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Abstract: In recent years, machine learning has made significant progress in the field of micro-fluids,
and viscosity prediction has become one of the hotspots of research. Due to the specificity of the
application direction, the input datasets required for machine learning models are diverse, which
limits the generalisation ability of the models. This paper starts by analysing the most obvious
kinetic feature induced by viscosity during flow—the variation in droplet neck contraction with
time (hmin/R ∼ τ). The kinetic processes of aqueous glycerol solutions of different viscosities when
dropped in air were investigated by high-speed camera experiments, and the kinetic characteristics of
the contraction of the liquid neck during droplet falling were extracted, using the Ohnesorge number
(Oh = µ/(ρRσ)1/2) to represent the change in viscosity. Subsequently, the liquid neck contraction
data were used as the original dataset, and three models, namely, random forest, multiple linear
regression, and neural network, were used for training. The final results showed superior results for
all three models, with the multivariate linear regression model having the best predictive ability with
a correlation coefficient R2 of 0.98.

Keywords: droplet dynamics; neck of the liquid filament; machine learning; viscosity prediction

1. Introduction

The study of the rupture dynamics of Newtonian fluids was first started in 1870
by Plateau and Rayleigh [1,2]. It has been extensively developed over the last hundred
years. The phenomenon of fluid frequently flows out from capillary tubes in various
industrial and natural environments [3,4]. Due to the universality and importance of the
free interfacial evolution process of liquid droplets, it has attracted the attention of many
researchers. With the rapid development of computer technology, machine learning has
demonstrated powerful data analysis capabilities, which have made great contributions
to the development of many industries. Droplets of different sizes, physical properties,
and concentrations are produced in processes involving droplet generation, such as micro-
fluid [5,6], ink-jet printing [7], and spraying [8]. The study of droplet dynamics will
generate a large number of valuable but complex droplet datasets. In the field of micro-
fluid generation, engineers can optimise the composition and concentration of micro-fluid
by accurately predicting the viscosity of the micro-fluid to maximise the accuracy of droplet
generation [9]. Analyzing these complex data is beneficial for detecting and quantifying
droplet generation, and machine learning tools have successfully demonstrated their
capabilities in automating the most complex systems [10].

Despite the currently rich results at the intersection of droplet generation and machine
learning, the generalisation of methods is still problematic because different models require
different sets of raw data [11]. Flow rate, viscosity, surface tension, as well as geometrical
parameters of droplet generation (width, length, height, angle), and kinetic parameters
(pressure, frequency) all affect droplet generation. The multitude of reasons affecting droplet
generation is the main reason for the inconsistency of the inputs to the datasets currently
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used in viscosity studies. Meybodi et al. [12] used temperature, micro-particle, size and
concentration to train a viscosity prediction model and used these data as raw inputs to
predict the viscosity of a fluid containing micro-particles. Gholizadeh et al. [13] built on
Meybodi’s [12] study by adding micro-particle density and base fluid viscosity as inputs to
the original dataset. Gholizadeh et al. found in the results that micro-particle concentration
and base fluid viscosity had the greatest impact on the predicted results. Cengiz et al. [14]
used the water content and density of the fluid as input data when predicting fuel viscosity.

These studies have used factors affecting mobility as the original inputs to the model,
which is the main reason that limits the ability of the model to generalise. When the
experimental equipment or fluid materials are different, the raw datasets are naturally
different. In fact, when the viscosity of the fluid is different, each viscosity will exhibit
different flow states due to different resistance to flow. In many problems where the
viscosity has to be tested, there will be differences in the flow conditions due to the different
viscosities. The ability to generalise the model would be greatly improved if the flow
had a direct correlation with the viscosity based on the differences in flow characteristics.
Therefore, it becomes important to understand droplet dynamics and to use more correlated
datasets of flow characteristics.

The flow regimes during droplet generation are usually classified into three modes
based on the size of the Weber number: three periodic dripping (PD), dripping faucet
(DF), and jetting (J). In PD mode, droplets suspended at the nozzle outlet will fall due to
gravity when the force of gravity exceeds the capillary force of the droplet. This mode
is commonly used by researchers to study the evolution of the drop process and the
contraction of the liquid neck due to the stable and reproducible results of the droplet
falling and contraction process [15,16]. It has been shown that the three physical parameters
that play a major role in the PD drop pattern of Newtonian fluids are viscosity η, surface
tension σ, and inertia. The dimensionless numbers used to quantify the process are the
Ohnesorge number (Oh = µ/(ρRσ)1/2), Bond number (Bo = (ρgR2)/σ), and Weber
number (We = ρU2R/σ). Of these, surface tension is responsible for minimising the
surface area of the fluid, giving it a spherical shape while viscous forces impede and slow
down the flow of the fluid. Three theories have been developed to describe the kinetic
behaviour of liquid neck contraction during capillary drop [16–22]. When the viscosity of
the fluid is negligible, the liquid neck thickness changes exponentially concerning time
hmin/R ∼ τ2/3, and inertia plays a major role in the contraction (I—inertia regime). τ
is the remaining time before pinch-off dimensionless. R denotes the outer radius of the
needle, and the hmin denotes half of the fluid neck thickness dimension. When the inertia
of the fluid is negligible, the contraction of the neck thickness follows the following scalar
law hmin/R = (0.0709/Oh)τ. When the Reynolds number of the fluid is very small,
viscosity plays a major role, showing the characteristics of Stokes flow (V—viscous regime).
When both viscosity and inertia are not negligible, the change in the thickness of the
liquid neck follows the following scalar law hmin/R = (0.0304/Oh)τ or hmin ∼ τ1/2,
viscosity, and inertia in the process of joint action of the liquid filament contraction fracture
(IV—inertial viscous regime).

The neck contraction process showed consistency under other complex influencing
factors, which suggests that the results of neck contraction can be generalised to similar
flow situations. Huang et al. [21] investigated in detail the neck stretching and fracture
process of droplets separated by collision. The results of this study showed that the neck
contraction and fracture process of droplets bouncing and separating after the collision
is consistent with the scalar law of the drop as it falls. Poulose et al. [23] investigated
the neck shrinkage kinetics of paramagnetic solutions in a magnetic field environment.
Wang et al. [24] and Rubio et al. [25] investigated the droplet dropping and liquid bridge
stretching in an electric field environment, respectively. Vagner et al. [26] investigated the
generation process of micro-droplets in a double-layer pipeline. Liu et al. [27] investigated
the neck shrinkage kinetics of the droplet dropping on the surface of a horizontal pipeline.
All these studies have shown that the necking contraction process that occurs during
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droplet formation, despite the presence of other influencing factors, is usually affected by
the changes in the surface tension, viscosity, and inertia due to the influence of the three,
thus altering the competing relationship between these three factors.

Previously, the effect of low viscosity (Oh < 0.001), medium viscosity (1 > Oh > 0.001),
and high viscosity (Oh > 1) on the contraction of the liquid neck has been elucidated.
Jiang et al. [22] studied the effect of viscosity ratio on fluid flow and found that at relatively
high viscosities (6.3 × 103 and 3.3 × 103), the contraction region in the neck of the fluid
shows an I–V–IV transition. Whereas, an I–V shift in the contraction region was observed
for droplets with lower viscosities (6.4 × 102). Jiang et al. judged the contraction regime
based on the exponential size of the contraction curve, with an exponent of 2/3 being the
inertial regime (I), and an exponent of 1 being the viscous regime (V) as well as the viscous–
inertial regime (IV). Similar to the way other researchers judge changes in contraction
regions [23,28–31], their judgments of V and IV tenses are based on two non-overlapping,
exponentially 1 contractions.

In this paper, we use the same judgment as Castrejón-Pita et al. [16] and Wee et al. [19]
to demonstrate the transition of regime V (viscous regime) by the coincidence of specific
equations with experimental data. In drop experiments with aqueous glycerol solutions
of different viscosities, the contraction curves of the liquid necks are different due to
the viscosity, resulting in different stages of contraction experienced, producing different
contraction curves. The viscosity of each glycerol aqueous solution corresponds to a
contraction curve. Liquid neck shrinkage data can be learned by machine learning models
as it correlates more strongly with viscosity, thus predicting the viscosity of aqueous glycerol
solutions. The use of dimensionless data as input makes the model more generalisable.
Subsequently, three models, namely random forest, multiple linear regression, and neural
network, were used to train the liquid neck contraction data and compare the prediction
results with the actual values, and all three models showed good prediction results.

2. Materials and Methods

The dataset for this paper comes from a self-designed experiment. The experimental
setup is shown in Figure 1. A precision flow pump (ELITE PICO SINGLE, Harvard Appa-
ratus,Los Angeles, CA, USA) was used for fluid administration, and the flow rate Q was
set to Q = 0.2 mL/min. The needle was fixed to the acrylic plate through a luer connector,
the acrylic plate was fixed to a stand through a threaded peg, and the needle was adjusted
to level by adjusting the threaded pegs with a level. Droplet images were captured using a
high-speed video camera (FASTCAM MINI UX100 TYPE 200K-M, Photron, Tokyo, Japan)
with a 100 mm fixed-focus lens (AT-X 24-70 F2.8 PRO FX, TOKINA, Tokyo, Japan). The cam-
era was set to a shooting speed of 4000 fps, a shutter speed of 1/10,000 s, a resolution of
1280 × 1024, and a pixel ratio of 13.7 µm/pixel. A strobe-less LED light source (CDXINT
XT120W, CDXINT, Chengdu, China) was used to fill in the light during shooting. To obtain
smaller-scale changes in the filament, a homogeneous PMMA plate was used to shade the
LED light source, reducing the amount of incoming light while maintaining the shutter speed,
and reducing the diffraction of light so that the fine fluid details of the filament breakage
could be shown. The needle material used was 304 steel, and the outer radius of the needle
was R = 0.8 mm. A self-programmed ImageJ v.1.53t script program was used to capture the
characteristic dimensions of the neck thickness during the dropping process.

This study focuses on the kinetic characteristics of the viscosity of aqueous glycerol
solutions during the dropping process, capturing the drop neck contraction data that have
the strongest correlation with viscosity for use in training a machine learning model to
establish a direct relationship between neck contraction and viscosity. Glycerol–water
solutions can be prepared at varying percentages by adjusting the concentration of glycerol,
allowing for the easy acquisition of fluid samples with different concentrations. Addition-
ally, the influence of glycerol’s viscosity on surface tension and density is minimal, which is
advantageous for comparing experimental results related to viscosity differences. The com-
monality of glycerol–water solutions as standard samples enables convenient comparison
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and validation with other experimental outcomes, thereby promoting the reliability and
accuracy of experimental results.

Figure 1. Scheme of the experimental setup. The device was made using an aluminum stand
surrounded by a transparent 0.1 mm PMMA sheet, with the needle fixed in the centre of the device
and levelled using a spirit level for generating stable droplets.

We then enabled the input of drop video data of unknown viscosity to predict the
viscosity of that fluid. In this work, first, eleven aqueous solutions of glycerol with different
percentages were formulated; the concentrations of the glycerol aqueous solutions were
distributed from 50% to 99% at 5% intervals and the physical parameters of different
percentages of glycerol aqueous solutions are shown in Table 1. Due to the existence of
humidity, temperature, and other error factors, even if the same glycerol aqueous solution
is used in the experiments conducted at different times, there will be some errors. For the
accuracy of the liquid neck shrinkage–viscosity dataset, the viscosity of the solution was
measured once before each experiment, and the first drop video data of each viscosity
counterpart was measured for that solution. Finally, eighteen liquid neck shrinkage–
viscosity datasets were collected. The Greek letters ρ, µ, and σ denote density, surface
tension, and viscosity, respectively. Eggers et al. [20] proposed that the free surface shape
and the internal flow of a droplet depend only on the proportionality of the observed
scale to the viscous scale. The viscous scale lµ = µ2/(σρ) indicates that the viscous effect
increases significantly when the flow scale of the fluid reaches this scale.

Table 1. Physical properties of glycerol aqueous solution 25 °C.

Property ρ/(kg/m3) σ/(mN/m) µ/(mPa·s) lµ/(µm)

50%glycerol–water 1200 70.5 6.1 0.44
55% glycerol–water 1200 70.4 8.5 0.86
60% glycerol–water 1205 70.1 10.5 1.31
65% glycerol–water 1210 70.1 15.2 2.72
70% glycerol–water 1215 70.0 41.2 19.96
75% glycerol–water 1220 69.9 67.1 52.79
80% glycerol–water 1230 69.7 97.1 109.98
85% glycerol–water 1240 69.5 126.3 185.10
90% glycerol–water 1250 69.3 208.5 501.84
95% glycerol–water 1255 69.3 394.8 1792.16
99% glycerol–water 1265 69.1 824.2 7802.19
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Three machine learning models based on multivariate linear regression, random forest,
and neural network were used in this study to model the obtained fluid neck contraction
dataset. A homebrew program was written in Python using scikit-learn, a widely used open-
source machine learning library for Python, often abbreviated to learn [31]. Scikit-learn
provides various preprocessing methods including data scaling, normalisation, categorical
variable coding, dealing with missing values, and feature extraction. These methods play
an important role before using the data in machine learning models [32].

Multiple linear regression is a statistical technique used to predict the relationship
between a dependent variable and one or more independent variables, based on the
assumption of a linear relationship between the independent and dependent variables.
The algorithm used in this paper is the least squares method, which fits the model pa-
rameters by minimising the sum of squared residuals (RSS), which also serves as the loss
function of this model. Here, yi represents the true value of sample i, and ŷi is the predicted
result. The sum of squared residuals is given by Equation (1).

RSS =
m

∑
i=1

(yi − ŷi)
2 (1)

Random forest is an integrated learning method consisting of multiple decision trees.
Each decision tree is constructed based on a randomly selected subset of features and
training samples with put-back sampling. This introduction of randomness makes random
forest highly diverse and generalisable. In the random forest algorithm, the generalisation
error is given and the formula is given by Equation (2) [33], where the subscripts (X) and
(Y) are random vectors indicating that the probability is on the space (X), (Y), and (mg) is
the bounding function.

PE = PX,Y(mg(X, Y) < 0) (2)

A neural network is a model of a machine learning algorithm that is inspired by the
network of neurons in the human brain. A neural network consists of multiple layers of
neurons, each of which receives inputs from the previous layer of neurons and processes
these inputs with weights and activation functions to finally produce an output. The basic
computational formula can be expressed as Equation (3) [34].

y = f (x, {Wi}) + x, (3)

where y denotes the output of the neuron; f is the activation function, which introduces
non-linear characteristics; Wi denotes the weight, which indicates the importance of the
input; and x is the input vector.

3. Results and Discussion

Figure 2a represents the detailed process of a droplet falling for Oh = 0.15 (70% G-W)
and Bo = 0.108 (R = 0.8 mm). To study the kinetics of the contraction process of the liquid
neck, a dimensionless analysis was used. hmin represents the outer radius of the liquid
neck and R is the outer radius of the needle. tau represents the dimensionlessness of the
remaining time before the liquid neck breaks τ = (tb − t)/tcap, tcap is the capillary time,
tcap = (ρR3/σ)1/2, tb is the time at the moment of the break, and t is the real time.

The liquid neck pinch-off process is shown in Figure 2b. As the droplet is detached
from the needle, the curvature at the liquid neck increases, the effect of surface tension
is gradually enhanced, and the contraction process is accelerated, eventually forming a
strip of liquid filament, with fracture occurring at the thinnest point. Due to the different
curvature of the two sides, the process of contraction of the two sides of the liquid filament
is also different. The liquid filament close to the side of the liquid sphere is faster to break,
because the curvature change here is more intense, and the effect of surface tension is
more obvious. The difference between the two sides of the liquid neck contraction can
be observed in Figure 2c, which becomes apparent in the later stage of the contraction.
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Approximately 1.25 ms after the pinch-off (indicated by the blue line), the curvature of
the two sides begins to change. The liquid filament gradually elongates, and two possible
locations of fracture, one upper and one lower, start to appear. As the droplets fall off,
the process is illustrated by the green, red, and black lines, where the curvature on the
lower side exceeds that on the upper side. Eventually, the lower side, with the greater
curvature, undergoes fracture first.

Figure 2. Definition of hmin and R (Bo = 0.10 and Oh = 0.15). (a) hmin and R definition; (b) contraction
process of the local liquid neck of the drop; (c) evolution of the outer contour of the drop process.

3.1. Droplet Dynamics Analysis

Figure 3 shows drop experiments with five different viscosities of glycerol–water
(G-W) solutions of 70%, 75%, 85%, 90%, and 99%, exploring the drop process induced by
gravity. For the lower viscosity Oh = 0.15, Oh = 0.25, and Oh = 0.48 fluids, as shown in
Figure 3a–c, as the flow pump slowly pushes in the fluid, the droplet begins to accelerate
away from the needle when the gravity of the droplet exceeds the surface tension. At this
point there is the appearance hmin < R of the liquid neck, and the length of the droplet
increases, the thickness of the droplet hmin decreases rapidly, and then, as shown in the small
dashed line in Figure 3a at the moment of 0 ms, the liquid neck appears asymmetric and
inhomogeneous at the upper and lower ends, and an END-PINCHING fracture occurs [18].
As the lower end breaks, shrinkage occurs first; when the upper end breaks, the resulting
independent liquid filaments have undergone shrinkage at the lower end, manifesting as a
rounded sphere, and the upper side manifests as a sharp cone when it just breaks, as shown
in the small green dashed line in Figure 3a at −0.25 ms. For the higher viscosity Oh = 0.79
versus Oh = 3.12 G-W solutions, the droplets fall more slowly, the viscosity impedes fluid
flow, fluid flow inside the liquid neck is more difficult, the droplets fall further, and the
liquid filaments are stretched longer.

Figure 4 demonstrates that as the time before pinch-off decreases, the liquid neck
thickness hmin decreases. In Figure 4a, the neck thickness decreases as the time from pinch-
off decreases, and the neck thickness decreases faster and faster as the time decreases. It can
be seen that it takes more time for the droplet with higher viscosity to clamp off because
the viscosity of the fluid hinders the flow of the fluid, the flow inside the neck is inhibited,
and it is more difficult for the fluid to flow outward from the neck, which slows down the
contraction of the neck.

Figure 4b shows hmin/R = (0.0709/Oh)τ + a against the experimental data curve.
The constant a (hmin/R = (0.0709/Oh)τ + a) was increased to correct the overlap with the
experimental data. In the study of Castrejon-Pita et al. [16], the correction constants for
the viscous regime corresponding to Oh = 0.23 are −0.005, a is 0.03 for Oh = 0.55, and a is
0.33 for Oh = 1.81. In our experiments, the similar viscosities and the correction constants
correspond to, respectively, −0.02 for Oh = 0.25, a is 0.03 for Oh = 0.79, and a of 0.25 for
Oh = 3.12. The slight difference with the Castrejón-Pita results is a negligible error in the
mapping process. In this regime, viscosity is the main action in the contraction regime.
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When the contraction process shifts from the inertial to the viscous regime, there exists a
transient that makes the inertial, viscous action balanced [35], and usually the transition
occurs at hmin/R ∼ Oh2 [20,35]. The dashed line in Figure 4b represents hmin/R ∼ Oh2 the
position of this critical value in the longitudinal coordinate, and the colour of the dashed line
for the same viscosity is the same as that of the liquid neck contraction line. For example,
when Oh = 0.79, the horizontal light blue dashed line represents the hmin/R ∼ Oh2 size
and the light blue dashed line intersects with the light blue neck shrinkage line, which
indicates that the effect of stickiness increases and affects the shrinkage process after the
neck has theoretically shrunk to this size threshold. The theoretical transition thresholds
of Oh = 0.15, Oh = 0.25, Oh = 0.48, and Oh = 0.7 are marked in the figure hmin/R ∼ Oh2 .
The theoretical value is closest to the experimental value in the case of Oh = 0.79. As the
number of Oh increases, the experiment shows the same trend as the theory.

Figure 3. Sequence of different viscosity fluids dripping in the air from the same needle (R = 0.8 mm,
Q = 0.2 mL/min). All images in the figure share the scale. (a) Oh = 0.18; (b) Oh = 0.25; (c) Oh = 0.48;
(d) Oh = 0.79; (e) Oh = 3.12.

Figure 4c illustrates the regime of inertial–viscous contraction in the final stage of
contraction of G-W liquid necks for five viscosities. The combined effect of viscosity and
inertia in this contraction regime leads to the fracture of the liquid neck. The critical hmin
for the emergence of this regime was shown to vary with Oh in Castrejón-Pita’s study,
with smaller Oh numbers leading to smaller hmin. When Oh = 0.23, the emergence of regime
IV was found to be at hmin = 0.01, and the experimental results can be seen in Figure 4c.

Figure 4d illustrates the evolution of the liquid neck contraction state during the
droplet falling process. When = 0.15 to 0.79, the contraction of the liquid neck is initially
dominated by inertia (regime I—inertia), then the influence of viscosity gradually increases
(regime V—viscosity), and ultimately rupture occurs under the combined action of viscosity
and inertia (regime IV—viscosity–inertia). For the 99% G-W solution, when Oh > 1, the hin-
drance of viscosity to flow starts earlier and is manifested in the initial stage of liquid neck
contraction, followed by entry into the inertia contraction region with an exponent of 2/3
(regime I—inertia). The contraction process is characterised by a transition from regime V
to regime I, ultimately leading to rupture under the combined effects of viscosity and inertia
(regime IV—viscosity–inertia). However, in the study by Castrejón-Pita, the range of action
of the inertia region (regime I) is within the interval where hmin/R is greater than 10−2 and
less than 10−1. In our study, the action range of the inertia region (regime I) is around 101.
Furthermore, in the experimental data, it is observed that there is a region with a contraction
exponent of 3/2 between the inertia region (regime I) and the viscosity region (regime IV)
during the liquid neck contraction process when Oh > 0.48, as indicated by the black line in
Figure 4d. Broboana et al. [29] referred to this as the transitory regime (TR). In the article
by Castrejón-Pita et al. [16], experimental data at Oh = 1.81 also show a contraction process
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with an exponent greater than 1 following the inertia region (regime I), a phenomenon com-
monly observed in other experimental studies [21,23,27,28,30]. However, there is currently
no comprehensive theoretical explanation for this contraction process.

Figure 4. Scaling law of liquid neck contraction. (a) Thickness of liquid neck hmin with time tau
change. (b) Regime V (viscous contraction regime) hmin/R = (0.0709/Oh)τ [9] comparison of
theoretical viscous contraction curves (solid line) with experimental data (data points), the dashed
line indicates the critical threshold at the beginning of the vicious contraction in the theoretical regime
V hmin/R values. Each viscosity corresponds to a theoretical critical change value from regime I to
regime V, and the dashed line is coloured the same as the corresponding viscosity. The theoretical
critical value (hmin/R) of Oh = 3.12 is much larger than 1, indicating that the droplet is initially in
the viscous contraction region at the very beginning of the drop, with viscosity playing a major role.
(c) The extent to which the viscous–inertial regime plays a major role in the contraction process.
(d) The regime division of the whole process of contraction of the liquid neck.

3.2. Viscosity Prediction from Liquid Neck Data

Droplet dynamics was investigated in Section 1. The reduction process of the neck
thickness hmin/R is mainly affected by viscosity, inertia, and surface tension, and the con-
traction regime during neck contraction changes when the viscosity of glycerol aqueous
solution varies. In this section, random forest, neural network, and multiple linear re-
gression are used to predict the viscosity based on the contraction curve data of the neck
thickness hmin/R for the variation in the neck contraction curve with viscosity.

Eleven different percentages of aqueous glycerol solutions were used in the experi-
ments, and due to errors, 18 sets of data for the viscosity–droplet neck contraction curves
were finally obtained, and the data can be seen in Figure 5. Each shrinkage curve has about
400 data points, totaling 18 × 400 total data. The raw dataset was obtained by measuring
the variation of liquid neck thickness frame by frame using a self-programmed program
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after capturing the video of the drop with a high-speed camera. The dataset was divided
into training and test sets according to a 1:1 ratio, with nine curves used as the training set
and nine as the test set. As can be seen in Figure 5, the thickness of the liquid neck increases
with the increase in the dataset. The vertical coordinate is hmin/R and the horizontal
coordinate is the number of data points. A uniform FPS was used for shooting to ensure
that the time interval of each image was kept consistent to avoid compression or elongation
of the curves when the number of data points was used as the horizontal coordinate.

Figure 5. Plot of 18 sets of viscosity–neck curve data, with hmin/R indicating the ratio of liquid
neck thickness to needle radius in the vertical coordinate and the number of data points in the
horizontal coordinate.

The liquid neck shrinkage data used were dimensionless and all values lie between 0
and 1, so no normalisation was required. For the low-viscosity aqueous glycerol solution,
due to the faster dropping time than the high-viscosity one, there will be missing values
after the value of the data point reaches 1, and all of them will be made up with 1. There
are several adjustable parameters in every machine learning model. However, finding the
optimal combination of parameters is time-consuming and beyond the scope of the current
research. As this work focusses on feature selection of the data, only the most important
parameters were optimised, and the parameter settings for the three models can be seen in
Tables 2–4. All other unlabelled parameters are default values.

Table 2. List of important parameters of random forest.

Parameters Max Depth Min Samples Split Min Samples Leaf Number of Trees

Random Forest 30 2 1 200

Table 3. List of important parameters of multiple linear regression.

Parameters Copy Max Iter N-Components Scale

Multiple Linear Regression True 100 10 False
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Table 4. List of important parameters of the neural network.

Parameters Hidden Layer Sizes Activation Solver Max Iter

Neural Network (200, 100, 50) Relu Adam 2000

We used R2, MAE, RMSE, and plots of true versus predicted values to assess the
accuracies of the models [36]. The values for the three models can be seen in Table 5. The
coefficient of determination (R2) is an important parameter in assessing the performance of
a regression model. Its definition is shown in Equation (4).

R2 = 1 − (Actuali − Predictedi)
2(

Actuali − mean of the observer data2
) (4)

It determines how close the predicted data values are to the regression line. If the R2

value tends to 1, it means that the regression model is perfect, and if R2 is 0, it means that
the regression model is a complete failure, i.e., no variance is explained by the regression.
The multiple linear regression model has the best coefficient of determination with R2 = 0.98,
followed by the neural network with R2 = 0.97, and the random forest performs relatively
well with R2 = 0.95.

Table 5. Performance of the model.

Multiple Linear Regression Neural Network Random Forest

R2 0.98 0.97 0.95
MAE 13.85 14.29 18.55

RMSE 16.95 19.65 25.14

For the regression model, MAE is used to measure the average absolute difference
between predicted and actual values. Equation (5) is used to calculate the MAE value,
where Actuali is the actual value, Predictedi is the predicted value, and N is the total
number of instances. The average error of the regression model is measured by RMSE.
Equation (5) is used to calculate the RMSE. The magnitudes of both the MAE and RMSE
values depend on the size of the predicted outcome and are used for comparison between
multiple models of a dataset.

MAE =
∑N

i=1 | Actuali − Predictedi |
N

(5)

RMSE =

√
∑N

i=1(Actuali − Predictedi)
2

N
(6)

The R2, MAE, and RMSE results for random forest, multiple linear regression,
and neural networks are recorded in Table 5 for comparison. The best results for vis-
cosity prediction are shown in the multiple linear regression model, which provided the
smallest MAE and RMSE values of 12.85 and 16.95. Figure 6 shows the R2 values and fitted
regression lines for the three models (random forest, multiple linear regression, and neural
network). The vertical coordinate is the result of model prediction using the prediction set,
the horizontal coordinate is the true viscosity of the prediction set, and the dashed line is
the line of best results. The multivariate linear regression model has the closest R2 to 1,
with the most accurate results, and it can also be seen in Table 5 that multivariate linear
regression also has the smallest MAE and RMSE compared to random forests and neural
networks. In our next work, we plan to continue to extract other kinetic data such as drop
time, drop volume, and drop length to improve the accuracy of the model. We also plan
to automate the data extraction and dimensionless process so that the predicted viscosity
parameters can be output by inputting the video data only.
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Figure 6. Plot of true-prediction results for multiple linear regression, random forest, neural network,
and R2.

4. Conclusions

In this paper, we first conducted droplet experiments on glycerol aqueous solutions.
Then we analysed the kinetic process of liquid neck contraction during droplet falling
and discussed the strong correlation between viscosity and the contraction process. Subse-
quently, based on the experimentally demonstrated strong correlation between viscosity
and the liquid neck contraction process, the relationship was established using a machine
learning model with liquid neck contraction data as the dataset.

In the first part of the Section 3, the droplet neck contraction curves of the dropping
process of five aqueous glycerol solutions with different viscosities were analysed and com-
pared with other research results. The results show that viscosity has a great influence on
the droplet neck contraction process. This was manifested by the change in the contraction
curve. Based on the correlation between the droplet neck contraction process and viscosity,
three machine learning models were used for modelling. After extracting the liquid neck
contraction data through a self-programmed procedure, they were dimensionless and the
factors related to specific scales were removed to be more general and universal. Three ma-
chine learning models, neural network, multiple linear regression and random forest, were
used to train the model using the liquid neck contraction data and predict the viscosity of
the fluid based on the contraction data. The results show that the three models using fluid
neck contraction data are more effective, with random forest having the lowest correlation
coefficient R2 of 0.95, while multiple linear regression gives more accurate predictions with
a correlation coefficient R2 of 0.98, and multiple linear regression has the smallest MAE
and RMSE among the three models, at 12.85 and 16.95.
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