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Abstract: The task of fashion parsing aims to assign pixel-level labels to clothing targets; thereby,
parsing models are required to have good contextual recognition ability. However, the shapes of
clothing components are complex, and the types are difficult to distinguish. Recent solutions focus
on improving datasets and supplying abundant priori information, but the utilization of features by
more efficient methods is rarely explored. In this paper, we propose a multi-scale fashion parsing
model called the Priori Dictionary Network (PDN), which includes a priori attention module and
a multi-scale backbone. The priori attention module extracts high dimensional features from our
designed clothing average template as a priori information dictionary (priori dictionary, PD), and the
PD is utilized to activate the feature maps of a CNN from a multi-scale attention mechanism. The
backbone is derived from classical models, and five side paths are designed to leverage the richer
features of local and global contextual representations. To measure the performance of our method,
we evaluated the model on four public datasets, the CFPD, UTFR-SBD3, ModaNet and LIP, and the
experimental results show that our model stands out from other State of the Art in all four datasets.
This method can assist with the labeling problem of clothing datasets.

Keywords: fashion parsing; attention mechanism; priori knowledge; convolutional neural network

1. Introduction

As a fine-grained image semantic segmentation problem, fashion parsing aims to pre-
dict the label (e.g., T-shirt, bag, face, etc.) for each pixel in a fashion image. It has garnered
unprecedented attention due to the fast growth of fashion-related applications, such as
virtual try-ons and clothes recommendations [1,2]. In particular, models for high-level
tasks typically use parsing results as input conditions, which benefit the precision of feature
extraction [3,4]. However, labeling each pixel is a challenging task because some clothes
with similar appearances have different categories in fashion parsing datasets, as shown in
Figure 1. Therefore, the segmentation models cannot reliably forecast classifications due to
the presence of confusing semantic information. In addition, the visual variations of tar-
gets, such as resolution, deformities, occlusions and background, impose great challenges
for segmentation [5,6]. Early work on the fashion parsing problem usually adopted the
modified image segmentation models, e.g., Grab Cut and the Markov Random Field (MRF).
These models always greatly benefit from incorporating shape and texture features, but
they can only process limited types of clothing [7,8].
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to-end networks, e.g., fully convolutional networks (FCNs) and U-Net [13,14], and they 
focused on improving the dataset quality to acquire more accurate results. However, 
dataset imbalance and low annotation quality are very common in human parsing 
problems in some widely used datasets, such as ModaNet [15] and LIP [16]. Therefore, 
these methods are difficult to adopt in practical applications. 

 
Figure 1. Samples from fashion parsing dataset, in which different colors of ground truth represent 
different categories. 

Considering the limitation of the feature representation ability of classical CNN 
models, Vozarikova et al. [17] designed extra branches to learn richer features from images 
and replaced the backbone of U-Net with ResNet-34. Zhu et al. [18] proposed a 
progressive cognitive structure to segment human parts, in which the latter layers inherit 
information from the former layers to improve the recognition ability of small targets. To 
help the CNN models explicitly learn important information (e.g., edges, poses), some 
approaches attempted to extract priori knowledge from images and introduce them into 
models [19,20]. Ihsan et al. [21] injected superpixel features, which were extracted from 
the Simple Linear Iterative Clustering (SLIC) algorithm, into the decoder path of a 
modified FCN. However, their method needs post-processing steps to extract the 
templates of clothing, which means it is not an end-to-end model. Different from manually 
extracting features, Ruan et al. [22] designed a side branch for an edge detection task, 
which aims to improve the continuity of the segmentation results using the features of 
edges. Liang et al. [16] proposed to build two networks, where the networks were utilized 
to learn the mask templates and texture features, respectively. Park et al. [23] designed a 
tree structure to help the CNN model infer human parts in the hierarchical representation. 
For using human poses to provide object-level shape information, Gong et al. [24] used 
poses to directly supervise the parsing results and collected more than 50,000 images to 
build an evaluation dataset. Xia et al. [25] proposed a human parsing approach that uses 
human pose location as cues to provide pose-guided segment proposals for semantic 
parts. Zhang et al. [26] designed a five-stage model to extract hierarchical features from 
edges and poses and leverage them to generate parsing results. However, the extracted 
edges and poses always contain errors, which will be accumulated in the final results. 

More recently, researchers found that highlighting relevant features using the self-
attention mechanism is another method to improve fashion parsing models [27,28]. He et 
al. [29] incorporated three attention modules into a CNN, and they found that 
strengthening the connections between pixels using self-attention modules can increase 
clothing parsing accuracy. Therefore, one natural question for using a CNN model to solve 

Figure 1. Samples from fashion parsing dataset, in which different colors of ground truth represent
different categories.

Recently, convolutional neural networks (CNNs) have made remarkable progress in
image segmentation tasks, primarily due to their strong capabilities of feature capturing [9–12].
The prevalent CNN models for fashion parsing were based on some classical end-to-end
networks, e.g., fully convolutional networks (FCNs) and U-Net [13,14], and they focused on
improving the dataset quality to acquire more accurate results. However, dataset imbalance
and low annotation quality are very common in human parsing problems in some widely
used datasets, such as ModaNet [15] and LIP [16]. Therefore, these methods are difficult to
adopt in practical applications.

Considering the limitation of the feature representation ability of classical CNN mod-
els, Vozarikova et al. [17] designed extra branches to learn richer features from images and
replaced the backbone of U-Net with ResNet-34. Zhu et al. [18] proposed a progressive
cognitive structure to segment human parts, in which the latter layers inherit information
from the former layers to improve the recognition ability of small targets. To help the
CNN models explicitly learn important information (e.g., edges, poses), some approaches
attempted to extract priori knowledge from images and introduce them into models [19,20].
Ihsan et al. [21] injected superpixel features, which were extracted from the Simple Linear
Iterative Clustering (SLIC) algorithm, into the decoder path of a modified FCN. However,
their method needs post-processing steps to extract the templates of clothing, which means
it is not an end-to-end model. Different from manually extracting features, Ruan et al. [22]
designed a side branch for an edge detection task, which aims to improve the continuity
of the segmentation results using the features of edges. Liang et al. [16] proposed to build
two networks, where the networks were utilized to learn the mask templates and texture
features, respectively. Park et al. [23] designed a tree structure to help the CNN model
infer human parts in the hierarchical representation. For using human poses to provide
object-level shape information, Gong et al. [24] used poses to directly supervise the parsing
results and collected more than 50,000 images to build an evaluation dataset. Xia et al. [25]
proposed a human parsing approach that uses human pose location as cues to provide
pose-guided segment proposals for semantic parts. Zhang et al. [26] designed a five-stage
model to extract hierarchical features from edges and poses and leverage them to generate
parsing results. However, the extracted edges and poses always contain errors, which will
be accumulated in the final results.

More recently, researchers found that highlighting relevant features using the self-
attention mechanism is another method to improve fashion parsing models [27,28]. He
et al. [29] incorporated three attention modules into a CNN, and they found that strength-
ening the connections between pixels using self-attention modules can increase clothing
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parsing accuracy. Therefore, one natural question for using a CNN model to solve the
problem of fashion parsing is, can we extract priori knowledge and introduce it into a CNN
model using an attention mechanism?

To address these issues, we propose a novel framework aimed at leveraging priori
attention with fewer errors to guide the generation of fashion parsing results. Considering
that the explicitly extracted priori knowledge (edges and poses) always involves errors, we
implicitly extracted latent features for each category using an encoding model. Then, the
non-linear combinations of features were utilized to construct a series of category-based
templates. We stored these latent space templates in the priori dictionary (PD). To employ
the PD in guiding the backbone of a fashion parsing network, a modified attention module
is proposed. The entire model is named the Priori Dictionary Network (PDN). The PDN
takes advantage of feature templates and an attention mechanism to generate segmentation
results, and its contributions are threefold: (1) we put forward a priori dictionary module
to help the CNN model capture important features using templates, in which the module
combines the advantage of priori information and an attention mechanism; (2) we proposed
a joint loss function, L2 loss and cross-entropy loss to supervise the model training, which
made the accuracy and IoU increase by 0.45% and 6.01%, respectively; and (3) we developed
a multiple path architecture to fuse clothing features on a multi-scale, and the comparison
results show that the proposed model outperforms State-of-the-Art methods in public
fashion parsing datasets.

2. Methods

In this section, we will describe our method of how to acquire high-quality segmenta-
tion results from fashion parsing datasets.

2.1. Priori Dictionary Construction

Let us consider that F (x) is a CNN model, and it can be represented as follows:

F (x) = ξ(ψ(x)) (1)

where ψ denotes the convolutional layers and pooling layers of the CNN model, and ξ

denotes the fully connected layers. We assume that G(x) is a segmentation of the CNN
model, and the backbone of the model G(x) has the same structure as ψ. Hence, the model
G(x) can easily be represented as:

G(x) = ρ
(
ψ′(x)

)
(2)

where the ρ indicates the rest of the part of G(x). If there is a dataset Ω that involves
classification labels and pixel-wise annotations (e.g., the CFPD and ModaNet), we train
F (x) and G(x) on the dataset Ω, and two groups of features can be extracted by ψ and ψ′,
respectively. We let ∆ denote the differences between the two groups of features:

∆ = ψ′(x)− ψ(x) (3)

Then, the partial derivative of ψ′ (x) can be rewritten as follows:

∂ψ′

∂x
=

∂∆
∂x

+
∂ψ

∂x
(4)

Equation (4) represents that the CNN model can more easily approximate the desired
function (the segmentation problem) using priori knowledge. Indeed, humans always
prefer to utilize priori knowledge to tackle complicated tasks. For example, the semantic
information of clothes (e.g., texture and clothing shapes) is important evidence for the
manual labeling pixels of fashion parsing maps, and it is highly related to the clothing
category. Therefore, the clothing category can also help the CNN to understand objects
properly and be regarded as a priori condition for parsing map prediction.
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2.1.1. Priori Feature Learning

Latent variables are useful for capturing complex or conceptual properties of in-
puts [30]. To guide the feature extraction of our fashion parsing model, we utilized a
high-accuracy classification model to build a series of feature templates, and the templates
were adopted to enhance the crucial features in latent space. Assume that the dataset Ω is
a fashion dataset, and it involves N classes of items, such as skirts, glasses and sweaters.
Let Ωn denote the nth subsets of Ω, and it is composed of the same kind of items. Thus,
we can train a CNN model G on the dataset Ω to predict the category of item in the image.
After the model convergence, it is easy to extract latent representations Lni according to the
categories using correct predictions, where Lni indicates the features of the i th image in Ωn.

Most of the CNN models employ an encoder structure to extract features, and their
backbones always group several convolutional layers and one pooling layer as a stage,
such as VGG-16, ResNet-50 and ResNet-101. For example, the VGG-16 model groups
13 convolutional layers to 5 stages, and the latent representations Lni of VGG-16 are
composed of 13 feature maps Lni ∈

{
l(1)ni , l(2)ni , . . . l(13)

ni

}
. Then, we preserved the last output

features of each stage, which means Lni reserved the feature maps of the 2nd, 4th, 7th, 10th
and 13th convolutional layers.

To obtain the general representations of items, we computed the feature templates for
each class as follows:

Tn =
∑k

i=1(Lni;G(xn,i))

k
(5)

where Tn denotes the feature templates of Ωn, and k represents the object number of

categories. The function ∑k
i=1(Lni ;G(xn,i))

k of Equation (5) was employed to average the feature
maps of different objects. As shown in Figure 2, we fused the channels of acquired templates
and visualized them. The visualization results indicate that the feature templates involve
high-response regions corresponding to their categories, and the pixel-wise labeling model
can benefit from the templates (see more details in Section 2.2.1). To store the templates
T ∈ {T1, T2, . . . , Tn}, we built a priori dictionary (PD), as illustrated in Algorithm 1.

As shown in Figure 3, our priori dictionary essentially is a 4D matrix, and it consists
of N groups of templates. It is worth noting that for different model structures, the latent
representations used to construct the PD are sourced from different convolutional layers.
In this research, the reserved latent representations of ResNet-101 were generated by the
1st, 10th, 22nd, 91st and 100th convolutional layers.
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(2)
𝑘

𝑘
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=

∑ 𝑙𝑛𝑖
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𝑘

𝑘
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=

∑ 𝑙𝑛𝑖
(7)

𝑘

𝑘
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=
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=
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𝑘

𝑘
 

~ compute templates of feature maps 

  end 

  𝐷 ∈ {{𝑇1
(1)

, 𝑇1
(2)

, 𝑇1
(3)

, 𝑇1
(4)

, 𝑇1
(5)

}, … , {𝑇𝑛
(1)

, 𝑇𝑛
(2)

, 𝑇𝑛
(3)

, 𝑇𝑛
(4)
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(5)
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(5)
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2.1.2. Dataset Reconstruction

As shown in the illustration in Section 2.1.1, the CNN model is trained on classification
datasets to build the PD, and the features are stored based on the corresponding categories.
However, the images of fashion parsing datasets are collected from the real world, and
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there are several kinds of targets in one image. In addition, the images are annotated with
pixel-wise labeling to evaluate clothing parsing, e.g., the CFPD [31] and Fashionista [32].
Therefore, the original datasets cannot be utilized in the classification task. Here, we
formulate the dataset of fashion parsing as:

Ω(x, y) = Ω1(x, y)
⋃

Ω2(x, y)
⋃

. . .
⋃

Ωn(x, y) (6)

where Ω(x, y) represents all the pixels in images, and Ωn(x, y) denotes the set of pixels
of the nth image. Aiming to build a dataset for the classification task, we built a new
single-object dataset according to the class annotations. Compared with real-world images,
single-object images remove the backgrounds and reserve the clothing pixels. Notably, one
real-world image was deconstructed into several single-object images so that the single-
object image only included one kind of clothing, as shown in Figure 2. The reconstructed
dataset can be formulated as follows:

Ω(c1, c2, . . . , cn) = Ωc1
⋃

Ωc2
⋃

. . .
⋃

Ωcn (7)

where Ω(c1, c2, . . . , cn) is the reconstructed dataset, and Ωcn indicates the set of the nth
class of items. Therefore, object-level categories can be utilized to build a PD.

2.2. Multi-Scale Feature Fusion Model
2.2.1. Priori Attention Module

Attention mechanisms improve the model performance on semantic analysis and
image processing by capturing long-range feature interactions and enhancing the represen-
tation of features for a CNN [33–35]. To utilize the classification and shape information of
a PD, we designed an attention-based module to introduce the templates into a fashion
parsing model, namely, the priori attention module.

As shown in Figure 4, we applied convolutional kernels to fuse the priori dictionary
and acquire a series of weighted templates. Specifically, the jth stage of the priori dictionary
D(j) comprises c (number of categories) groups of feature templates with d channels, where
d is equal to the channel number of features from the backbone. We used c convolutional
kernels to fuse D(j), and the dimension of weighted templates is equal to c× h× w, where
h and w represent the height and width of the feature maps. Since the convolutional kernels
were employed to fuse D(j) independently, each channel of the weighted templates still
corresponded to one category. Then, the 3D weighted templates were reshaped to a 2D
matrix as a query vector.

For the feature maps of the backbone, two convolutional kernels were adopted to fuse
them, and the dimensions of the fused matrixes are equal to c× h× w. Then, we reshaped
two matrixes to a pair of 2D matrixes, which are named as the value vector and the query
vector. Different from the self-attention mechanism, the key vectors and query vectors were
generated by different sources. To utilize the priori attention to guide the feature extraction
of the CNN, we performed a softmax function to activate the multiplication results of the
query vector and key vector as follows:

Attention(Q, K) = so f tmax
(

QKT
)

(8)

where Q and K are the query and key vectors. It is worth noting that we obtained a
matrix composed of attention values using multiplication, and the features that could be
matched with the templates could receive higher response values. Then, we used pixel-wise
multiplication and addition to enhance the important features of the value vectors and
reshaped them to a c-channel feature map. At the end of the priori attention module, a
convolutional layer was employed to restore the dimension of the feature map.
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Figure 4. The illustration of attention module. Two reshaped vectors (query vector and key vector)
multiply with each other and create the attention matrix, which is used to enhance the useful features.
At the end of attention module, a convolutional kernel is applied to restore the feature maps whose
dimensions are equal to the dimensions of input feature maps.

2.2.2. Network and Side Paths for Multi-Scale Feature Fusion

The receptive field limits the range of features that convolutional kernels can typically
extract, posing challenges for leveraging both global features and local detail features.
Therefore, through the design of side paths, we utilized the semantic information of global
features to determine the position and shape of the target and detailed features to ensure
the continuity and integrity of the same target.

As shown in Figure 5, we added a priori attention module behind each convolutional
block. Then, we duplicated the outputs of the priori attention modules and fed them into
the side paths. In each side path, we used a 1× 1× 64 convolutional kernel to obtain
a feature map with 64 channels and deconvolutional layers to restore their heights and
widths. At the end of the network, we concatenated all the feature maps from the side
paths and designed a fuse block comprising three convolutional layers. Notably, the last
convolutional layer outputs the predicted results with the c-channel, where each channel
represents the probability map for one category. Since the Conv Blocks of our model were
inherited structures from widely used models (VGG-16 and ResNet-101), we easily inferred
the parameters of the priori attention modules and side paths based on the used dataset.
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2.2.3. Joint Loss Function

A fashion parsing model is designed to acquire a segmentation map that involves
pixel-level labels. Therefore, the fashion parsing problem can be regarded as two sub-
problems: pixel classification forecasting and semantic segmentation. To solve both of the
subproblems, we propose a cross entropy and L2 joint loss function as follows:

Loss = Lcross + L2 =
1
c ∑i,j ∑

c
k=1 yi,j,klog

(
Pi,j,k

)
+

∑W×H
1

∣∣∣Pi,j,k − yi,j,k

∣∣∣
W × H

(9)

where H, W and c are the height of images, width of images and category count of datasets,
respectively. The outputs of our model were reshaped into a matrix whose dimensions
are equal to h× w× c, where each channel is a binary map and only includes one kind of
target prediction. The L2 term was designed for optimizing all the prediction results in
all channels, and the cross-entropy loss was proposed to optimize the shapes of targets in
each channel.

3. Experiments

We conducted experiments on four publicly available datasets: the CFPD [31], UTFPR-
SBD3 [5], ModaNet [15] and LIP [16]. We implemented the proposed model using the
public deep learning library Pytorch on a single RTX-3090 GPU. We extracted single-target
images from the four datasets mentioned above and constructed priori dictionaries for each
of them. The details and results are illustrated in the following sections.

3.1. CFPD and UTFPR-SBD3 Datasets

The Colorful Fashion Parsing dataset (CFPD), which contains 23 types of categories,
is widely used for image parsing evaluation. In this dataset, there are 2682 images whose
heights and weights are equal to 600 and 400, respectively. However, the annotations of
the CFPD are heavily influenced by noise, and their incorrect labels affect the accuracy
of CNN models. Thus, Inacio et al. collected images from the CFPD dataset and Refined
Fashionista dataset and manually annotated the pixel-level categories to obtain high-
quality ground truth, namely, the Soft Biometrics dataset (UTFPR-SBD3). The UTFPR-SBD3
dataset includes 17 types of categories and 4500 images, whose resolutions are also equal
to 600× 400.
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3.1.1. Implementation Details

PD construction of the CFPD dataset. To test our model on the CFPD dataset, we
adopted VGG-16 as the backbone of the PDN model. After the reconstruction of the single-
object dataset of the CFPD, we trained the VGG-16 model to build the PD. VGG-16 was
initialized with the parameters pretrained on ImageNet, and the Adam Optimizer was
adopted. We set the learning rate to 10−5, and it was divided by 10 after every five epochs.
The training was terminated after 20 epochs on the CFPD when the loss and accuracy of the
validation set could not change. We tested VGG-16 on the testing set of the reconstructed
dataset, and the accuracy of classification reached 98.2%. Then, we randomly selected
30 single-object images for each category from the training set and computed the feature
templates of the PD.

PD construction of the UTFPR-SBD3 dataset. The VGG-16 network adopted similar
hyper-parameters as the training on the CFPD dataset. We found that the model conver-
gences after 25 epochs of training, and the accuracy reaches 99.1%. Similar to the CFPD
dataset, each template of the PD was also obtained using 30 single-object images.

Full model training. According to Reference [5], UTFR-SBD3 and the CFPD involve
part of the same image for evaluation. Therefore, we adopted a similar network structure
and training parameter for them. Specifically, we initialized the backbone (VGG-16) with
the parameters pretrained on ImageNet, and the convolutional layers of the side paths and
fuse block were initialized using the Xavier method [36]. The Adam Optimizer was also
adopted, and the models converged at 20 epochs in both datasets. In addition, the batch
size was set to 16, and the learning rate was fixed at 10−5.

3.1.2. Results

For a fair comparison, we used the same measures (Acc and mIoU) reported by [5] to
evaluate the parsing quality of the CFPD dataset. The experimental results are reported in
Table 1. It can be seen that the accuracy and IoU of our model achieve 99.26% and 78.09%,
respectively. Among a series of SOTA methods, EPYNET achieves the best performance,
and our method further improves the accuracy by 5.8% and mIoU by 31.2% compared
to EPYNET.

Table 1. Results of experiments on CFPD dataset.

Reference Method Accuracy mIoU

[31] Color-Fashion - 42.10
[21] Superpixel Parsing 88.69 -
[13] Weak Structural 93.06 53.51
[37] Locality Aware 93.52 53.00
[38] Feature Pyramid 93.82 54.39
[5] EPYNET 93.83 59.52
[32] PaperDoll 89.89 -
[39] ATR 98.67 -

PDN (ours) 99.26 73.99

Compared with the CFPD dataset, UTFR-SBD3 is a more balanced dataset, and it has
higher-quality annotations. We evaluated our model on the test set of UTFR-SBD3, and
the PDN achieves 99.39% accuracy and 81.00% mIoU, respectively, which are 18.1% and
15.4% higher than the EPYNET. The results show that the higher quality of annotations can
help our model show a better performance. Figure 6 shows the confusion matrixes of the
PDN and EPYNET on UTFR-SBD3, and we found that our model not only achieves a better
overall performance but also more accurate predictions for all categories.
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It can be observed that the PDN is more effective in recognizing correct categories
and shapes. In the first set of images, the PDN successfully identifies the category of the
skirt, whereas EPYNET misclassifies it. In the second and third sets of images, EPYNET
segments the lower garment into two parts, namely, dress and pants, whereas the PDN
closely approximates the ground truth. In the fourth set of images, EPYNET fails to
completely segment the shoes, whereas the PDN achieves a complete segmentation result.
These significant outcomes stem from the multi-scale architecture and attention modules
designed within the PDN.

3.2. ModaNet Dataset

ModaNet is the largest dataset of fashion parsing [14]. Compared with the UTFPR-
SBD3 dataset, the human parsing dataset (ModaNet) involves fewer kinds of clothing
labels. Specifically, ModaNet involves 55,176 street images, and the images are annotated
by a polygonal mask to 13 categories. We divided the training set (52,254 images) into
a training set, validation set and testing set, where the subsets involve 45,000, 5000 and
2254 images, respectively.

3.2.1. Implementation Details

PD construction of ModaNet. We trained VGG-16 on ModaNet, and the results
show that the accuracy and IoU only achieve 81.78%. As ModaNet involves more low-
quality images, the rough annotations mean that the VGG-16 model cannot extract features.
Therefore, we replaced the VGG-16 model with the ResNet-101 model for extracting priori
features. ResNet-101 was trained on the reconstructed dataset, where the model was
initialized with ImageNet-pretrained ResNet-101. After 20 epochs of training, the model
achieved 93% accuracy. Similar to the CFPD and UTFR-SBD3, we also randomly selected
30 images for each category from the training set and generated the PD.

Full model training. Considering the poor performance of the VGG-16 model on the
ModaNet dataset, we used ResNet-101 as the backbone of the full model. We initialized
the convolutional blocks with ImageNet-pretrained ResNet-101, and other convolutional
layers were initialized using the Xavier method. During training, Adam was chosen as the
optimizer for our model. We set the learning rate and batch size to 10−4 and 16, respectively,
and the training was terminated after 40 epochs.

3.2.2. Results

As shown in Table 2, we compared our model with other SOTA methods, and the PDN
with the ResNet-101 backbone yielded a result of 77.91% in mIoU, which is 8.36% higher
than TANet. To validate the effectiveness of the PD, we also trained the PDN with a VGG-16
backbone. Although this weaker model only achieved 44.80% in mIoU, it still achieved a
superb performance among a series of VGG-16-based models. This result unveils that our
proposed design brings great benefit to the CNN models in fashion parsing tasks.

Table 2. Results of experiments on ModaNet dataset.

Reference Method Backbone mIoU

[31] FCN-32s VGG 35.36
[40] FCN-16s VGG 36.93
[13] FCN-8s VGG 38.00
[41] DANet ResNet-101 68.16
[42] Deeplabv3 ResNet-101 68.57
[43] PSPNet ResNet-101 68.80
[44] CCNet ResNet-101 69.22
[29] TANet ResNet-101 69.55

PDN (VGG-16) VGG 44.80
PDN (ResNet-101) ResNet-101 77.91
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We compared the per-class IoU of our model with TANet, and the results are listed in
Table 3. The comparison results show that the PDN can generate higher quality segmenta-
tion maps for most of the classes except belts and sunglasses, since belts and sunglasses
only occupy 6.0% and 3.8% of all the targets, respectively, and they tend to be smaller
compared to other types of targets. It is difficult to capture sufficient features for these small
objects, leading to difficulties for the PD in storing templates of the latent representations.
However, when the backbone can capture sufficient features, our method still significantly
improves fashion parsing accuracy.

Table 3. Per-class IOU on ModaNet.

Class TANet (IoU%) PDN (ResNet-101) (IoU%)

Background 98.38 98.33
Bag 77.49 79.24
Belt 55.28 40.55

Boots 50.97 81.39
Footwear 56.35 69.34

Coat/Jacket 73.0.7 85.81
Dress 70.23 90.79

Sunglass 61.56 44.96
Pants 81.41 91.69
Top 72.05 85.67

Shorts 73.60 83.72
Skirt 71.50 92.65

Headwear 73.35 74.22
Scarf/Tie 58.42 69.88

In Figure 8, we present the testing results on the ModaNet dataset. The first col-
umn shows input images, the second column shows ground truth, and the third column
shows the segmentation results obtained using the PDN method. It is evident that the
PDN achieves segmentation results closest to the ground truth, both in terms of category
classification accuracy and shape segmentation similarity. Particularly noteworthy is its per-
formance on components such as scarves or bags, where the PDN exhibits notable accuracy.
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3.3. LIP Dataset

The LIP dataset is the most widely used human parsing dataset, with 19 types of
categories. This dataset contains 50,462 images, including 13,672 upper-body images,
19,081 full-body images, 3386 head-missed images and 2778 back-view images. We fol-
lowed the previous approaches [16] and divided the dataset into 30,462 training images,
10,000 validation images and 10,000 test images. Aiming to explore the performance of
the PDN in low-data scenarios, we randomly selected 3046 images to construct a separate
training set with limited data. To avoid misunderstanding the notations, let “training set”
and “training set (3K)” denote the original training set and the limited training set.

3.3.1. Implementation Details

PD construction of LIP. Considering the poor performances of the VGG-16 model in
feature extraction, we adopted ResNet-101 to build the priori dictionary on the LIP dataset.
Specifically, the ResNet-101 model was trained on the single-object dataset with the Adam
optimizer. The learning rate and batch size were set to 10-5 and 16, respectively. After
35 epochs of training, the accuracy of ResNet-101 achieved 89.7%. Then, we computed the
feature templates to build the PD, in which each template was also obtained by randomly
selecting 30 images. Moreover, for a fair comparison, we adopted the same parameters
to train ResNet-101 on the reconstructed single-object dataset of the training set (3K) and
generate a new priori dictionary.

Full model training. We adopted the same network architecture and hyper-parameters
settings as those used to train the PDN on the ModaNet dataset. For the complete training
set, the training was terminated after 35 epochs; for the training set (3K), the training was
terminated after 22 epochs. In the following section, the PDN trained on the training set
(3K) is noted as PDN-3K.

3.3.2. Results

For the LIP dataset, we used the LIP validation set as the test set because the official
dataset does not provide annotation results for the test set. Similar to [45], we used the same
evaluation matrices to measure the performance of our model, including pixel accuracy
(PA), mean class pixel accuracy (MPA) and mean intersection over union (mIoU). As
shown in Table 4, our model achieves the best PA, MPA and mIoU, which are equal to
76.02%, 54.46% and 45.12%, respectively. Due to the limited generalization caused by
the scarcity of training data, the accuracy of PDN-3K noticeably decreased with low-data
scenario training. However, it can be found that the evaluation results are still close to
those of DeepLabv3+. Overall, our model still achieves the average performance level of
segmentation algorithms, indicating that our proposed model exhibits good adaptability,
even under extreme conditions. Additionally, the IoU metrics for each category are listed in
Table 5. Our PDN model shows a more obvious improvement in upper clothes and skirts,
and this is attributed to our proposed clothing priori dictionary module.

Table 4. Results of experiments on LIP dataset.

Reference PA MPA mIoU

PSPNet [43] 74.95 54.20 44.22
DeepLabv3+ [42] 73.70 51.19 36.76

DANet [41] 72.06 54.11 36.51
DTPR [6] 74.10 45.92 44.29

PDN-3K (ours) 68.41 48.08 35.24
PDN (ours) 76.02 54.46 45.12
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Table 5. Per-class IOU on the LIP dataset.

Class PSPNet DeepLabv3+ DANet PDN

Hat 55.08 52.02 57.08 57.35
Hair 66.41 62.75 67.33 68.52

Glove 34.14 33.60 36.85 37.56
Sunglasses 31.49 26.06 31.17 31.69

Upper Clothes 65.59 64.32 65.77 67.85
Dress 20.77 20.37 18.66 19.64
Coat 51.41 49.34 50.92 52.17
Socks 40.43 37.68 41.23 39.39
Pants 71.05 72.70 71.27 71.19

Jumpsuits 26.96 27.94 28.14 29.56
Scarf 12.88 13.89 15.83 16.23
Skirt 15.59 14.64 16.09 17.54
Face 78.03 74.10 79.07 78.62

Left arm 57.84 59.73 59.15 60.09
Right arm 61.43 61.97 62.47 62.75

Left leg 47.93 48.36 47.90 48.03
Right leg 49.76 49.26 49.89 49.57
Left shoe 29.27 28.03 29.67 30.85

Right shoe 28.28 29.59 29.23 29.08
Avg 42.23 41.32 42.86 43.41

In Figure 9, we present a subset of the testing results on the LIP dataset, which are
arranged from left to right as follows: the original images from the dataset, the results of
PDN-3K, the results of the PDN and the ground truth. It can be observed that although
there are some prediction errors in the PDN-3k model for categories such as Skirt and Shoe,
the overall segmentation shape remains close to the ground truth, indicating that our model
still exhibits good stability even in low-data scenarios. Moreover, the training results on the
entire dataset closely approximate the ground truth across all categories, demonstrating
that the proposed priori dictionary module can assist the model in capturing more accurate
clothing details.
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3.4. Ablation Study

We conducted ablation studies on the CFPD dataset to investigate the impact of differ-
ent modules on the PDN. “Priori-attention” refers to the multi-scale attention mechanism,
while “joint loss function” denotes the combined loss function used in this study’s training.
The results of the ablation experiments are presented in Table 6.

Table 6. Ablation experiments of each module.
√

indicates that the module was used.

Priori Attention Joint Loss Function Accuracy mIoU

48.32 36.27√
98.81 67.98√
59.57 25.39√ √
99.26 73.99

Compared with the PDN, the model without a joint loss function acquires lower
accuracy because the joint function focuses on both the accuracy of label assignment and
the continuity of regions. The results show that the priori attention module can clearly
improve performance. The model without the attention module and joint loss function
cannot extract the segmentation maps of abundant targets, and the model only achieves
59.57% accuracy and 25.39% mIoU.

4. Conclusions

In this paper, we present a priori attention module-based CNN method for fashion
parsing. First, we extracted features from training images and built a priori dictionary
to store the features. Then, we attached the priori dictionary to a multi-scale backbone
derived from VGG-16 and ResNet. Furthermore, a joint loss function that is composed of
L2 loss and cross-entropy loss was proposed to guide the model training. We conducted
our model on four public datasets, and the experiment results show that the CNN model
can effectively annotate different types of targets by introducing our latent features, with
mIOU values of 73.99, 79.91, 69.88 and 45.12 on the four datasets, respectively. Through
a fair comparison with other State-of-the-Art models, we demonstrate that the PDN can
achieve competitive results for fashion parsing. Additionally, the ablation study shows that
the priori attention module and joint loss function improve the performance of the model.
Although the PDN model can obtain precise parsing results on high-quality annotated
datasets, the feature templates cannot lead to a significant improvement in the performance
of predicting pixel labels for small targets. In future work, we will explore the use of priori
knowledge introduction to improve parsing accuracy in more complex backbone models.
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