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Abstract: The accurate monitoring of crop areas is essential for food security and agriculture, but
accurately extracting multiple-crop distribution over large areas remains challenging. To solve
the above issue, in this study, the Pixel-based One-dimensional convolutional neural network (PB-
Conv1D) and Pixel-based Bi-directional Long Short-Term Memory (PB-BiLSTM) were proposed to
identify multiple-crop cultivated areas using time-series NaE (a combination of NDVI and EVI) as
input for generating a baseline classification. Two approaches, Snapshot and Stochastic weighted
averaging (SWA), were used in the base-model to minimize the loss function and improve model
accuracy. Using an ensemble algorithm consisting of five PB-Conv1D and seven PB-BiLSTM models,
the temporal vegetation index information in the base-model was comprehensively exploited for
multiple-crop classification and produced the Pixel-Based Conv1D and BiLSTM Ensemble model
(PB-CB), and this was compared with the PB-Transformer model to validate the effectiveness of
the proposed method. The multiple-crop cultivated area was extracted from 2005, 2010, 2015, and
2020 in North China by using the PB-Conv1D combine Snapshot (PB-CDST) and PB-CB models,
which are a performance-optimized single model and an integrated model, respectively. The results
showed that the mapping results of the multiple-crop cultivated area derived by PB-CDST (OA:
81.36%) and PB-BiLSTM combined with Snapshot (PB-BMST) (OA: 79.40%) showed exceptional
accuracy compared to PB-Transformer combined with Snapshot and SWA (PB-TRSTSA) (OA: 77.91%).
Meanwhile, the PB-CB (OA: 83.43%) had the most accuracy compared to the pixel-based single
algorithm. The MODIS-derived PB-CB method accurately identified multiple-crop areas for wheat,
corn, and rice, showing a strong correlation with statistical data, exceeding 0.7 at the municipal level
and 0.6 at the county level.

Keywords: multiple-crop classification; multi-temporal data; deep learning; remote sensing; snapshot;
SWA; ensemble classifier

1. Introduction

Crop area identification plays a significant role in food security [1,2]. Timely and
accurate crop spatial distribution maps are essential for agricultural production, crop
planting structures, and the formulation of national food policies [3,4]. The traditional
approaches for acquiring information on crop planting areas relied on manual measurement
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and statistical sampling, resulting in time consumption, the wastage of human resources,
and inefficiencies [5].

Over the past few years, remote sensing (RS) technology has proven effective in
monitoring the dynamics of crop-growing areas on a regional or global scale owing to its
advantages in rapidity and accuracy [6–8]. Many researchers have utilized RS images with
temporal features of crop growth to map crop planting areas [9–11]. The temporal features
derived from time series captured by Moderate Resolution Imaging Spectroradiometer
(MODIS) data, such as normalized difference vegetation index (NDVI) and enhanced
vegetation index (EVI), include different stages of growth and development in crops [12,13].
Time series of vegetation indices (VI) have provided rich and valuable information in
detecting crop growth variations and spatial planting distribution [14]. Based on the
temporal data derived from MODIS images, He et al. [15] and Zhang et al. [16] combined
the NDVI and EVI with Attention-based Long Short-term Memory networks (A-LSTM)
and phenological information to identify the winter-wheat area in Huanghuaihai region
and corn in Northeast China, respectively. Wang et al. [17] inserted NaE (a combination of
NDVI and EVI) into the model and found that the classification results were better than
the data from the use of either the NVDI or the EVI. The NaE inserts both the NDVI and
the EVI into the model simultaneously, which will effectively avoid data collection errors
due to MODIS sensors, clouds, or rain, thereby in turn effectively avoiding classification
errors caused by data loss or measurement errors and allowing the model to extract more
features. Therefore, the NaE was used as input data in this study.

Various methods have processed data in multi-temporal RS to extract temporal infor-
mation or phenological metrics for crop classification [18,19]. The traditional methods for
crop identification are simple statistics, threshold-based equations, and pre-defined mathe-
matical equations [20]. Luo et al. [21] combined inflection and threshold-based methods to
detect the key phenological stages of maize, wheat, and rice for crop distribution across
China. Xun et al. [22] used a fused representation-based algorithm for cotton area identifi-
cation and obtained the best accuracy result of 79.46%. Although the above approaches in
temporal feature extraction provide many options for crop classification, there are some
problems. Firstly, the threshold-based methods relied on manual work, and the model
design depended on human experience and domain knowledge. This is a time-consuming
and ineffective process [20]. The temporal feature extracted from time series based on
human experts’ experience will result in an information loss in granular data and the
incomplete utilization of interval features. Secondly, pre-defined mathematical functions
inevitably constrain flexibility in handling temporal data; selecting a suitable function for
all crop types presents challenges, especially in diverse crop classification studies [14]. The
dynamic field of deep learning offers solutions to address these weaknesses.

In recent years, using deep learning classification methods for identifying crop distri-
bution has achieved positive outcomes [23–25]. One advantage of the deep learning method
is its flexibility, as it does not confine itself to predefined models [20]. The models learn
feature representations from data in an end-to-end form, avoiding the need for manual
feature engineering based on human experience and prior knowledge [26]. Convolution
neural network (CNN), recurrent neural network (RNN), and self-attention network are
three renowned neural network architectures adept at effectively processing time series
data [27]. CNN can extract high-dimensional features from RS data’s spatial and temporal
domains for crop recognition [28–30]. Zhong et al. [20] extracted the temporal feature from
MODIS NDVI time series data using CNN and LSTM classifiers to identify the 14 categories
of crops in the San Joaquin Valley, California. RNN observes the connected neurons to
learn the time sequence relationship and performs better in processing time series data.
LSTM is a variant of RNN that shows long-term temporal dependence by incorporating
a gate control mechanism [31]. To further improve the temporal feature extraction of
the LSTM model, the bi-directional flow method is introduced to form BiLSTM [32]. Xu
et al. [33] combined ARD data, Landsat 7 Enhanced Thematic Mapper Plus, Landsat8
Operational Land Imager data, and the DCM classifier to identify the main crops in six
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study sites. Based on the deep learning algorithm, Kumar et al. [29] and Mou et al. [34]
combined the multi-temporal images to extract features with 1D convolution and RNN
classification algorithms for land cover classification in Ukraine and crop classification,
respectively. In 2017, the self-attention mechanism was proposed for analyzing sequences
in natural language processing [35]. It facilitates parallel feature extraction from super-long
sequences and achieves excellent recognition results. Rußwurm and Körner [36] used the
self-attention classification method to identify the crop type. With the aim of improving the
efficacy of deep learning models, many strategies have emerged. Based on the CIFAR-10
and CIFAR-100 datasets, Huang et al. [37] and Izmailov et al. [38] combined the Snapshot
and SWA strategies with the DenseNet and ResNet-164 network for image identification,
and the results showed that, compared to the single model, Snapshot’s performance was
improved by 0.34% and 1.84% and, compared with the SGD optimization algorithm, SWA’s
performance was enhanced by 0.61% and 1.86%, respectively.

The combination of multi-temporal satellite data with a deep learning model for iden-
tifying crop types has been widely used, and favorable results have been obtained. Luo
et al. [39] combined NDVI time series, textural, and phenological features from Sentinel-2
data with an artificial neural network (ANN) for multiple-crop identification in North
China; However, the accuracy and kappa coefficient failed to exceed 80% and 0.7, respec-
tively. Li et al. [40] proposed an object-based convolutional neural network (TS-OCNN)
combined with UAVSAR images for multiple-crop classification at two stations in the
Sacramento Valley, with an accuracy of 81.63% and 85.88%, respectively. Wang et al. [7]
used EVI time series with phenology information for corn identification, achieving an
accuracy of over 85% and an R2 value of 0.81 at the city level. However, there are still
two problems in the above research. Firstly, the study with higher accuracy only iden-
tified a single crop or small–large area. In addition, the model’s accuracy is worse with
multiple-crop classification. Hence, the potential and performance of this method for
identifying multiple-crop areas have not been fully exploited. Developing deep learning
models suitable for multiple-crop areas by comparing them to PB-Transformer is necessary
to assess the latter’s potential and capabilities. Overall, mapping multiple-crop spatial
distribution is crucial for national food security. Nevertheless, most existing studies on
multiple-crop identification were conducted with single crops or unsatisfying results.

This study aims to develop a pixel-based deep learning algorithm that is adaptable
to the multi-temporal data from the MODIS satellite for classifying multi-crop cultivation
areas in North China. The objectives were: (1) to propose two pixel-based deep learning
models named PB-Conv1D and PB-BiLSTM, comparing them with PB-Transformer; (2) to
introduce Snapshot and SWA techniques to enhance model accuracy in deep learning; (3) to
develop the PB-CB model through ensemble learning techniques from PB-Conv1D and
PB-BiLSTM; (4) to generate multiple-crop distribution maps in North China using the time
series Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI) data from MODIS satellite imagery combined with the PB-CB model for the years
2005, 2010, 2015, and 2020; (5) to compare the accuracy of various deep learning methods.

2. Materials and Methods

The overall workflow, as depicted in Figure 1, comprises five distinct parts. Firstly,
training samples were selected through agricultural sites, field surveys, and visual inter-
pretation, while test samples were masked from GLC_FCS30 data to extract the cropland
distribution. The annual time series NDVI and EVI data of the sample sites were extracted
from the processed MOD13Q1 data for the sample points. Secondly, two DL models
named PB-Conv1D and PB-BiLSTM were developed and compared with the pixel-based
Transformer (PB-Transformer) model, followed by the adoption of Snapshot and SWA to
improve the classification accuracy of the models. Thirdly, the integrated classifier was
obtained by combining DL models based on the ensemble learning method, comparing all
the above models to obtain the optimal classification model. Finally, the proposed optimal
model mapped the crop cultivation area for 2005, 2010, 2015, and 2020.
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2.1. Study Area

In this study, a total of seven provinces—Hebei, Beijing, Tianjin, Henan, Anhui, Shan-
dong, and Jiangsu—were selected as the study area (32◦–40◦ N, 114◦–121◦ E), which is also
known as North China (Figure 2).
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The North China Plain is an important agricultural production area in China, mainly
planting rice, wheat, corn, etc. The region experiences a temperate monsoon and subtropical
monsoon climate, characterized by hot and rainy summers and cold and dry winters, with
an annual precipitation range of approximately 500 to 800 mm [7]. Wheat, corn, and rice
are the main crops cultivated in North China. For climatic reasons, North China is suitable
for producing single and double cropping, primarily winter wheat and other crops in
rotation. The growing season of corn is different, comprising May to August and June
to September, named spring corn and summer corn, respectively (Figure 3). This study
selected the winter wheat–summer corn (WT–SU), winter wheat–spring corn (WT–SP),
winter wheat–rice (WT–RI), winter wheat-other (WT-OT), summer corn (SU), spring corn
(SP), rice (RI), and other (OT), a total of eight classes for identification.
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Figure 3. Crop calendars in North China. Blue represents seeding, green represents crop growth and
development, and yellow represents maturity. Blank indicates the time of planting for crops that did
not fall under any category.

2.2. Data
2.2.1. MODIS Images and Preprocessing

The MODIS onboard the Terra and Aqua satellites were developed by the Earth
observation system (EOS) and can capture images with a spatial resolution ranging from
250 to 1000 m and a revisiting period of 16 days [41]. The MOD13Q1 satellite data spatial
resolution is 250 m, which provides 23 annual temporal images and contains two VI types,
including the NDVI and EVI. The VI datasets were obtained from the Google Earth Engine
(GEE) from 2003 to 2015 and 2020, with 323 images used for crop identification.

2.2.2. Reference Samples

In this study, the samples were obtained from China Meteorological Science Data
Sharing Service (CMSDSS) (http://data.cma.cn/, accessed on 15 March 2023), which
includes crop type labels, longitude, and latitude and provides 196 agricultural weather
stations, commonly utilized as a reference map for crop identification [22]. Moreover, the
team conducted field surveys in Hebei Province in 2012 and 2014, selecting sample sites
for the winter wheat–summer corn class and using a handheld Global Position System
(GPS) to determine the latitude and longitude coordinates of the sample. According to the
agricultural station, field survey, and visual interpretation, a total of 12,750 sample pixels
were obtained from 2003 to 2015 (Figure 2).

The pixel sample points were randomly divided into three datasets: training, valida-
tion, and test, following the ratios of 60%, 20%, and 20% (Table 1). The training datasets
were utilized to train the classification algorithms. The optimal hyper-parameters were
selected with the validation datasets. The test datasets were used to assess the model’s
ability to generalize and the performance of the model for unseen data.

http://data.cma.cn/
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Table 1. The classification was conducted using a total of eight categories in this study. The first seven
categories corresponded to wheat, corn, and rice, while the remaining category encompassed other crops.

Category Code Abbreviations Training Set Validation Set Test Set Total
Summer corn SU 499 166 167 832

Rice RI 274 91 92 457

Spring corn SP 241 80 81 402

Other OT 764 255 255 1274

Winter wheat-Other WT-OT 281 94 94 469

Winter wheat-Rice WT-RI 2221 741 741 3703

Winter wheat-Spring corn WT-SP 473 158 158 789

Winter wheat-Summer corn WT-SU 2894 965 965 4824

Total 7647 2550 2553 12,750

2.2.3. Cropland Mask

MODIS data were masked by rained cropland and irrigated cropland in order to
exclude interference from non-cultivated areas (i.e., cover, forest, shrubland, grassland, veg-
etation, wetlands, and others). The cropland mask for the study area was generated using
the Global Land Cover with Fine Classification System at 30 m (GLC_FCS30dataset [42],
and the original spatial resolution (30 m) was resampled to 250 m for the years 2005, 2010,
2015, and 2020. The masked images are shown in Figure 4.
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2.3. Methodology
2.3.1. Pixel-Based One-Dimensional Convolutional Neural Network (PB-Conv1D)

The one-dimensional convolutional neural network (Conv1D) effectively extracts
sequential features using one-dimensional filters to capture temporal features from feature
maps [26]. Convolutional layers can capture the local features in the lower layers’ feature
map and summarize the global features in the upper layers [43].

The optimization hyper-parameters of the PB-Conv1D classifier were more complex.
Due to the characteristic variability, there is no standard method to search for the optimal
configuration of hyper-parameters and network structure. In this study, the PB-Conv1D
classifier was implemented in combination with Conv1D, Dropout, Batch Normalization,
Pooling, and Fully Connected layers. Dropout is an optimization method that can randomly
drop some neurons; therefore, the model does not rely on a few neurons, which will avoid
over-fitting [44]. Max-pooling layers were consistently used to compress the dimensionality
of the feature map and speed up calculation. The last layer is Fully Connected, which
collects feature information and determines the output classes. The model hyperparameters
are shown in Table 2.

Table 2. PB-Conv1D hyperparameters.

Model Hyperparameters Hyperparameters Value

Convolutional filters 3, 5, 7
Convolutional channel 32, 64, 128, 256
Convolutional layer 1, 2, 3, 4, 5, 6, 7, 8, 9
dropout 0, 10%, 20%, 30%, 40%, 50%, 60%

The diagram illustrating the architecture of PB-Conv1D is depicted in Figure 5. The
model contains four parts. The Input Module represented the time series data. The
Convolution Module used convolution to extract features of time series data. The Fully-
Connected Module merged temporal features extracted by the Convolution Module. The
Output Module used softmax activation to obtain the final crop category. The optimal
hyper-parameters were chosen through experimental selection.
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Figure 5. The proposed PB-Conv1D methodology. The green parts of the input and convolution
modules symbolic of the path of the sample data flowing through the model, marking the process of
data processing. In the Fully-connected layer, the circles represent neurons, where the green circles
show neurons in the active state, while the white circles indicate those neurons that were temporarily
removed from the network by the dropout mechanism during the training process.
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2.3.2. Pixel-Based Bi-Long Short-Term Memory (PB-BiLSTM)

Recurrent neural networks (RNN) are frequently considered a choice for capturing
the temporal relationship within time series [45]. However, when the time series data
cover an excessively long period, it can result in many model parameters, leading to a
slowdown in training speed. Moreover, issues like gradient explosion and disappearance
can diminish the information processing capacity of RNN. To solve the phenomenon of
“long-term dependence” in RNN, the Long Short-Term Memory (LSTM) model came into
being [46]. LSTM improves the memory capacity of the model by introducing forget, input,
and output gates [47]. When updating the state of a recursive cell, the input gate determines
which new input information can be stored. The forget gate determines which information
to discard from the current cell, which allows the forgetting gate to control the influence of
historical information on the current memory cell state value. The output gate determines
which information is available for output [48]. Due to the addition of the gate mechanism,
the LSTM model mitigates gradient explosion and disappearance compared to the RNN
model [49]. The operation of LSTM is shown below in Equations (1)–(5).

ft = σ(Wfhht−1 + WfxXt + bf) (1)

it = σ(Wihht−1 + WixXt + bi) (2)

St = ft × St−1 + it × tan h(Wshht−1 + WsxXt + bs) (3)

Ot = σ(Wohht−1 + WoxXt + bo) (4)

ht = Ot × tanh(St) (5)

where ft, it, and Ot represent the values of “forget gate”, “input gate”, and “output gate”,
respectively, St represents the state value of the memory cell, and ht represents the value of
the hidden layer. σ and tanh represent the activation functions sigmoid(x) and tanh(x). Ot
represents the entire cell’s output value at time t, l represents the current layer, and l − 1
represents the previous layer.

LSTM has a problem in the modeling process, namely that it can only capture the
data information relationship from front-to-back and not encode the dependency from
back-to-front. In some studies, the current output depends not only on the previous state
but also on the future state. BiLSTM extracts high-level abstract temporal features from
input sequences hierarchically [33].

The construction process of the PB-BiLSTM model is similar to the PB-Conv1D. The
BiLSTM layer is used to extract time-dependent features. To prevent overfitting, each
layer of BiLSTM is connected to the Dropout layer, and BatchNormalization is performed
to normalize the data after four layers of BiLSTM. Then, partial data is dropped, and
the Fully-Connected layer is used to obtain the output results (Figure 6) and the model
hyperparameters, as shown in Table 3.

Table 3. PB-BiLSTM hyperparameters.

Model Hyperparameters Hyperparameters Value

BiLSTM layer 1, 2, 3, 4, 5, 6, 7, 8, 9
Dropout 0, 10%, 20%, 30%, 40%, 50% 60%.

2.3.3. Pixel-Based Transformer (PB-Transformer)

Crop classification uses the encoder part of the Transformer model [35], which is called
PB-Transformer. The PB-Transformer model comprises an input module, encoder module,
fully connected layer, and output module. The encoder module realizes feature extraction
by stacking multiple multi-head attention mechanisms [36,50]. ShortCut was used to obtain
better results, and Layer Normalization was used to avoid overfitting. Finally, a fully
connected layer is used for crop identification.
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In order to optimize the hyper-parameters of PB-Transformer’s model, we conducted
a search to determine the optimal number of self-attention heads from the options 2, 4, 6,
and 8, the self-attention layers from the choices of 2, 4, 6, and 8, and the fully-connected
layers within the range of 1024 and 2048.

2.3.4. Snapshot Ensemble Cyclic Learning Rate

Snapshot technology is a cyclic learning rate with an annealing strategy. Traditional
deep learning methods find the minimum point of the loss function by attenuating the
learning rate once. However, due to the irregularity of the loss function, existing techniques
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cannot find its minimum [51]. Therefore, a single decay in the learning rate may find a
non-local minimum of the loss function or the saddle point, resulting in bad results for
the model. Snapshot technology will carry out multiple learning rate decay to avoid this
phenomenon. After each learning rate decay is completed and the minimum value of the
loss function of this epoch is found, the learning rate will be increased to the original value
and will carry out the learning rate decay, which will repeat this process iteratively until
the maximum number of iterations is reached.

The traditional learning rate curve saves the corresponding model at the end of each
cycle and then makes predictions so that the model can only be reserved once. Because
Snapshots are recurrent learning rates, multiple-model training can be performed using
single or multiple models to make predictions [37].

a(t) =
a0

2

(
cos

(
πmod(t − 1, [T/M])

[T/M]

)
+ 1

)
(6)

where a(t) represents the learning rate for the t-th epoch, a0 is the maximum learning rate,
T is the total number of iterations, M is the cycle number, and the square brackets indicate
the rounding down operation.

In this study, the PB-Conv1D, PB-BiLSTM, and PB-Transformer models are trained
using 0.0001 and 0.0005 learning rates combined with Snapshot technology to obtain a
better classification model. Because of the models’ differences, the iteration numbers for
model training vary; the specific parameters are shown in Table 4.

Table 4. Number of iterations, epochs, and cycles of the learning rate of different models using Snapshot.

Model Iteration Epochs Cycles

PB-Conv1D 600 40 15
PB-BiLSTM 800 80 10

PB-Transformer 800 80 10

2.3.5. Stochastic Weighted Averaging (SWA)

The stochastic weighted averaging (SWA) strategy tends to keep the loss function to a
global minimum. It was observed that the local minimum of the loss function obtained at
the end of each learning rate cycle tends to accumulate at the region’s boundary on the loss
space. A local minimum loss can be obtained by averaging these low-loss values. When
Izmailov experimented in the training data, the SWA algorithm received a loss value at
the 125th iteration, higher than the SGD method, and the loss obtained using the SGD
was higher than with the SWA method when performing the 125th iteration in the test
dataset [38]. This indicates that SWA will achieve better generalization than traditional
training methods and finding the local minimum loss is possible.

In this study, PB-Conv1D, PB-BiLSTM, and PB-Transformer used Adam optimization
algorithms to minimize the loss function. Therefore, after 200 training iterations, SWA
strategies will be introduced for weight averaging.

2.3.6. Ensemble Classifier

The ensemble learning method integrates the base model to improve performance [52].
In this study, two methods are used to model the ensemble. One is to integrate the single
model, and the other is to integrate multiple models.

The single-model and multiple-model integrations are categorized into three parts
(Figure 7). The first is training DL (base model). They are then combined with the DL model,
and three strategies (Snapshot, SWA, Snapshot + SWA) and the top K, N, and M models
are selected. Finally, the top-K + N + M model is randomly integrated to obtain the optimal
ensemble model. Multi-model integration is a similar process to single-model integration.
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Figure 7. Architecture of the ensemble classifier.

The models were constructed using Python 3.8 with the PyCharm Community 2023.2.1
software for debugging, and the environment configuration is based on Anaconda 23.7.2,
where TensorFlow 2.3 is installed as the deep learning framework.

2.3.7. Accuracy Assessment

The spatial identity of the crop map was evaluated with test samples that would
calculate the overall accuracy (OA), precision (UA), recall (PA), and Weighted F1 Score [53].
When the sample points are unbalanced, it is not suitable to use the same weight to calculate
the F1 Score, and the number of each class should be used as the weight value [17].

The OA indicates the proportion of correctly predicted samples by the model out
of all samples. Precision shows the proportion between the number of samples correctly
predicted by the model and the total number of samples predicted by the model for a
specific category. Recall represents the ratio of correct samples predicted by the model in
the actual samples of a certain class. F1 Score reflects the relationship between the precision
and recall of the model. The Kappa coefficient signifies the balance of the confusion matrix
and is employed for assessing consistency [54]. R2 and RMSE were used to calculate
statistical correlations.

overall accuracy =
TP + FN

TP + FP + FN + TN
(7)

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

F1 Scoreclass = 2 × precision × recall
precision + recall

(10)

Kappa coefficient =
po − pe
1 − pe

(11)
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R2 = 1 −

m
∑

i=1
(yi−ŷi)

2

m
m
∑

i=1
(yi−yi)

2

m

(12)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (13)

The meanings of the parameters in Table 5 are shown below: TP indicates the correct
classification of the positive class, FN represents the misclassification of the positive class as
the negative class, FP signifies the misclassification of the negative class as the positive class,
and TN indicates the correct classification of the negative class. P0 represents the overall
accuracy, and Pe is the ratio of the total number of cells in the actual cluster multiplied
by the total number of cells on the diagonal of the confusion matrix to the square of the
number of samples. yi indicates true value, yi denotes the average of true values, and ŷi
represents predicted value.

Table 5. Confusion matrix diagram illustrating the predicted and actual classifications.

Predict

Positive Negative

Actual
Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

3. Results
3.1. Evaluate a Single Classification Model

As the PB-Conv1D had the shortest running time of the three models, the best analysis
of its hyperparameters, and the best results generated during the procedure. Other models
were not repeated. The PB-Conv1D model and PB-Conv1D combine different strategies
and have been experimented with several times; the model’s parameters are shown in
Table 6. Although the foundational structure of the base model remains consistent, the
parameters of the models for different strategies are different.

Table 6. The learning rate and dropout parameters of the optimal model obtained based on the
PB-Conv1D.

Classifier Dropout/% Learning Rate

PB-Conv1D 40 0.0001
PB-Conv1D combine Snapshot (PB-CDST) 40 0.0005

PB-Conv1D combine SWA (PB-CDSA) 40 0.0005
PB-Conv1D combine Snapshot and SWA (PB-CDSTSA) 10 0.0005

Figure 8 shows the accuracy and loss function changes of different methods. The
PB-Conv1D model added an early stopping strategy when the loss value of multiple
iterations did not decrease during the training process, stopping the model training, and
the model was iterated 140 times. The number of iterations for the other methods was
fixed. Figure 8(Ac,Bc) shows that PB-CDSA achieved a high accuracy of nearly 95%, with a
decreasing loss function on the training set; however, the accuracy was slightly above 80%,
and the loss function showed a decreasing and then increasing pattern, which indicated the
limited generalization ability of the model. The accuracy function of PB-CDST was cyclical
because it used the cycle learning rate, and the learning rate would be relearned from the
initial learning rate at the end of each cycle. Combining A and B, the method’s accuracy
decreased, and the loss value increased in the validation set. However, each model would
be saved after 40 iteration cycles, which obtained models with a better generalization ability.
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Figure 9 illustrates the effectiveness of the combined strategy compared to the base-
model. Among the three models, two achieved optimal results after incorporating the
Snapshot strategy, while the third model combined both the Snapshot and SWA strategies
to achieve the best results. With the combination of Table A1, the results show that the PB-
CDST method had the higher OA among all PB-Conv1D-based models, with an improve-
ment of 0.79%. PB-BMST achieved the best results, resulting in an accuracy improvement of
1.81% compared to the other PB-BiLSTM-based algorithm. The PB-Transformer combined
SWA (PB-TRSA) method could not significantly improve the classification accuracy, with
an accuracy decrease of 5.99%. Compared with the PB-Transformer method, PB-TRSTSA
improved the accuracy by 0.63%. The optimal hyperparameter results for PB-BiLSTM and
PB-Transformer are shown in Table 7.

Table 7. Optimal hyperparameters of the PB-BiLSTM and PB-Transformer model.

Classifier Dropout/% Learning Rate

PB-BiLSTM combine Snapshot (PB-BMST) 10 0.0005
PB-Transformer combine Snapshot and SWA

(PB-TRSTSA) 60 0.0005

Comparing the metrics of PB-Conv1D, PB-BiLSTM, and PB-Transformer, the PB-
Conv1D model is more effective for crop identification. According to the folded line of
Figure 9, it is concluded that the accuracy of the PB-Conv1D model fluctuates less after
the integration of the strategy, which means that the parameters of PB-Conv1D change
slightly in the Loss function space without causing significant improvement in the model.
The folded line of PB-BiLSTM showed that the accuracy fluctuates slightly after adopting
the strategy. The more extensive floating folded line of the PB-Transformer indicates that
the PB-TRSA has severe deviations in the loss space, with the parameters obtaining inferior
loss values on average.
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Figure 9. The primary Y-axis represents the performance metrics for the various models, which
include (a) overall accuracy (at 80%), (b) Kappa coefficient (at 0.7), and (c) weighted F1 score (at
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the model type.

Figure 10 indicates that the crop recognition from different methods of the PB-Conv1D
model was relatively stabilized. PB-BiLSTM enhanced the recognition of OT after the
adoption of the strategy. PB-Transformer significantly reduced the recognizability of WT-
OT and WT–SP after the addition of the SWA strategy. This indicates that the strategy is
ineffective in classifying these categories, with the minimum loss value to be found when
the parameters are averaged. Further analysis of Figure 10 shows that the WT–SU category
had a more concentrated distribution of all models, which means that the three models
could distinguish it better. WT–SU was misclassified as WT–SP, whereas SU, WT–SP, WT–
RI, and WT-OT were misclassified as WT–SU. WT–SU and WT–RI are rotation crops; due
to the similar growth cycles of SU and RI, they are easily confused. WT–SP can be easily
misclassified as WT–SU due to the similarity between summer corn’s and spring corn’s
growth curves. WT-OT contains information on several crops, such as cotton and soybean,
which are difficult to distinguish from WT–SU since there are similarities between the
phenological information of these crops. The distinguishing ability of the three models for
SU was weak. SU was misclassified into OT and WT-OT for many sample points due to the
multiple information contained in OT sample points. The model had the insufficient ability
to distinguish this information. More details are given in Table A1.
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3.2. Evaluation of the Ensemble Classifier

In this study, to obtain a more effective classification model, original models and
voting algorithms were combined to obtain a better ensemble algorithm. The top-k models
with better performance than the individual models were integrated to obtain the final
ensemble model. The results after many experiments are shown in Table 8.

Table 8. Description of integrated model construction.

Model Name Description k-Value

PB-CV The top K best-performing PB-Conv1D, PB-CDST, PB-CDSA, and
PB-CDSTSA models were voting 5

PB-BV The top K best-performing PB-BiLSTM, PB-BMST, PB-BMSA, and
PB-BMSTSA models were voting 7

PB-TV The top K best-performing PB-Transformer, PB-TRST, PB-TRSA, and
PB-TRSTSA models were voting 3

PB-CB The PB-CV and PB-BV were voting 12
PB-CBT The PB-CV, PB-BV, and PB-TV were voting 15

Figure 11 shows that the classification effect of the PB-BV algorithm was best and
the PB-TV algorithm was worst in single-model integration. When the single model
was classified, the performance of the PB-CDST method was excellent, with its accuracy
increased by 0.74% after integration. The performance of the TB-TRST was less than the
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PB-CDST method, with a difference of 1.96%, and the accuracy of the model increased by
2.84% after integrating PB-BiLSTM, which is a considerable improvement, exceeding the
PB-CV model. Compared with the best-performing single model ensemble (PB-BV), the
PB-CBT model’s accuracy improved by 1.21%. The performance of PB-CBT (83.47%) was
slightly higher than that of the PB-CB (83.43%) classifier. Although the PB-Transformer
model was added to PB-CBT, the accuracy of the PB-CBT did not significantly improve,
and the running time of the PB-CBT was greatly increased. This underscores the fact that
not integrating all models will improve the classification effect and may even increase the
classification time. The PB-CB model can be used as a candidate algorithm for classification
studies in subsequent experiments.
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Figure 12 shows that the PB-TV model obtained inferior classification results for each
crop type. Since the PB-Transformer model had the worst discrimination, the integrated
learning could not modify the temporal information from the model. Compared with
the PB-CDST (Figure 10), PB-CV improved the discrimination of SU. PB-BV enhanced
the recognition of WT-OT. PB-CB promoted the identification of RI, WT-OT, WT–RI and
WT–SP. Compared to PB-CB, PB-CBT improved the recognition of OT, WT–RI, and WT–SU,
illustrating that PB-Transformer can effectively discriminate among three categories. The
results for SP and OT were better in a single classifier, indicating that model integration
may have decreased the recognition effect of some classes.

With the combination of Table A1, the F1 score of SU did not exceed 70% after model
integration. It indicated that the models performed weakly for SU. Analyzing Figure 11, the
F1 scores obtained by integrating the models were significantly improved and far higher
than the highest F1 scores of single models. The PB-CV model was superior to the PB-BV
model in identifying SU, RI, and SP. The PB-BV model was more effective in identifying
OT and WT-OT than the PB-CV model. For other rotational crops, both were identified
effectively, with F1 scores above 80%. The PB-BV model made it easier to confuse RI and
SP, and the PB-CV model made it easier to classify WT-OT into SP, WT–RI, and WT–SU,
which made the results consistent with those obtained from the analysis of the single model
(Figure 10). This indicates that ensemble learning is a combination of results from simple
voting and without feature learning. Further observation of Figure A1m,n reveals that
the PB-CV model demonstrated better recognition on most non-rotation crops along the
diagonal of the confusion matrix, while the PB-BV model exhibited a better recognition
effect on most rotational crops.
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Figure 12 showed that the PB-CB and PB-CBT models had inferior classification
abilities for SU and SP and superior classification abilities for the other categories. SU
misclassified as OT as WT–RI and WT–SU, RI, SP, and OT misclassified as SU produced
more samples, which is the same situation as in other experiments. It means that the results
obtained from the multiple model ensembles are consistent with the single model and
that the accuracy will be slightly changed by integrating the crop classes with a worse
classification effect into the single model while the accuracy of the crop classes with a
better classification effect will be significantly improved by integrating them. For non-
rotational crops, F1 scores decreased with both the PB-CB and PB-CBT models compared
to the PB-CV model and increased with the PB-BV model (Table A1). Since the number of
PB-Conv1D and PB-BiLSTM models was seven and five, respectively, PB-BiLSTM showed
numerical advantages for integration, and the model results were similar to those with
the PB-BV model. By observing the F1 scores for each crop in PB-CB and PB-CBT, it
is found that integration with the PB-Transformer model caused the F1 scores for some
classes to decrease, indicating that the PB-Transformer model was ineffective in identifying
these classes.

3.3. Multiple-Crop Classification Map

Through an analysis of the spatial distribution of crops in the study area from 2005 to
2020, Figure 13 suggests that there has been minimal variation in cropping patterns within
the study area over the span of 15 years. The main planting patterns in the middle and
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south of the study area were WT–SU and WT–RI. The main planting patterns in the north
and east of the study area were single cropping, mainly spring corn and summer corn.
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Figure 13. Crop spatial distribution map in North China using PB-CB in 2005 (a), 2010 (b), 2015 (c),
2020 (d).

From observation, WT–RI planting areas in Anhui Province showed a downward
trend from 2015 to 2020, consistent with the results of the National Statistical Yearbook.
In 2020, Anhui Province suffered from floods, which caused severe damage to crops and
decreased RI by 6632.133 km². As a result, large areas in the crop distribution map are OT,
reflecting the accuracy of the crop planting map sideways.

3.4. Accuracy Assessment with Statistical Data

The crop cultivation areas obtained from the MODIS data were summarized at the
municipal level. The accuracy assessment was conducted by calculating the R2 and RMSE
using municipal statistical data. The area of wheat, corn, and rice detected from MODIS
images using the PB-CB algorithm demonstrated a positive correlation with municipal
statistics. The R2 for wheat was 0.76, with an associated RMSE of 83.82 Kha; for corn, the
R2 was 0.72, accompanied by an RMSE of 72.83 Kha; and for rice, the R2 was 0.70, with an
RMSE of 69.64 Kha, while considering all data pairs for 2005, 2010, 2015, and 2020, as shown
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in Figure 14A. These results show excellent agreement between the area data derived from
MODIS and the statistical data. To further analyze the results, the crop cultivation area
for 2015 derived from the PB-CB algorithm was compared with county-level statistics
and still showed a positive correlation. The R2 reached 0.64 and RMSE of 14.60 Kha for
wheat, R2 attained 0.63 and RMSE of 14.01 Kha for corn, and R2 reached 0.65 and RMSE
of 12.92 Kha for rice (Figure 14B). This further confirms the feasibility of using the PB-CB
model combined with NaE data for crop cultivation area extraction.
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eas detected from the MODIS data in 2005, 2010, 2015, and 2020 combining the PB-CB algorithm.
(B) County-level comparisons of (1) wheat, (2) corn, and (3) rice planted detected from the MODIS
data in 2015 combining the PB-CB algorithm.

4. Discussion
4.1. Advantage of the Ensemble Model

Timely and accurate crop spatial distribution and yield estimation monitoring are sig-
nificant to national food security and strategic arrangements [55]. Deep learning algorithms
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capable of mapping multiple crops’ spatial distribution have proven effective in recent
years [15,17]. However, most methods for extracting multiple-crop data in North China
have lower accuracy. Xun et al. [56] used sparse-representation-based algorithms combined
with the Leaf Area Index (LAI) to classify multiple crops in North China, and the final
accuracy reached 76.05%. Wang et al. [17] combined NaE and Stacking (SVM, RF, KNN)
for multiple-crop classification in North China, achieving an overall accuracy of 77.12%.
Mapping the crop area in regions with a large and multiple-crop type remains challenging.
The development of a method capable of identifying multiple-crop types within a large
geographical area is in demand.

To this end, in this study a new PB-CB network is proposed, combining it with time
series NDVI and EVI (NaE) data to generate crop planting distribution maps. The results
show that PB-CB can effectively conduct crop classification research. Compared to existing
methods, the PB-CB method offers several advantages. Firstly, deep learning models
follow the end-to-end principle without needing expert experience and prior knowledge,
which can automatically obtain crop results [20]. Secondly, Snapshot and SWA strategies
combined with PB-Conv1D and PB-BiLSTM models can simplify the feature extraction
process and obtain higher accuracy. Finally, combining multiple models is equivalent to
fusing numerous features, resulting in better feature results, which is particularly well-
suited for crop classification research.

To better demonstrate the advantages of the PB-CB model, we conducted a comparison
between the PB-CB model and two other models: the PB-CDSA classification model, which
demonstrated the best performance in the single model, and the PB-BV model, which
achieved the highest performance among the single model ensemble. Table 9 shows the
difference between the confusion matrices of the PB-CB and PB-CDSA models, with positive
values on the diagonal and negative values on the non-diagonal, indicating the number of
samples correctly classified by the PB-CB model than PB-CDSA. The total showed that the
PB-CDSA model outperformed PB-CB only in classifying SP. The PB-CB model indicated
more vital classification ability when dividing rotation crops, especially WT–RI and WT–SU.
By calculation, the number of samples correctly classified by the PB-CB than the PB-CDSA
model accounted for 4.15% of the total test samples, which is enough to illustrate the
advantages of the PB-CB model.

Table 9. Difference between the confusion matrix of the PB-CB classifier and PB-CDSA classifier.
Values are calculated as Figure A1p minus Figure A1b.

Reference Classes
Classified

SU RI SP OT WT-OT WT-RI WT-SP WT-SU Total

SU 6 1 2 −2 0 −4 1 −4 12
RI −2 3 0 −1 0 0 0 0 6
SP 2 0 −2 3 0 −1 −2 0 −4
OT 3 −3 0 1 −1 0 2 −2 2

WT-OT 0 0 −2 0 7 −3 0 −2 14
WT-RI −2 1 0 0 −2 17 −1 −13 34
WT-SP 0 0 1 −4 1 −3 5 0 10
WT-SU 0 0 0 0 −4 −5 −7 16 32

Total 5 4 −3 5 13 33 12 37 106

Table 10 shows the difference between the confusion matrix of the PB-CB model and
that of the PB-BV model, and the meaning is consistent with Table 7. The total indicates
that the PB-BV model only showed a stronger classification ability than PB-CB when
classifying WT-OT. This is because the PB-BV model had a better effect on WT-OT, while
the PB-CB model integrates the PB-BV and PB-CV models, and the PB-CV model had a
weak classification ability for WT-OT than integrated PB-BV and PB-CV, which reduced
the classification ability of the PB-BV model. The two models exhibit similar classification
capabilities for SP and OT. When dividing WT–SU, the PB-CB model showed a strong
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classification ability. According to calculations, the number of samples correctly classified
by the PB-CB model compared to the PB-BV model accounted for 2.35% of the test samples,
indicating that PB-CB has certain advantages over PB-BV.

Table 10. Difference between the confusion matrix of the PB-CB classifier and that of the PB-BV
classifier. Values are calculated as Figure A1p minus Figure A1n.

Reference Classes
Classified

SU RI SP OT WT-OT WT-RI WT-SP WT-SU Total

SU 5 0 1 −2 0 −1 0 −3 10
RI −1 3 −2 0 0 0 0 0 6
SP 2 0 0 2 −2 0 −2 0 0
OT 1 0 0 0 −2 1 0 0 0

WT-OT 0 0 2 0 −3 1 −1 1 −6
WT-RI −2 0 0 0 −1 6 −2 −1 12
WT-SP 0 0 −1 1 1 0 4 −5 8
WT-SU 1 −1 0 0 1 −18 2 15 30

Total 4 4 0 −1 0 23 7 23 60

4.2. Uncertainty and Potential Refinements

The PB-CB method used in this study has dramatically improved the results of pre-
vious studies. However, certain factors and uncertainties still continue to influence the
accuracy of the mapping results. Firstly, GLC_ FS30 is used as auxiliary data for land
mask processing and has some errors that may lead to propagation errors in the final crop
classification map. In addition, the MOD13Q1 data has a spatial resolution of 250 m, which
will cause the problem of mixed pixels and lead to errors in crop recognition.

Although the work of this study is carried out in North China, the methods used in this
study can also be applied in other regions. Several improved ways may be more applicable
to other crop identification. First of all, time series was used for crop identification, and
these data still face the challenge of intra-class variation. Multi-source data fusion can be
used to classify crops [57]. Crops are affected not only by phenology but also by longitude,
dimension, sowing time, and climate change [58,59]. Therefore, the phenological, longitude,
and latitude information can be adopted in the recognition algorithm of crop area [60]. In
addition, medium spatial resolution data have limited acquisition and coverage capabilities,
and rough spatial resolution, such as MODIS, still has some problems in mixed-pixel
recognition [61–64]. In future research, higher spatial resolution data can be used for the
crop recognition.

5. Conclusions

Accurate and timely crop distribution access is important to food production manage-
ment. This study proposed a new method for crop identification by using multi-temporal
MODIS remote sensing images in North China. Firstly, the time series were combined as
inputs to the PB-Con1D and PB-BiLSTM models for producing the original classification
results. Then, the Snapshot and SWA strategies were introduced in the deep learning
models to gradually improve crop classification accuracy and obtain the best-performing
PB-CDST (OA: 81.36%) and PB-BMST (OA: 79.37%) models. They were compared with
the PB-TRSTSA (OA: 77.79%) model to show the advantages of our proposed models
for multiple-crop classification. Subsequently, the better-performing PB-Conv1D and PB-
BiLSTM were combined with ensemble learning to obtain the PB-CB model. The proposed
PB-CB (OA: 83.43%) algorithm combines the temporal features learned from the PB-Conv1D
and PB-BiLSTM models to classify multiple-crop areas, ensuring classification accuracy.
Additionally, the results of the correlation of multiple-crop cultivated areas generated
by MODIS combined with the PB-CB method to statistical data showed that the R2 of
wheat, corn, and rice exceeded 0.7 and 0.6 at the municipal and county levels, respectively.
Therefore, the newly presented PB-CB model is an effective method for multiple-crop area
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identification from time series MODIS remotely sensed imagery. Meanwhile, the PB-CB
model is available for other crops (e.g., soybean and cotton) and consequently has strong
prospects for application. Future work can investigate the method’s feasibility for the
mapping of other crops and the production of higher-spatial-resolution images.
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Appendix B. Performance Matrix of Various Model

Table A1. The performance of the different classifiers in the test set, including the OA, Kappa
coefficient, weighted average F1 score for model with PA, UA and F1 scores for each category.

Unit/% SU RI SP OT WT-
OT

WT-
RI

WT-
SP

WT-
SU OA. Kappa Weighted

F1

PB-Conv1D
P.A. 67.07 81.52 67.9 83.92 70.21 75.71 83.54 87.25

80.57 74.11 80.55UA. 60.87 78.13 77.46 83.27 83.54 84.11 74.58 82.39
F1 63.82 79.79 72.37 83.59 76.30 79.69 78.81 84.75

PB-CDST
P.A. 67.07 80.43 71.6 85.1 70.21 77.6 81.01 87.78

81.36 75.09 81.29UA. 66.27 77.89 78.38 83.46 81.48 84.19 78.53 82.39
F1 64.79 78.65 74.83 83.58 78.16 80.59 76.41 85.1

PB-CDSA
P.A. 68.86 76.09 67.90 87.84 72.34 77.33 72.78 87.88

81.00 74.60 80.96UA. 61.17 81.4 83.33 79.72 85.00 84.14 80.42 82.49
F1 66.67 79.14 74.84 84.27 75.43 80.76 79.75 85.00

PB-CDSTSA
P.A. 67.66 81.52 75.31 84.71 71.28 77.46 81.65 86.74

81.16 74.90 81.11UA. 68.48 70.75 76.25 83.08 80.73 83.43 80.63 82.79
F1 68.07 75.76 75.78 83.88 75.71 80.34 81.13 84.72

PB-BiLSTM
P.A. 59.28 79.31 61.73 71.37 72.34 76.52 72.78 86.22

77.59 69.73 77.47UA. 58.93 80.00 80.65 77.12 79.07 79.41 79.31 78.71
F1 59.10 76.84 69.93 74.13 75.56 77.94 75.91 82.29
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Table A1. Cont.

Unit/% SU RI SP OT WT-
OT

WT-
RI

WT-
SP

WT-
SU OA. Kappa Weighted

F1

PB-BMST
PA. 66.47 77.17 64.20 80.00 67.02 78.00 76.58 85.70

79.40 72.44 79.37UA. 62.01 83.53 68.42 80.63 85.14 81.41 74.69 81.56
F1 64.16 80.23 66.24 80.32 75.00 79.67 75.63 83.58

PB-BMSA
PA. 60.48 79.35 64.20 78.82 65.96 74.90 77.22 86.22

78.26 70.99 78.26UA. 61.21 74.49 75.36 80.08 70.45 81.86 67.78 81.25
F1 60.84 76.84 69.33 79.45 68.13 78.22 72.19 83.66

PB-BMSTSA
PA. 59.88 77.17 69.14 81.57 74.47 75.84 76.58 83.83

78.22 70.93 78.19UA. 60.60 71.00 68.29 80.93 85.37 78.82 78.57 80.90
F1 60.24 73.96 68.71 81.25 79.55 77.30 77.56 82.34

PB-Transformer
PA. 61.68 75.00 61.73 77.65 57.45 72.87 68.35 88.19

77.28 69.61 77.24UA. 60.59 76.67 66.67 81.48 70.13 85.04 55.96 79.53
F1 61.13 75.82 64.10 79.52 63.16 78.49 61.54 83.64

PB-TRST
PA. 65.27 79.35 58.02 84.31 60.64 74.09 62.66 86.94

77.87 70.41 77.72UA. 64.88 75.26 63.51 79.93 67.86 83.06 63.87 80.29
F1 65.07 77.25 60.65 82.06 64.04 78.32 63.26 83.48

PB-TRSA
PA. 47.9 75.00 48.15 72.94 22.34 69.91 36.71 87.98

71.29 60.79 70.09UA. 56.34 65.71 76.47 65.72 80.77 75.73 51.32 73.89
F1 51.78 70.05 59.09 67.14 35.00 72.70 42.80 80.32

PB-TRSTSA
PA. 62.28 77.17 62.96 83.92 58.51 74.76 67.09 86.42

77.91 70.47 77.79UA. 63.03 78.89 68.92 79.55 65.48 82.93 65.03 80.19
F1 62.65 78.02 65.81 81.68 61.80 78.64 66.04 83.19

PB-CV
PA. 71.26 80.43 72.84 85.10 70.21 78.14 83.54 88.08

82.10 76.07 82.05UA. 67.61 83.15 79.73 83.14 83.54 85.02 80.49 82.60
F1 69.39 81.77 76.13 84.11 76.30 81.43 81.99 85.26

PB-BV
P.A. 67.66 80.43 69.14 85.49 80.85 79.08 81.65 87.88

82.26 76.34 82.21UA. 66.47 77.89 76.71 85.16 86.36 84.32 80.63 83.46
F1 67.06 79.14 72.73 85.32 83.52 81.62 81.14 85.61

PB-TV
PA. 62.87 77.17 64.20 84.31 62.77 73.95 63.29 88.81

78.61 71.35 78.45UA. 65.22 78.02 68.42 79.34 71.08 85.36 62.89 80.09
F1 64.02 77.60 66.24 81.75 66.67 79.25 63.09 84.23

PB-CB
P.A. 70.66 83.70 69.14 85.49 77.66 79.89 84.18 83.49

83.43 77.87 83.34UA. 67.05 79.38 76.71 84.82 89.02 86.55 82.61 84.36
F1 68.80 81.48 72.73 85.16 82.95 83.09 83.39 86.82

PB-CBT
P.A. 70.06 82.61 71.60 86.27 77.66 79.22 82.91 90.05

83.47 77.92 83.34UA. 67.63 79.17 76.32 84.94 86.90 87.22 82.39 84.12
F1 68.82 80.85 73.89 85.60 82.02 83.03 82.65 86.99
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