Crypto 83, Boston, MA, USA,
21–24 August 1983; p. 153.

34. Bellare, M.; Namprempre, C.; Pointcheval, D.; Semanko, M. The one-more-RSA-inversion problems and the security of Chaum’s
blind signature scheme. J. Cryptol. 2003, 16, 185–215. [CrossRef]

35. Ford, B.; Srisuresh, P.; Kegel, D. Peer-to-Peer Communication Across Network Address Translators. In Proceedings of the USENIX
Annual Technical Conference, General Track, Anaheim, CA, USA, 10–15 April 2005; pp. 179–192.

36. Chaum, D. The dining cryptographers problem: Unconditional sender and recipient untraceability. J. Cryptol. 1988, 1, 65–75.
[CrossRef]

37. Knight, P.; Lewis, C. Layer 2 and 3 virtual private networks: Taxonomy, technology, and standardization efforts. IEEE Commun.
Mag. 2004, 42, 124–131. [CrossRef]

38. Dingledine, R.; Mathewson, N.; Syverson, P.F. Tor: The Second-Generation Onion Router. In Proceedings of the 13th USENIX
Security Symposium, San Diego, CA, USA, 9–13 August 2004; Volume 4, pp. 303–320.

39. Herrmann, M.; Grothoff, C. Privacy-implications of performance-based peer selection by onion-routers: A real-world case study
using I2P. In Proceedings of the Privacy Enhancing Technologies: 11th International Symposium, PETS 2011, Waterloo, ON,
Canada, 27–29 July 2011; Proceedings 11, pp. 155–174.

40. Rozenman, G.G.; Kundu, N.K.; Liu, R.; Zhang, L.; Maslennikov, A.; Reches, Y.; Youm, H.Y. The quantum internet: A synergy of
quantum information technologies and 6G networks. IET Quantum Commun. 2023, 4, 147–166. [CrossRef]

41. Perepechaenko, M.; Kuang, R. Quantum encryption of superposition states with quantum permutation pad in IBM quantum
computers. EPJ Quantum Technol. 2023, 10, 7. [CrossRef]

42. Liu, Y.; He, D.; Obaidat, M.S.; Kumar, N.; Khan, M.K.; Choo, K.K.R. Blockchain-based identity management systems: A review.
J. Netw. Comput. Appl. 2020, 166, 102731. [CrossRef]

43. Wu, Z.Y.; Wu, J.C.; Lin, S.C.; Wang, C. An electronic voting mechanism for fighting bribery and coercion. J. Netw. Comput. Appl.
2014, 40, 139–150. [CrossRef]

44. Bellare, M.; Garay, J.A.; Rabin, T. Fast batch verification for modular exponentiation and digital signatures. In Proceedings of the
EUROCRYPT’98, Helsinki, Finland, 31 May–4 June 1998; pp. 236–250.

45. López-García, D.A.; Sanguino, T.J.M.; Ancos, E.C.; de Viana González, I.F. A debate and decision-making tool for enhanced
learning. IEEE Trans. Learn. Technol. 2016, 9, 205–216. [CrossRef]

46. Crain, T.; Gramoli, V.; Larrea, M.; Raynal, M. DBFT: Efficient leaderless Byzantine consensus and its application to blockchains. In
Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA
USA, 1–3 November 2018; pp. 1–8.

47. Miller, A.; Xia, Y.; Croman, K.; Shi, E.; Song, D. The honey badger of BFT protocols. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 31–42.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s13638-019-1473-6
http://dx.doi.org/10.4018/IJEGR.2018010103
http://dx.doi.org/10.1016/j.cose.2015.10.004
http://dx.doi.org/10.1007/s00145-002-0120-1
http://dx.doi.org/10.1007/BF00206326
http://dx.doi.org/10.1109/MCOM.2004.1304248
http://dx.doi.org/10.1049/qtc2.12069
http://dx.doi.org/10.1140/epjqt/s40507-023-00164-3
http://dx.doi.org/10.1016/j.jnca.2020.102731
http://dx.doi.org/10.1016/j.jnca.2013.09.011
http://dx.doi.org/10.1109/TLT.2016.2556664

	Introduction
	Preliminaries
	Blind Signature
	Physical Traceability

	Scheme
	Phase 1: Obtaining an Alias
	Phase 2: Alias Checking and Debating

	Analysis
	Threat Model
	Preliminaries
	Security Requirements
	Privacy
	Eligibility
	Verifiability
	Dispute-Freeness
	Fairness
	Mobility
	Robustness
	Consistency
	Incoercibility
	Flexibility
	Scalability

	Time Complexity

	Experiments and Discussion
	Conclusions
	References

