
Citation: Zhang, L.; Duan, B.; Li, J.;

Ma, Z.; Cao, X. A TEE-Based

Federated Privacy Protection Method:

Proposal and Implementation. Appl.

Sci. 2024, 14, 3533. https://doi.org/

10.3390/app14083533

Academic Editors: Giacomo Fiumara

and David Megías

Received: 19 December 2023

Revised: 4 April 2024

Accepted: 16 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A TEE-Based Federated Privacy Protection Method: Proposal
and Implementation
Libo Zhang 1,†, Bing Duan 2,†, Jinlong Li 2, Zhan’gang Ma 2 and Xixin Cao 2,*

1 Everbright Bank Credit Card Center, B Zone, Buliding 1, Yard 6, Zhengda Road, Shijingshan District,
Beijing 100033, China; zlbyn321@163.com

2 Embedded Department, College of Software and Microelectronics, Peking University, Beijing 100871, China;
duanbing@pku.edu.cn (B.D.); lijl@pku.edu.cn (J.L.); mazhangang@pku.edu.cn (Z.M.)

* Correspondence: cxx@ss.pku.edu.cn
† These authors contributed equally to this work and should be considered co-first authors.

Abstract: With the continuous enhancement of privacy protection globally, there is a problem for
the traditional machine learning paradigm, which is that training data cannot be obtained from a
single place. Federated learning is considered a viable technique for preserving privacy that can
train deep models with decentralized data. Aiming at two-party vertical federated learning, and at
common attack problems such as model inversion, gradient leakage, and data theft, we provide a
formal definition of Intel SGX’s trusted computing base, remote attestation, integrity verification,
and encrypted storage, and propose a general federated learning privacy enhancement algorithm
in the scenario of a malicious adversary model, and we extend this method to support horizontal
federated learning, secure outsourced computation, etc. Furthermore, the method is developed in a
Fedlearner framework of open-sourced machine learning to achieve privacy protection of the training
data and model without any modification to the existing neural network and algorithm running
on the framework. The experimental results show that this scheme substantially improves on the
existing schemes in terms of training efficiency, without losing model accuracy.

Keywords: privacy protection; trusted execution environment; TEE; federated learning

1. Introduction

In the era of big data, people are paying additional attention to the potential value of
data. To realize the potential value, it is necessary to find users with needs and appropriate
service scenarios, which usually requires data exchange. In other words, the value of
data depends on the fluidity of the data. However, in the process of data circulation and
exchange, data holders must be wary of confidential data leakage, which has a negative
effect on the generation of data value. Therefore, data security and privacy have become
the key factors affecting the value of data, so that people are increasingly concerned
about data security and privacy. For example, if a hospital conducts joint research with
a pharmaceutical company, the hospital will be concerned about leaking the privacy
information of the patient. When an e-commerce company and a financial company carry
out joint marketing, both sides will be concerned about leaking users’ private information.
When multiple financial companies jointly predict overdue risk, they are concerned about
leaking customers’ private information. To solve the above problems, privacy computing
has developed rapidly in recent years, especially federated learning, which completes joint
modeling and inference while protecting the training data from different parties, and it
leads to a situation where “data availability is invisible”. Federated learning (FL) is a
distributed machine learning model that trains a global model jointly through multiple
users’ devices. When using federated learning for model training, the data are stored on
different users’ devices, which could avoid the data exchange during the training process,
so as to ensure that the user’s data privacy will not be leaked.

Appl. Sci. 2024, 14, 3533. https://doi.org/10.3390/app14083533 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083533
https://doi.org/10.3390/app14083533
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14083533
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083533?type=check_update&version=1

Appl. Sci. 2024, 14, 3533 2 of 17

However, federated learning still has many deficiencies in privacy protection currently.
The main attack categories are listed in Table 1. Typical attacks include model inversion,
membership inference attacks, data poisoning, and backdoor attacks. In response to these
attacks, some defense methods have emerged. These methods are mainly divided into three
types. The first is based on differential privacy, which adds noise to the model parameters
(output perturbation) or the gradient per training example (optimization perturbation),
and then calibrates the variance of the model to a tolerable error range. Due to its ease
of implementation and low communication overhead, this method is currently the most
studied privacy protection method. However, an inevitable loss of accuracy would occur
by applicating this method. The second type is based on multi-party secure computing
(MPC), which replaces the underlying operator of the current machine learning library with
cryptography primitives. This approach provides a strict privacy leakage measurement
mechanism via the computational complexity theory and achieves high model accuracy.
However, one of the main disadvantages of MPC is high communication costs. The third
type is based on a trusted execution environment (TEE). The trusted execution environment
technology provides an extended CPU instruction to build an isolated and secure process
unit. By composition of trusted bases, integrity measurement, and remote attestation, the
TEE allows users to shift applications from an untrusted world to a trusted world. The
advantages of TEE include high model training accuracy as native computing and low
migration costs for existing simple applications. However, limited by the capabilities of
current TEE implementation, it usually provides a small trust base, limited instruction
set, and tiny memory space for user applications, making it impractical for shielding
memory-intensive applications and complicated workloads (e.g., deep learning).

Table 1. Classification of the main attacks on FL.

Attack Name Attack Pattern Attack Process White/Black Box Attack Target

Model inversion attack

For a model with a simple
structure, dynamic analysis is
used or the similarity between

samples is calculated.

Training White box Breaks user or training dataset
privacy.

Inference attack Trains a factor or target
attribute binary classifier. Training Black box

Determines whether a training
set exists for a particular

sample or statistical feature.

Backdoor attack

A backdoor model is trained
by poisoning samples and so
on and implanting them into

the global model.

Training Black box

Affects the performance of the
model and makes wrong

judgments on specific samples.
The attack is more extensive.

In summary, these three common types of privacy protection methods have different
kinds of shortcomings. Methods based on differential privacy incur accuracy loss. Methods
based on cryptography, such as multi-party secure computation, are impeded by communi-
cation consumption and, therefore, affect the performance of federated learning. Methods
based on TEE are limited by the size of hardware memory and the lack of support for large
memory applications and distributed computing.

In order to solve the problem of attacks in federated learning, this study proposes a
privacy-enhancing method to implement a common federated learning framework based
on TEE for the imperfect privacy protection of existing schemes, such as large losses in
accuracy and training efficiency. Specifically, the main contributions of this study are
as follows:

(1) The proposed method has obvious advantages over the existing privacy inclusion
methods. The proposed method has less accuracy loss than the method based on
differential privacy and less performance loss than the method based on secure multi-
party computation. Conventional privacy protection methods based on TEE do not
consider the protection of the overall longitudinal federated model training process.
The method proposed in this study considers the end-to-end privacy protection in the

Appl. Sci. 2024, 14, 3533 3 of 17

federated learning process, and it can cover horizontal federated learning and vertical
federated learning.

(2) The proposed method can effectively resist gradient leakage, model inversion, poisoning,
and backdoor attacks with less performance loss under the premise of ensuring accuracy.

(3) The method proposed in this study is based on Intel SGX technology, which could
realize the migration of the general federated machine learning framework and end-
to-end privacy protection for the complete federated learning training process.

(4) The proposed method enhances the privacy protection ability for the general fed-
erated machine learning framework; therefore, the model developer does not need
to perceive the privacy protection technology, which reduces the difficulty of use
for developers.

(5) The proposed method supports cloud-native architecture deployment and is suitable
for deployment in the cloud environment.

2. Related Work

To face the growth of sensitive data sources, the Google team proposed a method
to keep the original data on the device and complete model training through end-to-end
communication [1], that is federated learning. Yang et al. [2] states three aspects of a
secure federated learning framework, namely, secure multi-party computation, differential
privacy, and homomorphic encryption, and classified it. According to the different scenarios
of federated learning computing, Peter Kairouz et al. [3] divided the form of federated
learning into cross-device and cross-domain. The existing types of federated learning
attacks were summarized by Viraaji Mothukur et al. [4]. Model inversion was proposed
by references [5,6]. In contrast to regular training, where the model is extracted from the
data, the model inversion attack extracts the training data or its feature vector from the
supervised model. Matt Fredrikson et al. [5] extended the scope of model inversion attacks.
First, they trained a GAN model from model updates and the attacker’s training data,
then used the model to generate similar images from the victim’s update. Reza Shokri
et al. [7] proposed member inference which is using a given data point and a pretrained
model to determine whether the data sample is used to train the model in the training set.
In the literature [8], Luca Melis et al. proposed attribute inference for a given pretrained
model, to determine whether the corresponding training set contains a data point with
a specific attribute. Reference [9] proposed a model replacement attack under federated
learning, and it refers to the proposed general method of constrain and scale explicitly.
This method enables the attacker to generate a high-accuracy model based on global and
local backdoor tasks, and it cannot be rejected by anomaly detectors, so that the final global
model identified it as having irrelevant classes for certain inputs. The main purpose of
poisoning attacks is to reduce the accuracy of the expected model or disrupt its training
process. Poisoning attacks are generally divided into two types: non-targeted poisoning
attacks and targeted poisoning attacks. Non-targeted poisoning attacks are generally used
to reduce model performance or accuracy. Targeted poisoning attacks are generally used to
make models generate abnormal predictions for specific data. Poisoning attacks typically
require malicious participants to tamper with the training data or gradient data during
model training.

In response to the attack problem of federated learning, many researchers have studied
privacy protection in federated learning, especially for the scenarios involving negative
model assumptions. References [10,11] introduced the current mainstream privacy pro-
tection methods, including DP (data privacy), PPCT (privacy-preserving computation
techniques), and TEEs (trusted execution environments). Among them, DP mainly refers to
reducing sensitive information carried in data, and the main methods include differential
privacy and data anonymity; PPCT mainly refers to cryptography-based secure computing
protocols, including secure multi-party computing and homomorphic encryption. A TEE
mainly relies on special hardware to build an execution environment with memory encryp-
tion and a measurable computing environment; therefore, it can ensure the computing of

Appl. Sci. 2024, 14, 3533 4 of 17

confidentiality and integrity. Such implementations include Intel SGX [12], AMD SEV [13],
and ARM TrustZone [14]. Reference [15] proposed the differentially private SGD algorithm.
The processes are calculating the gradient, clipping it, adding noise, and finally updating
the model parameters. Damgård proposed the SPDZ (i.e., SCALE-MAMBA) protocol [16].
The protocol is based on key sharing and semi-homomorphism; it realizes the operation
of arithmetic circuits on any finite field Fpk under the condition of, at most, n-1 malicious
computing parties. MASCOT [17], BMR garbled circuits [18], Overdrive [19], and other
multi-party secure computing for malicious security assumption scenarios, have been
evolved from this protocol. For the TEE privacy protection method, Fan Mo proposed
the layer-wise training framework (PPFL) [20] to complete the deep model training on
ARM TrustZone. Zhao proposed a secure and efficient aggregation framework, SEAR, for
Byzantine-robust federated learning [21].

Compared with the above work, this study considers the general requirements and
aims to provide a general privacy protection capability for distributed collaborative ma-
chine learning, including federated learning.

3. Method Introduction
3.1. Problem Modeling

In the vertical federation scenario, there are two parties involved in general. The party
with the label is defined as the active party, and the party with the feature is defined as the
passive party. As shown in Figure 1, participant B is the active party and A is the passive party.

DA and DB represent the datasets of the two parties. Di
j represents the jth batch of

training samples of participant i. We assume that B is the active party and has the label
information of the final training data. The complete dataset should be {DA, DB}. Based
on the δ-precision loss model proposed by Yang et al. [5], the neural network algorithm is
used for analysis in this study.

Compared with the traditional neural network structure, considering that the labels
and features are in different parties, vertical federated learning is a model-parallel training
process, in which one part of the model is trained on the active party, the other part is
trained on the passive party, and they are separated by a Cut Layer, whose structure is
shown in Figure 1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 19

protection methods, including DP (data privacy), PPCT (privacy‐preserving computation

techniques), and TEEs (trusted execution environments). Among them, DP mainly refers

to reducing sensitive information carried in data, and the main methods include differen‐

tial privacy and data anonymity; PPCT mainly refers to cryptography‐based secure com‐

puting protocols, including secure multi‐party computing and homomorphic encryption.

A TEE mainly relies on special hardware to build an execution environment with memory

encryption and a measurable computing environment; therefore, it can ensure the com‐

puting of confidentiality and integrity. Such implementations include Intel SGX [12],

AMD SEV [13], and ARM TrustZone [14]. Reference [15] proposed the differentially pri‐

vate SGD algorithm. The processes are calculating the gradient, clipping it, adding noise,

and finally updating the model parameters. Damgård proposed the SPDZ (i.e., SCALE‐

MAMBA) protocol [16]. The protocol is based on key sharing and semi‐homomorphism;

it realizes the operation of arithmetic circuits on any finite field 𝐹௣𝑘 under the condition
of, at most, n‐1 malicious computing parties. MASCOT [17], BMR garbled circuits [18],

Overdrive [19], and other multi‐party secure computing for malicious security assump‐

tion scenarios, have been evolved from this protocol. For the TEE privacy protection

method, Fan Mo proposed the layer‐wise training framework (PPFL) [20] to complete the

deep model training on ARM TrustZone. Zhao proposed a secure and efficient aggrega‐

tion framework, SEAR, for Byzantine‐robust federated learning [21].

Compared with the above work, this study considers the general requirements and

aims to provide a general privacy protection capability for distributed collaborative ma‐

chine learning, including federated learning.

3. Method Introduction

3.1. Problem Modeling

In the vertical federation scenario, there are two parties involved in general. The

party with the label is defined as the active party, and the party with the feature is defined

as the passive party. As shown in Figure 1, participant B is the active party and A is the

passive party.

𝐷஺ and 𝐷஻ represent the datasets of the two parties. 𝐷௝
௜ represents the jth batch of

training samples of participant i. We assume that B is the active party and has the label

information of the final training data. The complete dataset should be ሼ𝐷஺,𝐷஻ሽ. Based on
the δ‐precision loss model proposed by Yang et al. [5], the neural network algorithm is

used for analysis in this study.

Compared with the traditional neural network structure, considering that the labels

and features are in different parties, vertical federated learning is a model‐parallel training

process, in which one part of the model is trained on the active party, the other part is

trained on the passive party, and they are separated by a Cut Layer, whose structure is

shown in Figure 1.

Figure 1. Two-party vertical federated learning algorithm process.

Further, we assume it is a binary classification problem, y ∈ {0, 1}, where the passive
party trains the model f : X → Rd , and the active party trains h : Rd → R . The yellow part
is the forward calculation process, and the green part is the backward gradient training
process. Assuming that the activation function of the last layer uses the sigmoid function
δ for classification prediction, there is an outstanding feature that its derivative and the
original function satisfy Equation (1). x is the feature value in feature space X, δ is the
sigmoid function, and δ′ is the derivative of the sigmoid function.

Appl. Sci. 2024, 14, 3533 5 of 17

δ′(x) = δ(x)(1 − δ(x)) (1)

Finally, cross entropy is used to calculate the loss function, and the formula is as shown
in Equation (2).

L = ∑ [y log(l) + (1 − y) log(1 − l)] (2)

where l = h(f (X)); with the help of the chain rule, the overall gradient calculation formula
is as shown in Equation (3), where σ = h(f (x)), and x is the feature values of current
mini-batch in training dataset.

g := ∇ f (x) = (σ − y)∇zh(z)
∣∣∣
z= f (x)

(3)

Among them, since the value of y is 0 or 1, the information entropy brought by
the classification of y = 0 is eliminated in Formula (1) when calculating the cross entropy.
According to the gradient g, the weight of each neuron can be updated during the backward
propagation. Then, both parties update the weights by using Equation (4), where α is the
learning rate.

w := w − αg (4)

The following will describe the privacy leakage problem faced by the above process.
In the training process, the active party must calculate the gradient g from Equation (3)

and deliver it to the passive party through the Cut Layer. During this process, the data
leakage would occur. In the reasoning process, the actual business is facing the fact that the
final prediction result needs to be obtained from the active party. Therefore, the passive
party must transfer the user’s features to the active party for calculation, which causes
another kind of data leakage.

To solve the existing privacy leakage problem, this study proposes a general scheme
of federated learning for privacy improvement based on the scalable, secure computing
and memory removal provided by the second-generation Intel SGX.

With the support of the confidentiality, integrity, and remote authentication mechanism of
the computing environment provided by Intel SGX, as shown in Figure 2, this scheme proposes
an end-to-end privacy protection method, and also provides trusted metrics, confidential
execution environments, secure communication channels, and data-encrypted export.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 19

Figure 2. Vertical federation computing process based on TEE privacy protection improvement.

3.2. Protection Objectives

To solve several security problems that federated learning are facing, such as data

poisoning, backdoor attacks, and gradient leakage, the key point is how to protect the

integrity of the input data and the confidentiality of the gradient. This study aims to pro‐

vide full‐link privacy protection based on TEE (Intel SGX), which could achieve the fol‐

lowing protection goals (1)–(4):

(1) Input protection: the inputs include training data, network parameters, and network

structure.

(2) Modeling process protection: model checkpoint and communication encryption.

(3) Output protection: the outputs include model protection and model checkpoint pro‐

tection.

(4) Transmission security: adopting the method of dynamically creating certificates,

combined with the remote authentication technology of SGX, ensures that partici‐

pants and third parties cannot steal the transmitted messages.

3.3. Introduction of the Privacy Protection Model

In Section 3.1, the basic idea of privacy protection has been shown. In this section, we

first formally describe the capabilities of Intel SGX and then build a privacy enhancement

method for federated learning based on it.

The trusted application e is defined as Formula (5). The trusted application e includes

the corresponding initialization program code and configuration. The program code in‐

cludes data and source code. The configuration includes the program startup point,

memory access range, and access control information.

: ,

: , _ 256, , _ 256

: , ,

e e

e

e

e init config

init code code sha data data sha

config entrypoint vrange acl

 

 
 

 (5)

In Equation (5), 𝑐𝑜𝑑𝑒_𝑠ℎ𝑎256 and 𝑑𝑎𝑡𝑎_𝑠ℎ𝑎256 represent the SHA256 hash values

of code and data, which are used for integrity verification when starting the Enclave, and

establishing the trusted startup chain; 𝑒𝑛𝑡𝑟𝑦𝑝𝑜𝑖𝑛𝑡 represents the entry function of the
trusted application; 𝑣𝑟𝑎𝑛𝑔𝑒 represents the memory range of the trusted application; 𝑎𝑐𝑙
represents the access control list of the current trusted application.

Suppose 𝜎௜:→ 𝜎௜ାଵ represents the state set of trusted application 𝑒 in state 𝜎 ,
which comprises the program counter, virtual memory state, stack state, register state,

and so on. We set 𝐼௘ሺ𝜎ሻ,𝑂௘ሺ𝜎ሻ as the input and output of 𝑒. Then, the formal represen‐

tation of the execution process is 𝜎௜:→ 𝜎௜ାଵ.

Figure 2. Vertical federation computing process based on TEE privacy protection improvement.

3.2. Protection Objectives

To solve several security problems that federated learning are facing, such as data
poisoning, backdoor attacks, and gradient leakage, the key point is how to protect the
integrity of the input data and the confidentiality of the gradient. This study aims to
provide full-link privacy protection based on TEE (Intel SGX), which could achieve the
following protection goals (1)–(4):

Appl. Sci. 2024, 14, 3533 6 of 17

(1) Input protection: the inputs include training data, network parameters, and network
structure.

(2) Modeling process protection: model checkpoint and communication encryption.
(3) Output protection: the outputs include model protection and model checkpoint

protection.
(4) Transmission security: adopting the method of dynamically creating certificates,

combined with the remote authentication technology of SGX, ensures that participants
and third parties cannot steal the transmitted messages.

3.3. Introduction of the Privacy Protection Model

In Section 3.1, the basic idea of privacy protection has been shown. In this section, we
first formally describe the capabilities of Intel SGX and then build a privacy enhancement
method for federated learning based on it.

The trusted application e is defined as Formula (5). The trusted application e includes
the corresponding initialization program code and configuration. The program code
includes data and source code. The configuration includes the program startup point,
memory access range, and access control information.

e :=< inite, con f ige >
inite :=< code, code_sha256, data, data_sha256 >

con f ige :=< entrypoint, vrange, acl >
(5)

In Equation (5), code_sha256 and data_sha256 represent the SHA256 hash values of
code and data, which are used for integrity verification when starting the Enclave, and
establishing the trusted startup chain; entrypoint represents the entry function of the trusted
application; vrange represents the memory range of the trusted application; acl represents
the access control list of the current trusted application.

Suppose σi :→ σi+1 represents the state set of trusted application e in state σ, which
comprises the program counter, virtual memory state, stack state, register state, and so on.
We set Ie(σ), Oe(σ) as the input and output of e. Then, the formal representation of the
execution process is σi :→ σi+1 .

Trusted metrics ensure that the Enclave starts correctly. We set µ(e) as the metric value
of the trusted application e. If two Enclaves have the same metric value, the same execution
state and output must be generated for the same input. There are two statements:

Statement 1: For two Enclaves, after completing the credible measurement, if they
have the same measurement values and inputs, their outputs and internal states must be
the same. The formal description is as shown in Equation (6).

(1)Preconditions :∀σ1, σ2 · inite1(Ee1(σ1)) ∧ inite2(Ee2(σ2))
(2)Result :µ(e1) = µ(e2) ⇔ Ee1(σ1) = Ee2(σ2)

(6)

Statement 2: Further, if two Enclaves have the same initial states, which means that
they must have the same metric values (see Equation (7)), they enter the Enclave the same
number of times, and for each time they enter the Enclave, they are given the same inputs.
As a result, they will reach the same Enclave states after each time they enter the Enclave,
and finally gain the same outputs. The process is expressed as follows:

(1)Preconditions :∀π1, π2.Ee1(π1[0]) = Ee2(π2[0])
∀i.(curr(π1[i]) = e1) ⇔ (curr(π2[i]) = e2)
∀i.(curr(π1[i]) = e1) ⇒ Ie1(π1[i]) = Ie2(π2[i])

(2)Result :∀i.Ee1(π1[i]) = Ee2(π2[i]) ∧ Oe1(π1[i]) = Oe2(π2[i])

(7)

where curr(σ) = e represents the platform state when the current Enclave is in state σ, and
π represents a series of state sequences.

Appl. Sci. 2024, 14, 3533 7 of 17

Integrity is for the Enclave, which means that during the execution process, the attacker
can only affect the input but cannot tamper with the execution instruction sequence. The
formal description is as shown in Equation (8).

(1)Preconditions :∀π1, π2.Ee1(π1[0]) = Ee2(π2[0])
∀i.(curr(π1[i]) = e) ⇔ (curr(π2[i]) = e)
∀i.(curr(π1[i]) = e) ⇒ Ie(π1[i]) = Ie(π2[i])

(2)Result :∀i.Ee(π1[i]) = Ee(π2[i]) ∧ Oe(π1[i]) = Oe(π2[i])

(8)

Confidentiality is an essential feature of protecting data privacy. Confidentiality
ensures that observation functions are only related to the public output of the Enclave, and
the attacker can only obtain the information related to the public output of the Enclave
from different processes (e.g., observation functions), and no other information.

(1)Preconditions :∀π1, π2.Ee1(π1[0]) = Ee2(π2[0])
∀i.(curr(π1[i]) = curr(π2[i])) ∧ Ip(π1[i]) = Ip(π2[i])
∀i.(curr(π1[i]) = e) ⇒ obse1(π2[i + 1]) = obse2(π2[i + 1])

(2)Result :∀i.Ae1(π1[i]) = Ae2(π2[i])

(9)

As shown in Equation (9), obs is set as the observation function. Ae(σ) represents
the state of the attacker and is not known to the Enclave, and Ip(σ) represents the non-
deterministic input. The above proof process shows that for two different attacker programs,
if their initial states or the states during the process are the same, based on transferring any
of the same input state, once the two observers obtain the same information, the observers
cannot receive any information generated by Enclave’s internal operation other than public
output. Thus, its confidentiality is proved.

Based on the characteristics given by Equations (6)–(9), a federated learning scheme
for privacy protection enhancement begins to be built. For hybrid model training, the
definition of a trusted application is shown in Equation (10), where { f ·h}_sha256 represents
the hash value of the model code.

e :=< inite, con f ige >
inite :=< f · h, { f · h}_sha256, {DA, DB}, {DA, DB}_sha256 >

con f ige :=< Fedlearner, Hyperparameters, vrange, acl >
(10)

Based on the security measures, integrity, and confidentiality shown above, this study
proposes a privacy-preserving enhancement algorithm for additional federated learning,
named Algorithm 1.

Algorithm 1. Confidential federated learning based on Intel SGX.

Input DA, DB, NN < f, h >, Hyperparameter, < PK, SK >
Ouput model Mf, model Mg

1 : Procedure Building(PK, b) ▷ Compile Enclave e
2 : Fedlearner_sha256 = sha256(Fedlearner)
3 : < DA, DB> _sha256 = sha256(< D A, DB >)
4 : token := sign(SK, Fedlearner_sha256 || < D A, DB > _sha256)
5 : Initialization(PK, token, Fedlearner, < D A, DB >)
6 :
7 : Procedure Initialization(token, Fedlearner , < DA, DB >) ▷ Enclave initialization
8 : Fedlearner_sha256 = sha256(Fedlearner)
9 : < DA, DB> _sha256 = sha256(D A, DB)
10 : verified := verify(PK, Fedlearner _sha256, || < D A, DB > _sha256)
11 : if condition = True then
12 : challengeA= RemoteAttestation(<µ(Self), EndpointA >)
13 : challengeB= RemoteAttestation(<µ(Self), EndpointB >)
14 : if challengeA and challengeB then
15 : bridge :=< EndpointA, EndpointB >
16 : Running(Fedlearner, bridge, NN < f, h >, Hyperparaneter)
17 : else
18 : Terminate < Endpoint, Self >
19 :
20 : procedure Running(Entrypoint, bridge, NN < f, h >, Hyperparameter) ▷ Federal training
21 : Initialize Entrypointm, NN

Appl. Sci. 2024, 14, 3533 8 of 17

Algorithm 1. Cont.

22 : Initialize Model : X weights, bias, y
23 : while steps < Hyperparameter .max_step || Loss > Hyperparameter
24 : f(x) :=< w, x > +bias
25 : σ := h(f(x))
26 : Loss := cross_entropy(σ, y)
27 : g :=∇f(x)Loss
28 : weights = weights − Hyperparameter.αg
29 : bias = bias − Hyperparameter.αg
30 : Mf=< weights, bias, NNA >
31 : Mh=< weights, bias, NNB >
32 : save_model(model_f, model_h) ▷ dump the model to disk

3.3.1. Privacy Protection of Computing Process

This method is implemented by using Gramine (version 1.0.3), which is jointly devel-
oped by Intel and Invisible Things Labs. The basic architecture of Gramine is shown in
Figure 3.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 19

Figure 3. Schematic diagram of Gramine’s basic architecture.

Gramine provides a common platform compatibility layer (PAL), which greatly re‐

duces the porting cost of native applications.

3.3.2. Integrity Protection

Integrity is a prerequisite for confidentiality. The integrity could be described as fol‐

lows: for the input 𝑑, after any number of calculations, the error of the result will lie in a

small range. Freivalds et al. [22] provided the definition of integrity: according to the as‐

sumption that 𝐴, 𝐵 and 𝐶 are n × n matrices on the field 𝐹, 𝑠 is an element of a uni‐

formly random vector 𝑆௡, 𝑆 ⊆ 𝐹, which is defined as Equation (11), |𝐹| is the number of

elements in field 𝐹.

Pr[() (()) |] 1/ | |C s A B s C AB F   (11)

If the above condition is satisfied, the calculation process is integrity. With the sup‐

port of asymmetric encryption, a public–private key pair (𝑠𝑘, 𝑝𝑘) is generated, and the
overall integrity is shown as Equation (12), which is signed by the random private key

inside the Enclave.

0((, , ,))skSIG Sig Hash D C M E (12)

The verification process is shown as Equation (13), and the signature is verified out‐

side the Enclave through the public key of the Enclave’s random private key. In Gramine,

it is supported to specify integrity checks for externally dependent files.

0((, , ,),) ?pkVerify Hash D C M E SIG true (13)

3.3.3. Channel Protection

Common channel protection protocols include SSL/TLS protocols. SSL/TLS provides

confidentiality and data integrity between two communicating applications, therefore

preventing man‐in‐the‐middle attacks.

The basic protocol of the TLS1.2 one‐way handshake is shown in Figure 4.

Figure 3. Schematic diagram of Gramine’s basic architecture.

Gramine provides a common platform compatibility layer (PAL), which greatly re-
duces the porting cost of native applications.

3.3.2. Integrity Protection

Integrity is a prerequisite for confidentiality. The integrity could be described as
follows: for the input d, after any number of calculations, the error of the result will lie in
a small range. Freivalds et al. [22] provided the definition of integrity: according to the
assumption that A, B and C are n × n matrices on the field F, s is an element of a uniformly
random vector Sn, S ⊆ F, which is defined as Equation (11), |F| is the number of elements
in field F.

Pr[C(s) = A(B(s))|C ̸= AB] < 1/|F| (11)

If the above condition is satisfied, the calculation process is integrity. With the support
of asymmetric encryption, a public–private key pair (sk, pk) is generated, and the overall
integrity is shown as Equation (12), which is signed by the random private key inside
the Enclave.

SIG = Sigsk(Hash(D, C, M0, E)) (12)

The verification process is shown as Equation (13), and the signature is verified outside
the Enclave through the public key of the Enclave’s random private key. In Gramine, it is
supported to specify integrity checks for externally dependent files.

Veri f ypk(Hash(D, C, M0, E), SIG) = ? true (13)

Appl. Sci. 2024, 14, 3533 9 of 17

3.3.3. Channel Protection

Common channel protection protocols include SSL/TLS protocols. SSL/TLS provides
confidentiality and data integrity between two communicating applications, therefore
preventing man-in-the-middle attacks.

The basic protocol of the TLS1.2 one-way handshake is shown in Figure 4.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 19

Figure 4. Process of TLS1.2 establishing handshake.

In the above protocol, the certificate issued by the authority is used as the identity of

the communication parties. Then, the client carries the protocol version and public key

information to request the server certificate. The server returns the certificate and carries

its negotiated secret key to the client. After the client verifies that the certificate is legal,

the two parties begin to encrypt the following application data by using the negotiated

secret key. Under mutual TLS, the server also needs to verify the client’s certificate.

However, in this scheme, it is necessary to prevent the participants from receiving

the plaintext of the message outside Enclave. In other words, this scheme is designed to

prevent the participants from obtaining the public key and other information in the cer‐

tificate during the negotiation of the secret key. The purpose is to prevent the negotiated

secret key from being leaked to any party, including the client and server. Therefore, fur‐

ther enhancements are required through RA‐TLS [23].

With the support of a formal definition, we first describe the TLS1.2 handshake pro‐

tocol and then extend it to the RA‐TLS protocol. The TLS handshake protocol is as shown

in Algorithm 2.

In step 2, client C obtains the certificate from the server, which includes the public

key 𝐾௦, and the server stores the private key with the signature. In step 3, the client pro‐

vides the client certificate and encrypts the randomly generated master secret (Master Se‐

cret) 𝑆𝑒𝑐𝑟𝑒𝑡௦ by the server’s public key, and then sends it back to the server. In step 4, the
server uses its certificate private key to decrypt the master key, and in step 5, it derives

the actual application encryption key.

Algorithm 2. TLS1.2 establishes a secure link process.

1. 𝐶 → 𝑆:𝑚ଵ ൌ 𝐶,𝑁௖ ,𝑉𝑒𝑟௖ , 𝐼𝐷𝑆𝑒𝑠𝑠𝑖𝑜𝑛
2. 𝑆 → 𝐶:𝑚ଶ ൌ 𝑆,𝑁௔,𝑉𝑒𝑟௦, 𝐼𝐷𝑆𝑒𝑠𝑠𝑖𝑜𝑛,𝐶𝐴ሺ𝑆,𝐾௦ሻ
3. 𝐶 → 𝑆:𝑚ଷ ൌ 𝐼𝐷𝑆𝑒𝑠𝑠𝑖𝑜𝑛, ሼ𝑉𝑒𝑟௖ , 𝑆𝑒𝑐𝑟𝑒𝑡௖,𝐶, 𝑆ሽ௞௦,𝐶𝐴ሺ𝐶,𝐾௖ሻ,

ሼ𝐻ሺ𝑔ଵሺ𝑚ଵ,𝑚ଶ, 𝑆𝑒𝑐𝑟𝑒𝑡௖,𝐶, 𝑆ሻሻሽ௄௖షభ
4. 𝑆 → 𝐶:𝑚ସ ൌ ሼ𝐻ሺ𝑔ଶሺ𝑚ଵ,𝑚ଶ,𝑚ଷ,𝑆𝑒𝑐𝑟𝑒𝑡௖ ,𝐶, 𝑆ሻሻሽ௄௖௦
5. 𝐶 → 𝑆:𝑚ହ ൌ ሼ𝐻ሺ𝑔ଷሺ𝑚ଵ,𝑚ଶ,𝑚ଷ,𝑚ସ, 𝑆𝑒𝑐𝑟𝑒𝑡௖ ,𝐶, 𝑆ሻሻሽ௄௖௦

where 𝐾௖௦ ൌ 𝑀𝑎𝑠𝑡𝑒𝑟ሺ𝑆𝑒𝑐𝑟𝑒𝑡௖,𝑁௦,𝑁௖ሻ; 𝑁௖ and 𝑁௦ represent the Nonce value, which are

single‐use numbers, such as auto‐incrementing numbers; and Master represents the secret

key derivation function.

It can be found that the certificate private keys of the TLS1.2 client and server are

kept separately, and each can know the master key and the final application data

Figure 4. Process of TLS1.2 establishing handshake.

In the above protocol, the certificate issued by the authority is used as the identity of
the communication parties. Then, the client carries the protocol version and public key
information to request the server certificate. The server returns the certificate and carries
its negotiated secret key to the client. After the client verifies that the certificate is legal, the
two parties begin to encrypt the following application data by using the negotiated secret
key. Under mutual TLS, the server also needs to verify the client’s certificate.

However, in this scheme, it is necessary to prevent the participants from receiving
the plaintext of the message outside Enclave. In other words, this scheme is designed
to prevent the participants from obtaining the public key and other information in the
certificate during the negotiation of the secret key. The purpose is to prevent the negotiated
secret key from being leaked to any party, including the client and server. Therefore, further
enhancements are required through RA-TLS [23].

With the support of a formal definition, we first describe the TLS1.2 handshake
protocol and then extend it to the RA-TLS protocol. The TLS handshake protocol is as
shown in Algorithm 2.

In step 2, client C obtains the certificate from the server, which includes the public key
Ks, and the server stores the private key with the signature. In step 3, the client provides
the client certificate and encrypts the randomly generated master secret (Master Secret)
Secrets by the server’s public key, and then sends it back to the server. In step 4, the server
uses its certificate private key to decrypt the master key, and in step 5, it derives the actual
application encryption key.

Algorithm 2. TLS1.2 establishes a secure link process.

1. C → S : m1 = C, Nc, Verc, IDSession
2. S → C : m2 = S, Na, Vers, IDSession, CA(S, Ks)
3. C → S : m3 = IDSession, {Verc, Secretc, C, S}ks, CA(C, Kc),

{H(g1(m1, m2, Secretc, C, S))}Kc−1

4. S → C : m4 = {H(g2(m1, m2, m3, Secretc, C, S))}Kcs
5. C → S : m5 = {H(g3(m1, m2, m3, m4, Secretc, C, S))}Kcs

Appl. Sci. 2024, 14, 3533 10 of 17

where Kcs = Master(Secretc, Ns, Nc); Nc and Ns represent the Nonce value, which are
single-use numbers, such as auto-incrementing numbers; and Master represents the secret
key derivation function.

It can be found that the certificate private keys of the TLS1.2 client and server are kept
separately, and each can know the master key and the final application data encryption
key. Obviously, this does not meet the requirement that participants are not able to steal
data. Therefore, with the support of RA-TLS, we must ensure that the certificate’s private
key cannot be obtained by anyone, including participants and third parties, so that we can
use the key derivation function provided by Intel SGX to randomly generate the public
and private keys of the participants’ certificates inside the Enclave. At the same time, the
certificate authority transmits its signature certificate to the TEE in advance and completes
the issuance of the randomly generated certificate inside the TEE.

The updated protocol is shown in Algorithm 3.

Algorithm 3. Process of RA-TLS1.2 establishing a secure link.

1. C → S : gen(Kc), m1 = C, Nc, Verc, IDSession
2. S → C : gen(Ks), m2 = S, Na, Vers, IDSession, CA(S, Ks) s
3. C → S : m3 = IDSession, {Verc, Secretc, C, S}ks, CA(C, Kc, Reportc),

{H(g1(m1, m2, Secretc, C, S))}Kc−1

4. S → C : m4 = {H(g2(m1, m2, m3, Secretc, C, S))}Kcs
5. C → S : m5 = {H(g3(m1, m2, m3, m4, Secretc, C, S))}Kcs

In the updated protocol, since the certificate’s private key is dynamically generated in
the Enclave, m3 cannot be decrypted outside the Enclave; hence, the master key cannot be
obtained outside. In step 2, the server embeds its Report into the extensions field of the
certificate. After that, the client uses the remote authentication mechanism (such as DCAP
or EPID) provided by Intel SGX to verify the Report, including the integrity verification of
TCB and Enclave code and data.

3.3.4. External Memory Privacy Protection

In this study, based on the idea of the protected file system of Intel SGX SDK, a
mechanism of multiple mount points for protected files is designed. The file system
encryption algorithm adopts AES-256-GCM.

In the case of multiple data providers, the multi-mount point mechanism realizes the
requirement of protecting the participants’ data security and privacy without their using
of different encryption keys. The multi-mount point mechanism needs to agree on the
directory format of different data providers.

3.4. System Design Security Assumptions

It is assumed that all disclosed SGX attacks received positive responses from the
community and the SGX continues to be maintained by Intel. In addition, in the real-life
situation, we assume that the data provided by the multi-party participants are of high
value, so the participants will not be honest, and the participants will use various methods
to spy on the data privacy of others. Therefore, the participants’ behavior is assumed to
be arbitrary, which is the malicious model. Moreover, this method does not consider the
influence of data distribution on the final effect.

3.5. Introduction to the Training Process

Based on the description of Algorithm 1, the abstract architecture and interaction flow
are shown in Figure 5. The blue part shows the processes running inside the Enclave. The
trusted boot process is shown in Figure 6.

In Figure 5, the Coordinator is responsible for sample alignment. FL-Worker is re-
sponsible for completing model training, and FL-PS is accountable for updating model
parameters. Both parties are deployed with the same architecture, for which the steps are
shown below.

Appl. Sci. 2024, 14, 3533 11 of 17

Step 1: FL-Worker loads model parameters from FL-PS, and after initializing the local
neural network, it starts to read the data from the Coordinator;

Step 2: For the current Mini-batch, forward calculation is performed on the neural
network of the current participant, and the result of the forward calculation is sent to the
Active Party through RPC;

Steps 3–4: The Active Party receives the forward calculation result, initializes the Cut
Layer, then continues to perform forward calculation, calculates the gradient according to
its label, and then starts backpropagation to update the parameters of the local network;

Steps 5–6: The gradient of the Cut Layer is returned through the remote call and back-
propagation calculations are further performed to update the weight of the Passive Party.

Then, by repeating the above steps, the model training is continued until a certain
number of steps is reached, or the Loss on the test set lies in a specific range. Finally, the
model training is completed.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 19

Step 2: For the current Mini‐batch, forward calculation is performed on the neural

network of the current participant, and the result of the forward calculation is sent to the

Active Party through RPC;

Steps 3–4: The Active Party receives the forward calculation result, initializes the Cut

Layer, then continues to perform forward calculation, calculates the gradient according to

its label, and then starts backpropagation to update the parameters of the local network;

Steps 5–6: The gradient of the Cut Layer is returned through the remote call and

backpropagation calculations are further performed to update the weight of the Passive

Party.

Then, by repeating the above steps, the model training is continued until a certain

number of steps is reached, or the Loss on the test set lies in a specific range. Finally, the

model training is completed.

Figure 5. Schematic diagram of the vertical federation training process.

Before the startup shown in Figure 5, it is necessary to establish the trusted startup

chain shown in Figure 6 to establish a complete remote trusted computing environment.

The Integrity Server is responsible for checking the remote authentication report and is

deployed inside each Coordinator. In step 1, all trusted applications (including FL‐Worker

and FL‐PS) are authenticated locally. The local authentication is creating and initializing

the Enclave firstly, based on the local SGX Driver. Then, LibOS is started inside the En‐

clave, and LibOS is used to load the application, finally completing the integrity check of

the application. After completing the local authentication, the port can be started. Then,

we can wait for the other party to perform remote authentication. In step 2, since the cur‐

rent deployment mode is peer‐to‐peer, both parties will perform remote authentication

on the other party. After obtaining the other party’s measurement report, in step 3, they

request the local integrity server to check the validity of the measurement report. After

the inspection is complete, the process shown in Figure 5 is entered.

Figure 5. Schematic diagram of the vertical federation training process.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 19

Figure 6. PPML trusted boot chain establishment process.

3.6. Attack Defense

Federated learning is a distributed machine learning framework; its data storage and

model training are usually performed in the local environment of different participants.

Information such as gradients are exchanged only when model parameters are updating.

For attacks on federated learning, the attacker usually needs to read the gradient infor‐

mation of the training process and tamper with the training data of the participants.

Therefore, the key to defending against attacks is to prevent attackers from reading the

gradients and tampering with the training data during the training process. The purpose

of Inference 1 is to prevent attackers from tampering with training data before they enter

the Enclave. The purpose of Inference 2 is to prevent attackers from tampering with the

training data during training. The purpose of Inference 3 is to prevent attackers from read‐

ing the exchange information of the parties such as the gradient during training.

Inference 1: The integrity checks of training data before entering the Enclave could

prevent users poisoning them during the training process. If the original data provided

by a participant are poisoned, the integrity check can play a non‐repudiation role, so as to

trace the behavior of the poisoned data provider. Therefore, the proposed method can

prevent the poisoning attack on the training data.

Inference 2: With the support of the integrity check of Intel SGX, participants could

verify that the model code and training data running by other participants are authentic,

and all participants cannot tamper with the model code and training data that are running

in a trusted environment. Therefore, this scheme can prevent backdoor attacks based on

data poisoning.

Inference 3: The RA‐TLS mechanism makes it impossible for any participants to steal

the data during the transmission process. Additionally, with the support of external

memory encryption technology, the original training data, intermediate results and out‐

put results of the calculation cannot be observed, which ensures that none of the partici‐

pants can obtain the entire gradient or intermediate training data. Hence, it prevents in‐

ference attacks, model inversion attacks, and others.

Since the above three inferences are valid, the proposed scheme can effectively de‐

fend against common attack methods for federated learning.

4. Experimental Testing and Evaluation

4.1. Test Content

This study mainly concerns functional testing, stability testing, and performance test‐

ing of confidentiality protection when Fedlearner performs gradient calculation and up‐

dates through SGX. The experiment is established in a local area network environment (if

Figure 6. PPML trusted boot chain establishment process.

Before the startup shown in Figure 5, it is necessary to establish the trusted startup
chain shown in Figure 6 to establish a complete remote trusted computing environment.
The Integrity Server is responsible for checking the remote authentication report and is
deployed inside each Coordinator. In step 1, all trusted applications (including FL-Worker
and FL-PS) are authenticated locally. The local authentication is creating and initializing
the Enclave firstly, based on the local SGX Driver. Then, LibOS is started inside the Enclave,
and LibOS is used to load the application, finally completing the integrity check of the
application. After completing the local authentication, the port can be started. Then, we

Appl. Sci. 2024, 14, 3533 12 of 17

can wait for the other party to perform remote authentication. In step 2, since the current
deployment mode is peer-to-peer, both parties will perform remote authentication on the
other party. After obtaining the other party’s measurement report, in step 3, they request the
local integrity server to check the validity of the measurement report. After the inspection
is complete, the process shown in Figure 5 is entered.

3.6. Attack Defense

Federated learning is a distributed machine learning framework; its data storage and
model training are usually performed in the local environment of different participants. In-
formation such as gradients are exchanged only when model parameters are updating. For
attacks on federated learning, the attacker usually needs to read the gradient information
of the training process and tamper with the training data of the participants. Therefore,
the key to defending against attacks is to prevent attackers from reading the gradients and
tampering with the training data during the training process. The purpose of Inference 1 is
to prevent attackers from tampering with training data before they enter the Enclave. The
purpose of Inference 2 is to prevent attackers from tampering with the training data during
training. The purpose of Inference 3 is to prevent attackers from reading the exchange
information of the parties such as the gradient during training.

Inference 1: The integrity checks of training data before entering the Enclave could
prevent users poisoning them during the training process. If the original data provided
by a participant are poisoned, the integrity check can play a non-repudiation role, so as
to trace the behavior of the poisoned data provider. Therefore, the proposed method can
prevent the poisoning attack on the training data.

Inference 2: With the support of the integrity check of Intel SGX, participants could
verify that the model code and training data running by other participants are authentic,
and all participants cannot tamper with the model code and training data that are running
in a trusted environment. Therefore, this scheme can prevent backdoor attacks based on
data poisoning.

Inference 3: The RA-TLS mechanism makes it impossible for any participants to
steal the data during the transmission process. Additionally, with the support of external
memory encryption technology, the original training data, intermediate results and output
results of the calculation cannot be observed, which ensures that none of the participants
can obtain the entire gradient or intermediate training data. Hence, it prevents inference
attacks, model inversion attacks, and others.

Since the above three inferences are valid, the proposed scheme can effectively defend
against common attack methods for federated learning.

4. Experimental Testing and Evaluation
4.1. Test Content

This study mainly concerns functional testing, stability testing, and performance
testing of confidentiality protection when Fedlearner performs gradient calculation and
updates through SGX. The experiment is established in a local area network environment
(if the transmission time is added, the time consumption gap will be significantly reduced).
As the result of test, end-to-end data protection is achieved. These protections include
encrypted transmission protection between computing node and parameter service areas or
between computing nodes, protections against man-in-the-middle attacks, model encrypted
export, and sequential import protection.

The testing of this program has two main components: the integration test and
the performance test. Integration testing involves porting, remote authentication, and
encrypted file system testing. Performance testing includes relative native computing tests
and extra running time-consuming tests.

This method uses two kinds of running in the Enclave and not running in the Enclave,
as the experimental and control groups, respectively. It is mainly divided into two test sets:
TensorFlow distributed test and Fedlearner federated learning test.

Appl. Sci. 2024, 14, 3533 13 of 17

In the TensorFlow distributed test, a layer of FC network with bias term bias is used,
where the weight is a 100-dimensional 1-dimensional vector, the dataset size is ((100), float),
and the batch size of each step is 1.

For the federated learning test example, this method adopts the Wide&Deep model.
The wide part uses a fully connected layer, and its dimension is divided into (512 × 16, 64).
The deep part contains three fully connected layers, and their dimensions are (512 × 16, 256),
(512 × 16, 64), and (128, 2). The dataset is ((200,000, 512 × 2), int64), one of which executes
the Wide part and the other executes the Deep part.

There are two main categories of evaluation metrics: performance loss and execution
efficiency.

Then, for the same test task, the performance loss is calculated by Equation (14). In
Equation (14), α represents the time consumption of completing one training task in an
ordinary non-secure environment, and σ represents the time consumption of completing
one training task under the current secure federated learning method.

σ = 100 · (α − α′)/α (14)

Assuming that for the e-round training, the number of cores used by the computing
node and the parameter server are cw and cp, respectively, and the execution efficiency p is
defined as Equation (15),

p =
e
α

cw + cp
· 1000 (15)

it is shown that the resource utility represents the utilization efficiency of resources in a
unit of time. The higher the value, the higher the calculation efficiency.

4.2. Test Result

In terms of integration testing, experiments are divided into two groups according to
functional compatibility, remote authentication, and encrypted file system verification. The
experimental results are shown in Tables 2 and 3, and the functions are as expected.

In the compatibility test, it is only tested that whether Fedlearner could complete the
training task typically.

Table 2. Functional compatibility test results.

No. Model Batch Size Epoch Loading Time
Running Time (avg) Mem (G), Threads (per Process)

Enclave (s) Native (s) Enclave Native

1 Linear 1 2 11 m 10 s 24 s 2 s 32, 512 5, −
2 w&d 256 2 12 m 51 s 13 m 53 s 4 m 24 s 32, 512 5, −

For the remote authentication test, we not only need to consider the starting of the
computing node and parameter server but we also need to start the remote authentication
before the computing node. Furthermore, the cross-validation model encryption export
function is required.

Table 3 has one more column than Table 2, for PF. PF indicates that the model export
directory is set to protected files, and the import and export must be encrypted or decrypted.

At the same time, it can be observed that the initialization time l is related to the
Enclave size, and the running time is about 2.5 times to 5 times the time consumption
increase. In addition, the influence of whether the PF function is turned on or not on the
initialization time and running time is not apparent.

Next, different library OS configurations are tuned to achieve the best performance
evaluation data. The test results show that when σ = Ratio − 1, the additional performance
loss is in the range of 0.5 to 4. Furthermore, the initialization time in this data group is
relatively short, the shortest time can reach 2 min and 35 s, because some Python base
libraries have been moved from trusted files to allowed files, which reduces the number

Appl. Sci. 2024, 14, 3533 14 of 17

of files that are needed to participate in integrity checking from 110,000 to 8000, and
significantly reduces the time needed for the final initialization phase.

Table 3. Remote authentication and model encryption export test.

No. Model Batch Size Epoch Loading Time
Running Time (avg) Mem (G), Threads

PF
Enclave (s) Native (s) Enclave Native

1 w&d 256 2 11 m
5 s

11 m
16 s

4 m
24 s 32, 512 5, 360+ N

2 w&d 256 2 11 m
5 s

10 m
50 s

4 m
24 s 32, 512 5, 360+ Y

3 w&d 256 2 21 m
14 s

11 m
32 s

4 m
24 s 64, 512 5, 360+ N

4 w&d 256 2 21 m
14 s

11 m
20 s

4 m
24 s 64, 512 5, 360+ Y

5 w&d 1024 2 11 m
6 s

4 m
35 s

2 m
7 s 32, 512 5, 360+ Y

6 w&d 1024 2 11 m
7 s

4 m
26 s

2 m
7 s 32, 512 5, 360+ N

7 w&d 1024 10 11 m
4 s

17 m
12 s

7 m
5 s 32, 512 5, 360+ Y

8 w&d 1024 10 11 m
3 s

16 m
55 s

7 m
5 s 32, 512 5, 360+ N

9 w&d 1024 500 21 m
4 s

2 h 23 m
49 s

1 h
1 m 54 s 64, 1024 5, 360+ Y

The last set of experiments is a comprehensive test of performance penalty and re-
source efficiency.

Regarding performance loss, when batch size = 256, as shown in Figure 7, the
two numbers on the abscissa represent the number of computing nodes (Worker) and
parameter servers (PS), and the ordinate represents the time consumed (in second). In
addition, the table shows that whether or not remote authentication is enabled has little effect
on the time consumed, because the communication between Worker and PS or Worker is a
long link.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 19

Figure 7. Time‐consuming distribution under different resource packages.

Resource utilization is strongly related to batch size, as shown in Figure 8. When the

batch size equals to 1024, the utility exceeds 1.

Figure 8. Resource efficiency distribution under different resource packages.

4.3. Privacy Protection Assessment

In this experiment, we analyzed from the feasible hardware penetration, network

packet capture, and external storage data decapsulation of three attack methods.

Thus, for the evaluation of these methods, we conducted a hardware penetration test,

a packet capture test, and an external memory data encryption test. The results are shown

in Table 4, all of which have achieved our expectations.

2–2 2–3 3–3 3–4 4–4

Native 339 277 292 190 237

WO‐SGX 1136 843 723 668 656

WITH‐SGX 1034 845 717 676 661

339
277 292

190
237

1136

843

723
668 656

1034

845

717 676 661

0

200

400

600

800

1000

1200

Ti
m
e

Workers–PS

CPU Overhead

Native WO‐SGX WITH‐SGX

2–2 2–3 3–3 3–4 4–4

Native 1.5 1.4 1.1 1.5 1.1

WO‐SGX 0.4 0.5 0.5 0.4 0.4

WITH‐SGX 0.5 0.5 0.5 0.4 0.4

1.5
1.4

1.1

1.5

1.1

0.4
0.5 0.5

0.4 0.4
0.5 0.5 0.5

0.4 0.4

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

Ef
fi
ci
e
n
cy

Workers–PS

Efficiency

Native WO‐SGX WITH‐SGX

Figure 7. Time-consuming distribution under different resource packages.

Appl. Sci. 2024, 14, 3533 15 of 17

Resource utilization is strongly related to batch size, as shown in Figure 8. When the
batch size equals to 1024, the utility exceeds 1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 19

Figure 7. Time‐consuming distribution under different resource packages.

Resource utilization is strongly related to batch size, as shown in Figure 8. When the

batch size equals to 1024, the utility exceeds 1.

Figure 8. Resource efficiency distribution under different resource packages.

4.3. Privacy Protection Assessment

In this experiment, we analyzed from the feasible hardware penetration, network

packet capture, and external storage data decapsulation of three attack methods.

Thus, for the evaluation of these methods, we conducted a hardware penetration test,

a packet capture test, and an external memory data encryption test. The results are shown

in Table 4, all of which have achieved our expectations.

2–2 2–3 3–3 3–4 4–4

Native 339 277 292 190 237

WO‐SGX 1136 843 723 668 656

WITH‐SGX 1034 845 717 676 661

339
277 292

190
237

1136

843

723
668 656

1034

845

717 676 661

0

200

400

600

800

1000

1200

Ti
m
e

Workers–PS

CPU Overhead

Native WO‐SGX WITH‐SGX

2–2 2–3 3–3 3–4 4–4

Native 1.5 1.4 1.1 1.5 1.1

WO‐SGX 0.4 0.5 0.5 0.4 0.4

WITH‐SGX 0.5 0.5 0.5 0.4 0.4

1.5
1.4

1.1

1.5

1.1

0.4
0.5 0.5

0.4 0.4
0.5 0.5 0.5

0.4 0.4

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

Ef
fi
ci
e
n
cy

Workers–PS

Efficiency

Native WO‐SGX WITH‐SGX

Figure 8. Resource efficiency distribution under different resource packages.

4.3. Privacy Protection Assessment

In this experiment, we analyzed from the feasible hardware penetration, network
packet capture, and external storage data decapsulation of three attack methods.

Thus, for the evaluation of these methods, we conducted a hardware penetration test,
a packet capture test, and an external memory data encryption test. The results are shown
in Table 4, all of which have achieved our expectations.

Table 4. Attack defense test results.

Attack Method Test Method and Results Expected Outcome

Hardware penetration attack
Printing the content of the Enclave address

through GDB, an illegal memory
access error occurs

Enclave memory illegal access, as expected

Man-in-the-middle attack
Capturing packets to steal cipher text, unable
to obtain the private key of the certificate, and

thus unable to decrypt
Unable to decrypt, as expected

External data access
By reading the model parameter information

from the model checkpoint file, the cipher text
is obtained and cannot be viewed

The cipher text cannot be viewed, as expected

5. Conclusions

The method proposed in this study can further improve the privacy protection ca-
pability of federated learning without losing the accuracy of the original model, thereby
enhancing the appetite for data cross-domain circulation and maximizing data value.

We implement the federated learning method proposed in this study through existing
popular machine learning frameworks. Moreover, the adaptability and compatibility of the
model code are complete. In addition, our method can be widely applied to advertising
marketing, financial risk control, precision marketing, and other fields. We can also extend
our approach to horizontal federated computing and secure outsourced computing.

This study proposes a privacy-preserving enhancement approach for a general fed-
erated machine learning framework and has been adopted on an existing framework by
using TensorFlow as the trainer. Without losing the generality, our approach can also
be adopted by PyTorch-based framework. It means the algorithm engineers can easily
implement their algorithm on private datasets from multiple parties without being aware of

Appl. Sci. 2024, 14, 3533 16 of 17

the privacy-preserving technology or adapt their existing single-party models to multiple
parties with only a few modifications.

6. Limitations

There are several limitations to the wide implementation of Intel SGX as TEE. Our
approach is built on Intel SGX V2 and can use up to 1T RAM for its trusted execution
environment (enclave). However, the SGX V1 only offers 256M enclave memory, and is not
able to execute the LibOS.

Another overhead is the loading time/latency needed for model training. From our
observation, if the Enclave has more than 10,000 files to be loaded as the trusted files, it
takes about 6~10 min. This is due to two aspects: calculating the checksum of each file
and allocating the enclave’s memory space from the host. Hence, we should introduce
the Enclave Dynamic Memory Management (EDMM) mechanism to allocate the enclave
memory more efficiently; it reduces the loading time and spending memory. The engineers
from Intel are making efforts to enable the EDMM feature in the near future.

A frequent complaint about the Intel SGX is its susceptibility to side-channel attack.
This attack may leak the model weights from the Enclave memory. To solve this problem,
we strongly suggest that users obtain and apply the latest microcode or firmware updates
from Intel. Furthermore, our approach can also work with differential privacy to mitigate
the effects of a zero-day attack. Working with differential privacy does not change the
framework, but only adds the noise from the active party.

Author Contributions: Methodology, L.Z., B.D. and X.C.; Implementation, L.Z. and B.D.; Validation,
J.L. and Z.M.; Writing—original draft preparation, L.Z. and B.D.; Writing—review and editing, X.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282.

2. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. (TIST)
2019, 10, 1–19. [CrossRef]

3. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,
R.; et al. Advances and open problems in federated learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [CrossRef]

4. Mothukuri, V.; Parizi, R.M.; Pouriyeh, S.; Huang, Y.; Dehghantanha, A.; Srivastava, G. A survey on security and privacy of
federated learning. Future Gener. Comput. Syst. 2021, 115, 619–640. [CrossRef]

5. Fredrikson, M.; Lantz, E.; Jha, S.; Lin, S.; Page, D.; Ristenpart, T. Privacy in pharmacogenetics: An end-to-end case study of
personalized warfarin dosing. In Proceedings of the USENIX Security Symposium, San Diego, CA, USA, 20–22 August 2014;
pp. 17–32.

6. Fredrikson, M.; Jha, S.; Ristenpart, T. Model inversion attacks that exploit confidence information and basic countermeasures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October
2015; pp. 1322–1333.

7. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 3–18.

8. Melis, L.; Song, C.; Cristofaro, E.D.; Shmatikov, V. Exploiting unintended feature leakage in collaborative learning. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019.

9. Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How to backdoor federated learning. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, Online, 26–28 August 2020. PMLR.

10. Cabrero-Holgueras, J.; Pastrana, S. SoK: Privacy-Preserving Computation Techniques for Deep Learning. Proc. Priv. Enhancing
Technol. 2021, 4, 139–162. [CrossRef]

https://doi.org/10.1145/3298981
https://doi.org/10.1561/2200000083
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.2478/popets-2021-0064

Appl. Sci. 2024, 14, 3533 17 of 17

11. Mireshghallah, F.; Vepakomma, P.; Singh, A.; Raskar, R.; Esmaeilzadeh, H. Privacy in deep learning: A survey. arXiv 2020,
arXiv:2004.12254.

12. Costan, V.; Devadas, S. Intel sgx explained. IACR Cryptol. ePrint Arch. 2016, 86, 1–118.
13. Kaplan, D.; Powell, J.; Woller, T. AMD Memory Encryption. White Paper. 2016. Available online: https://www.amd.com/content/

dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf (accessed on 1 January 2024).
14. Winter, J. Trusted computing building blocks for embedded linux-based arm trustzone platforms. In Proceedings of the 3rd ACM

Workshop on Scalable Trusted Computing, Fairfax, VA, USA, 16 June 2008; pp. 21–30.
15. Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016.
16. Damgård, I.; Pastro, V.; Smart, N.; Zakarias, S. Multiparty Computation from Somewhat Homomorphic Encryption; Safavi-Naini, R.,

Canetti, R., Eds.; CRYPTO 2012 LNCS; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7417, pp. 643–662.
17. Keller, M.; Orsini, E.; Scholl, P. MASCOT: Faster malicious arithmetic secure computation with oblivious transfer. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 830–842.
18. Ball, M.; Malkin, T.; Rosulek, M. Garbling Gadgets for Boolean and Arithmetic Circuits. In ACM CCS 16; Weippl, E.R.,

Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S., Eds.; ACM Press: New York, NY, USA, 2016; pp. 565–577.
19. Keller, M.; Pastro, V.; Rotaru, D. Overdrive: Making SPDZ great again. In Proceedings of the Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, 29 April–3 May 2018; Springer: Cham, Switzerland, 2018.
20. Mo, F.; Haddadi, H.; Katevas, K.; Marin, E.; Perino, D.; Kourtellis, N. PPFL: Privacy-preserving federated learning with trusted

execution environments. In Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and
Services, Virtual Event, 24 June–2 July 2021; pp. 94–108.

21. Zhao, L.; Jiang, J.; Feng, B.; Wang, Q.; Shen, C.; Li, Q. Sear: Secure and efficient aggregation for byzantine-robust federated
learning. IEEE Trans. Dependable Secur. Comput. 2021, 19, 3329–3342. [CrossRef]

22. Freivalds, R. Probabilistic Machines Can Use Less Running Time. IFIP Congr. 1977, 839, 842.
23. Knauth, T.; Steiner, M.; Chakrabarti, S.; Lei, L.; Xing, C.; Vij, M. Integrating remote attestation with transport layer security. arXiv

2018, arXiv:1801.05863.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://doi.org/10.1109/TDSC.2021.3093711

	Introduction
	Related Work
	Method Introduction
	Problem Modeling
	Protection Objectives
	Introduction of the Privacy Protection Model
	Privacy Protection of Computing Process
	Integrity Protection
	Channel Protection
	External Memory Privacy Protection

	System Design Security Assumptions
	Introduction to the Training Process
	Attack Defense

	Experimental Testing and Evaluation
	Test Content
	Test Result
	Privacy Protection Assessment

	Conclusions
	Limitations
	References

