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Abstract: Regular railway inspections are crucial for maintaining their safety and efficiency. However,
traditional inspection methods are complex and expensive. Consequently, there has been a significant
shift toward combining remote sensing (RS) and machine learning (ML) techniques to enhance the
efficiency and accuracy of railway defect monitoring while reducing costs. The advantages of RS-ML
techniques include their ability to automate and refine inspection processes and address challenges
such as image quality and methodological limitations. However, the integration of RS and ML in
railway monitoring is an emerging field, with diverse methodologies and outcomes that the research
has not yet synthesized. To fill this gap, this study conducted a systematic literature review (SLR) to
consolidate the existing research on RS-ML applications in railway inspection. The SLR meticulously
compiled and analyzed relevant studies, evaluating the evolution of research trends, methodological
approaches, and the geographic distribution of contributions. The findings showed a notable increase
in relevant research activity over the last five years, highlighting the growing interest in this realm.
The key methodological patterns emphasize the predominance of approaches based on convolutional
neural networks, a variant of artificial neural networks, in achieving high levels of precision. These
findings serve as a foundational resource for academics, researchers, and practitioners in the fields of
computer science, engineering, and transportation to help guide future research directions and foster
the development of more efficient, accurate, and cost-effective railway inspection methods.

Keywords: artificial neural network; drones; LiDAR; railway inspection; remote sensing; machine
learning; convolutional neural networks; uncrewed aircraft system

1. Introduction

The condition assessment of vast linear transportation structures like roads and rail-
ways pose challenges due to the associated costs and time requirements. However, regularly
monitoring these structures is necessary for ensuring the safety, efficiency, and reliability of
the supply chains that depend on them. Conventional methods of condition monitoring
focus on human observation and historical incident data analysis. However, in recent years,
remote sensing (RS) has gained prominence, especially in the realm of rail defect detection.
RS involves capturing data about an object without direct contact, offering an effective
approach for enhancing inspection and maintenance without disrupting operations [1].

The recent literature in RS of transportation infrastructure has explored various tech-
niques, including the spectral image differencing procedure (SIDP) [2], linear charge-
coupled devices (CCDs) [3], 3D laser cameras [4], LiDAR [5], multi-temporal interferometric
synthetic aperture radar (MT-InSAR) [6], and drone-based monitoring [7]. With advance-
ments in machine learning (ML), organizations can now process and analyze captured
data more accurately and promptly [8]. Hence, the combination of RS and ML techniques
promise to revolutionize railway condition monitoring. ML is a branch of artificial intel-
ligence (AI) that enable computers to learn from data without explicit programming [9].
Greater volumes of training data enhance ML efficacy. Moreover, the data analyzed for ML
applications can manifest in diverse forms, including texts and captured images.
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While the literature has addressed numerous methods for rail inspection, there is a
notable gap in comprehensive literature reviews specifically examining the convergence
of RS and ML methods in this realm. This study aimed to fill that void by conducting
a systematic literature review (SLR) on rail infrastructure monitoring that integrates RS
and ML techniques. The SLR analyzed the employed methods, results, and challenges
addressed and provided a descriptive analysis of pertinent publications. The review
scrutinized technical aspects such as the model architecture, accuracy, datasets, and learning
rates of the ML algorithms. The study consolidated and unveiled relationships between
these varied studies, comparing different approaches, providing topic classifications, and
presenting distribution maps by year, journal, and country, thereby paving the way for
future research directions.

The research questions associated with the SLR were as follows:

• What is the current state of the art that combines RS and ML methods to monitor the
condition of the railways?

• What are the advantages and disadvantages of these methods, and how will they
benefit future researchers?

• What are the different applications of these methods in railway monitoring?

This SLR serves as an effective tool to map, evaluate, and summarize the disparate
literature, thus enhancing conceptual development within the field. The structure of
the remaining publication is as follows: Section 2 presents the SLR method, which fol-
lowed the PRISMA guidelines [10]. Section 3 presents a descriptive analysis of the review.
Section 4 discusses the results. Section 5 concludes the review and offers insights for future
research directions.

2. Research Method

The choice of the SLR method for this study stemmed from its rigorous and structured
approach [10], which is essential for synthesizing the existing literature in a field as complex
and varied as railway infrastructure monitoring using RS and ML technologies. SLRs are
particularly suited for areas with diverse methodologies and findings, as they provide a
comprehensive overview of the state of the research and can identify gaps and suggest
areas for future investigation. This method ensures a transparent, reproducible research
process, enhancing the credibility and reliability of the findings by minimizing bias through
predefined inclusion and exclusion criteria. Central to the SLR methodology, the authors
implemented several steps to thoroughly examine the relevant literature by formulating
the review questions, searching for publications, evaluating and refining the publications
selected, analyzing and synthesizing the findings, and reporting the outcomes.

Following the establishment of the main objective, the authors formulated the final re-
search questions as outlined in the introduction section. The publication search phase used
specific inclusion and exclusion criteria. Initially, the search examined general publications
related to RS, transportation infrastructure, and ML, in addition to SLR publications on
other topics. After reviewing the initial set of publications, the authors narrowed the search
to focus solely on publications relating to both RS and ML in the context of rail infrastruc-
ture. The inclusion criteria were peer-reviewed journal publications encompassing all three
aspects—RS, ML, and railway infrastructure inspection. That is, the authors excluded any
publication that lacked all three elements.

The initial search utilized Google Scholar for its strength in locating academic liter-
ature from multiple databases, including Scopus, IEEE, and Web of Science. The search
encompassed entering the specific phrases shown in Table 1. The number of records initially
identified was 2151, but further screening of the titles and abstracts yielded 42 publica-
tions, as summarized in Table 1. Further scrutiny of each publication yielded 10 relevant
publications after excluding 32, of which, 29 did not fit the topic scope and 3 were not
from journals.

Subsequently, the authors applied the snowball technique to explore the cited works
of the 10 relevant publications, which uncovered an additional 113 relevant publications.
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Careful examination of these included adding short summaries or review points gleaned
from each. The authors then established a table to catalog all the methods used, including
the main features of their methods, as discussed later in the results section. This scrutiny
removed 68 publications from the 113, resulting in 45 that were relevant. Of the excluded
publications, 28 were out of scope, 2 were duplicates, 5 lacked ML content, 12 did not focus
on railway infrastructure, and 21 were not journal publications. The 10 initial publications
selected plus the 45 screened from the snowball procedure resulted in a final tally of
55 relevant publications for further analysis.

Table 1. Initial search phrases used to search Google Scholar.

Search Phrases Publications

1 “Colin Brooks” as an author in Google Scholar 4
2 “human eye” railway inspection ML 1
3 allintitle: comparative assessment Convolutional Neural Network 2
4 allintitle: deep learning rail detection 4
5 allintitle: deep learning railroad detection 1
6 allintitle: Deep Networks rail 1
7 allintitle: Generative Adversarial Networks rail 2
8 allintitle: Generative Adversarial Networks railway 1
9 allintitle: learning rail detection aerial 1
10 allintitle: learning rail detection UAV 1
11 allintitle: ML RS 2
12 allintitle: ML transportation infrastructure 1
13 allintitle: multispectral transportation 2
14 allintitle: rail RS 1
15 allintitle: rail sensors 2
16 allintitle: railroad crack detection 1
17 allintitle: railroad imaging 1
18 allintitle: railroad RS 3
19 allintitle: railway LiDAR 1
20 allintitle: RS transportation 4
21 allintitle: RS transportation infrastructure (since 2015) 3
22 allintitle: RS transportation infrastructure (since 2018) 2
23 RS transportation 1

3. Descriptive Analysis

The subsections that follow discuss the citation relationship network of the relevant
publications and provide their distribution by year, journal, author country, and method.

3.1. Literature Network

This literature review aimed to acquire insights into the existing scholarly works.
The authors discovered a cluster of interconnected research that formed a cohesive body
of related works within the realm of RS-ML railway inspection. Figure 1 illustrates this
relationship by using the 2024 version of an online tool called Litmaps [11].

The connecting lines trace the citations in the selected body of literature. The horizontal
axis represents the publication date. Hence, lines leading from the left of an article connect
to its references. The vertical axis encodes the number of citations, with larger circles
representing a higher number of citations. The clustering of most publications suggests a
close interrelation, indicating shared concepts and common methodologies within the field.
However, certain publications, such as [12–14], stand out as outliers because of their more
distant or divergent research focus compared with the closely connected majority.

The network diagram helps to visualize the interconnections and thematic concentra-
tions within the existing research. This type of mapping facilitates the identification of key
research clusters and outlier studies, illustrating how different methodologies and findings
relate to one another. It also helps to pinpoint influential studies and emerging trends
to provide a clearer picture of the research landscape. Furthermore, this visualization
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helps to enhance our understanding of how the field evolved by illustrating how newer
methodologies built upon or diverged from established practices. These insights can help
to inform future research directions and potential areas for innovation.
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3.2. Distribution by Year

Figure 2 illustrates the chronological order of the reviewed publications. Most publi-
cations appeared recently, from 2017 onward. Notably, 2021 and 2022 accounted for 27%
and 25% of the publications, respectively. In 2019 and 2018, there were eight and four
publications, respectively. There was only one relevant publication per year from 2010
to 2016. This pattern suggests that the combined use of RS and ML in railway condition
monitoring is at the forefront of current research. Traditional ML algorithms such as sup-
port vector machines (SVMs), logistic regression, naïve Bayes, random forest, and gradient
boosting gave way to deep learning architectures that utilize large multi-layer artificial
neural networks (ANNs), including variants like convolution neural networks (CNNs) that
researchers optimized for machine vision [15].
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3.3. Distribution by Journal

Figure 3 provides a distribution view of the relevant publications across various
journals. The set of 55 reviewed publications were distributed across 40 different journals.
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Figure 3. Proportion of publications by journal.

IEEE Access and IEEE Sensors Journal contained most of the reviewed publications,
with five appearing in each. Following closely were the journals Measurement and Sensors,
each containing three of the reviewed publications. Additionally, Applied Sciences, IEEE
Transactions on Intelligent Transportation Systems, and Neurocomputing each contained
two of the reviewed publications. The remaining journals, collectively labeled “Others”,
contained one of the reviewed publications each. In summary, the diverse array of journals
approached the topic from various perspectives, including computer science, engineering,
and transportation.

3.4. Distribution by Author Country

Figure 4 shows the country of origin for the authors of the reviewed publications.
To create this figure, the review identified the country of every author, based on their
affiliations, and tallied their representation in the reviewed corpus of literature.

China dominated with 167 authors, followed by the United States with 26 and Sweden
with 19. The Netherlands and Brazil were close behind, each with authors contributing to
11 and 8 publications, respectively. Authors from the other 13 countries represented only
18% of the total authorship. China and the United States alone accounted for 68% of the
authorship with China dominating at 60%.

3.5. Methods Reported

When broadly categorized, ML models are either supervised or unsupervised, with
the former requiring labeled data to train the models. The types of supervised ML models
include naïve Bayes (NB), decision tree (DT), logistic regression (LR), artificial neural net-
work (ANN), and others [16]. There are also several types of unsupervised ML models that
seek to identify data clusters that have similar characteristics [17]. The authors meticulously
counted the type of methods used in each of the selected publications to gain insights into
their approaches. Table 2 summarizes the dominant methods reported in the final batch
of relevant articles reviewed, considering that some studies employed multiple methods.
Figure 5 shows how the methods were distributed based on their frequency of appearance



Appl. Sci. 2024, 14, 3573 6 of 17

and the year of the publication. Figure 6 shows how the publications were distributed by
year and split by the methods used.
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Table 2. Methods used by each publication.

Research Method ANN Relevant Publication(s)

Convolutional Networks Y

Zhang et al. (2021) [18], Guo et al. (2019) [19], Hashmi et al. (2022) [20],
Chandran et al. (2021) [21], Salehi et al. (2017) [12], Şener et al. (2022) [22],

Gibert et al. (2017) [23], Jamshidi et al. (2017) [24], Liu et al. (2021) [25],
Passos et al. (2022) [26], Ye et al. (2022) [27], Tong et al. (2022) [28]

Non-ANN Methods N

Otero et al. (2018) [13], Otero et al. (2016) [29], Saha et al. (2022) [30],
Sánchez-Rodríguez et al. (2019) [31], Sysyn et al. (2019) [32],

Zhang et al. (2021) [33], Liu et al. (2019) [34], Chandran et al. (2021) [35],
Zhang et al. (2018) [36], Zachar et al. (2022) [37], Rizzo et al. (2010) [38]

You Only Look Once (YOLO) Y He et al. (2021) [39], Chen et al. (2021) [40], Sharma et al. (2022) [41], Wei et al.
(2020) [42], Cao et al. (2023) [43], Qi et al. (2020) [44]

Survey/Reviews N Zhao et al. (2022) [45], Kou (2021) [46], Ghofrani et al. (2018) [47], Gong et al.
(2022) [48]

Region-Based Convolutional Neural Network
(R-CNN) Y Kang et al. (2018) [49], Chen et al. (2022) [50], Guo et al. (2021) [51], Wei et al.

(2019) [52]

Generative Adversarial Networks (GAN) N Wang et al. (2019) [53], Yang et al. (2022) [54]

Defect Detection Network (DDNet) N Wei et al. (2020) [42], Liu et al. (2021) [55]

Fully Convolutional Network (FCN) Y Kim et al. (2020) [56], Bojarczak et al. (2021) [57]

Recurrent Neural Network (RNN) Y Hashmi et al. (2022) [20]

Coarse-To-Fine-Extractor (CFE) N Gan et al. (2017) [58]

Conditional Random Fields (CRF) N Zhang et al. (2021) [18]

Deep Residual Network (ResNet-50) Y Chandran et al. (2021) [21]

Densely Pyramidal Residual Network
(DPRnet) Y Wu et al. (2020) [59]

Global Low-Rank and Non-negative
Reconstruction (GLRNNR) N Niu et al. (2021) [60]

Long Short-term Memory (LSTM) Y Hashmi et al. (2022) [20]

Neural Network that Directly Consumes Point
Clouds (PointNet++) Y Cui et al. (2020) [61]

Rail Boundary Guidance Network (RBGNet) N Wu et al. (2022) [62]

Self-Organizing Map (SOM) N Yella et al. (2013) [14]

Wavelet Scattering Networks (WSNs) N Jin (2021) [63]

Case Studies N BNSF (2019) [64]

Dropper Fault Recognition Network (DFRN) N Liu et al. (2019) [65]

Based on the studies that disclosed details of the datasets used, they varied widely
in size, source, and quality, reflecting the diversity of RS and ML applications in railway
inspection. The majority of studies employed publicly available datasets, which included
high-resolution images and sensor data from real-world railway environments, while
others generated synthetic datasets to train and validate their models. A further assessment
of the details of these datasets can influence the generalizability and reliability of the
research outcomes. This diversity in data sources highlights the adaptability of RS and ML
techniques across different contexts and conditions, enhancing the understanding of their
potential limitations and strengths.

Most of the models used are a variant of ANNs as indicated Table 2. The entry “Y”
and “N” in the “ANN” column indicates yes and no, respectively, if the model is a variant
of ANN. A notable 20% of the methods used are outside the ANN domain. CNN methods
emerged as the most frequently employed, featured in 11 different studies. Eleven articles
utilized non-ANN methods, encompassing memory-based anomaly detection, big data
analytics (BDA), and others. Six publications applied an ANN variant called You Only
Look Once (YOLO). This method differs from the traditional two-step object detection
techniques that first propose regions of an image and then classify their contents. Instead,
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YOLO frames object detection as a single regression problem straight from image pixels to
bounding box coordinates for evaluating the probabilities of object presence.
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Four publications utilized surveys and reviews. The other publications used a variety
of other statistical methods. Table 3 defines the acronyms for the parameters reported in
Table 4, which provides some details about the architectures of the ANN model variants,
the images analyzed, and the metrics of their effectiveness.

Table 3. Acronyms used in model development and image processing.

Model Training and Measures Image Processing

Acronym Meaning Acronym Meaning

Conv. Convolution RES Resolution
WD Weight decay fps Frames per Second
LR Learning rate bbox Bounding Box

mAP Mean Average Precision ROI Region of Interest
MAE Mean Absolute Error BCE Binary Cross-Entropy
IoU Intersection over Union SIFT Scale-Invariant Feature Transform
rIoU Relative Intersection over Union SVM Support Vector Machine
mIoU Mean Intersection over Union RSDD Remote Sensing Data Deconvolution
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Table 4. Overview of parameters for the ANN variant methods.

Title Method(s) Architecture Images Metrics

A Big Data Analysis
Approach for Rail Failure

Risk Assessment [24]

Deep Convolution Neural
Network (DCNN)

13 layers, 3 convolutional
layers.

Fully connected network.
ReLU activation,

max-pooling, dropout.

Images: 300,000
RES: 375 × 275 pixels Accuracy: 96.9%

A Deep Extractor for
Visual Rail

Surface Inspection [18]

biFCN/
CRF-RNN

1 × 1 convolutional layer,
5 × 5 two stacked, 3 × 3

convolutional layer.
Momentum: 0.9; weight:

0.0005;
LR: 0.0001 then reduced

by 0.1.

Type I: 67 images
Type II: 128 images

Accuracy:
Type I = 91.59% Type II =

89.24%

A Hierarchical
Extractor-Based Visual
Rail Surface Inspection

System Surface Inspection
System [58]

CFE

Four major stages:
pre-process, coarse

extractor, fine extractor,
post-process.

Type I: 67 images
Type II: 128 images

RES 1024 pixels
100% inspection rate

Aerial Footage Analysis
Using Computer Vision
for Efficient Detection of
Points of Interest Near

Railway Tracks [41]

YOLOv5

26 layers including
backbone (CSPDarknet),
neck (PANet), and head

(YOLO).
WD: 0.0005; detection

threshold: 0.7; momentum:
0.937; LR: 0.1.

Images: 5465
RES: 4K

74.1% precision
mAP @ 0.5 of 70.7%

An Investigation of
Railway Fastener

Detection Using Image
Processing and

Augmented Deep
Learning [21]

CNN and
ResNet-50

7 layers: 3 convolution, 3
pooling, 1 dense.

ResNet-50: 5 stages.
LR = 0.01.

Images: 3000
RES: 2000 × 2048 Accuracy: 98% and 94%

Application of Improved
Least- square Generative
Adversarial Networks for
Rail Crack Detection by

AE Technique [53]

Least-Square Generative
Adversarial Networks

(LSGANs)

3 fully connected layers.
A 6-layer autoencoder.
Optimal regularization

(weighting):
λ1: 0.1; λ2: 0.9.

Minibatch sizes = 50, 100,
and 200;

Iterative epochs: 500;
Dropout rate: 0.8;

LR: 0.01, 0.001, and 0.0001.

Images: 3000
500 iteration cycles

Eliminates both statistical
and mechanical noise

Automatic Railway Track
Components Inspection

Using Real-Time Instance
Segmentation [51]

YOLACT and Mask
R-CNN

ResNet-50: 50 layers.
ResNet-101: 101 layers.

Feature extractor
Feature pyramid network

(FPN), Prediction head
(generating anchors),

Protonate (k prototype
masks).

WD: 5 × 10−4, LR: 10−3.

Images: 1000
RES: 1920 × 1080

Reshaped: 512 × 512

59.9 bbox mAP, and 63.6
mask mAP

Deep Learning for the
Detection and Recognition

of Rail Defects in
Ultrasound B-Scan

Images [40]

YOLO-V3

85 layers: YOLO-Rail +
min: 17,

YOLO UAV + min: 39,
YOLO-Apple + min: 29.

Decay: 0.0005;
Momentum: 0.949;

Initial LR: 0.001.

Images: 4529
RES: 1920 × 860

Reshaped: 608 × 608

87.41% precision
IoU: 75.33%

Threshold: 0.75

Deep Multitask Learning
for Railway Track

Inspection [23]
DCNN

9 convolutional layers.
WD: 5 × 10−5.

LR: initial 0.01, decaying
by 0.5 every

30,000 iterations.

Images: 176
RES: 2 × 2048 Accuracy: 95.02%
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Table 4. Cont.

Title Method(s) Architecture Images Metrics

Densely pyramidal
residual network for
UAV-based railway

images dehazing [59]

DPRnet

2 pooling layers.
Pyramid pooling: 1/2 and

1/4;
Optimization method:

Adam.

Images: 13,000
RES: 512 × 512

Structural similarity index
(SSM):

Test I: 93.36%
Test II: 91.06%

Fault Detection from
Images of Railway Lines
Using the Deep Learning

Model Built with the
TensorFlow Library [22]

New CNN (ESA)

24 layers, including 5
convolutional and 5 fully

connected pooling.
Input: 300 × 300 pixels;

Activation: SoftMax.

Images: 383
RES: not fixed Accuracy: 92.21%

Fully Decoupled Residual
ConvNet for Real-Time

Railway Scene Parsing of
UAV Aerial Images [28]

Deep Fully Decoupled
Residual Convolutional

Network (FDRNet)

19 layers: 14 encoder, 5
decoder.

WD: 2e−4;
Inputs: 256 × 256, 128 ×
128, 64 × 64, 128 × 128,

256 × 256, 512 × 512;
Initial LR: 5e−4.

Images: 3000
RES: 512 × 216

rIoU: 80.99
mIoU: 58.82

fps: 90.1

High-Speed Railway
Intruding Object Image

Generating with
Generative Adversarial

Networks [19]

Improved conditional
deep convolutional

generative adversarial
network (C-DCGAN)

Generator: 12 layers;
Multi-scale: 15 layers;

LR: 0.0002.

Images: 2529
RES: 512 × 512 mAP: 0.69

Hybrid Deep Learning
Architecture for Rail

Surface Segmentation and
Surface Defect
Detection [62]

A novel FCN named
RBGNet

3 convolutional layers: U1,
U2, and U3, followed by

three ReLU layers.
Kernel size: 3;

Iterations: 20 epochs;
WD: 0.0005.

LR: Initial 5 × 10–5, decay
0.1 each iteration.

Images: 600
RES: 3840 × 2160

RES: 1920 × 1080, 30 fps

RBGNet, BCE, IoU, and
SSIM F-measure: 0.967

MAE: 0.013.

Multi-Target Defect
Identification for Railway
Track Line Based on Image
Processing and Improved

YOLOv3 Model [42]

YOLOv3; TLMDDNet

21 layers.
LR, momentum, WD

regularization, and others
follow YOLOv3.

Images: 1278
RES (fasteners): 128 × 256

RES (track): 48 × 480
Accuracy: 96.26%

Obstacle Detection of Rail
Transit Based on Deep

Learning [39]
Improved-YOLOv4

3 pooling layers.
Kernel sizes of 5 × 5, 9 ×

9, 13 × 13.
Improved-YOLOv4: more
parameters than YOLOv4.

Stage 1 LR: 0.001;
minimum LR: 0.0001.

Stage 2 LR: 0.0005 and
0.00005.

Images: 6000
RES: 416 × 416 +ROI mAP: 93.00%

Rail Fastener Detection of
Heavy Railway Based on

Deep Learning [43]
YOLOv5

2 layers for each
transformer encoder.

Number of cluster centers,
size of the model input
image, threshold of the

aspect ratio of this dataset,
number of KMEANS

iterations.

Images: 3408
RES: 512 × 512 0.991 mAP @ 0.5

Wavelet Scattering and
Neural Networks for

Railhead Defect
Identification [63]

WSNs 2 layers

Type I Images: 67
Type II Images: 128
RES1: 1000 × 160
RES2: 1250 × 55

Accuracy:
Type I: 99.80%
Type II: 99.44%
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Table 4. Cont.

Title Method(s) Architecture Images Metrics

Rail Network Detection
from Aerial Imagery using

Deep Learning [12]

CNN (ConvNets) and
Deconvolutional Neural
Networks (DeConvNets)

61 layers in 4 different
levels: 16 + 13 + 23 + 9.

4 different process levels:
(1) Aerial classifying

images; (2) segment rail
tracks on aerial images;
(3) coarse-level image

segmentation; (4) segment
rail tracks at individual

pixel level.
LR: 0.96 decay with step

size 1000.

Images: 78,000
RES:

(1) 256 × 256 × 3
(2) 60 m × 60 m

(3) 256 × 256
(4) 30 m × 30 m

Accuracy: 98%

Railway Track Fastener
Defect Detection Based on

Image Processing and
Deep Learning
Techniques: A

Comparative Study [52]

VGG-16
CNN/DCNN/R-CNN

14 convolution layers,
3 fully connected.
Kernel size: 3 × 3.
Transfer learning:

initialize weight values
with pre-trained weights

from ImageNet.
Fine-tuning: use weights

of conv5 and fully
connected layers.

Images: 1058
RES: 32 × 64, 64 × 128,
128 × 256, 256 × 512

Accuracy:
Dense SIFT+SVM: 99.26%

CNN: 97.14%
Faster R-CNN: 97.90%

Railway Track Inspection
Using Deep Learning

Based on Audio to
Spectrogram Conversion:

An on-the-Fly
Approach [20]

2 × CNN, RNN, LSTM

LSTM Activation:
hyperbolic tangent, ReLU,

and SoftMax. Dropout
rate: 0.2.

Conv1D: kernel: 4;
Activation: hyperbolic

tangent, ReLU, SoftMax;
Dropout: 0.1; Filters:

16–128.
Conv2D: kernel: 3 × 3 and

5 × 5; Activation:
Hyperbolic tangent, ReLU,

SoftMax; Dropout: 0.2.

Images: 720 Accuracy: 99.7%
Precision: 99.5%

Real-Time Inspection
System for Ballast Railway
Fasteners Based on Point
Cloud Deep Learning [61]

PointNet++

Epoch: 500; Batch size: 32;
Training time: 51 h;

LR: default with default
decay rate.

Images: 1500 Accuracy: 99.7%

UAVs in Rail Damage
Image Diagnostics

Supported by
Deep-Learning
Networks [57]

FCN-8 (Fully
Convolutional Network)

33 layers: 15 convolution,
13 ReLU, 5 pooling.

Images: 250
RES: 4096 × 2160 Efficiency: 81%

Unsupervised Saliency
Detection of Rail Surface

Defects Using Stereoscopic
Images [60]

GLRNNR

GLRNNR decomposition
with the a priori boundary

and non-negative
coefficient constraint.

Images: 113
RES: 256 × 512

F-measure:
Type I: 83.53

Type II = 87.16

4. Discussion

Table 4 includes an outline of the parameters for each of the ANN methods used, show-
casing the variation in the number and type of architectures across different approaches.
CNN emerged as the dominant method utilized in the body of publications analyzed.
CNNs distinguish themselves through a multi-layer, multi-resolution approach that loosely
simulates the visual neural system of the human brain. Research has demonstrated that
CNNs perform better than traditional ML techniques in machine vision applications [66].
However, the use of CNN and traditional ML approaches vary based on the specific
task [67]. The following subsections expand on the methodological patterns observed,
propose a classification of the railway condition monitoring applications reviewed, provide
some case studies along with challenges encountered, explore future directions, and discuss
the limitations of the study.
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4.1. Methodological Patterns

This section examines the various models and algorithms documented in the reviewed
literature, with a focus on their practical implications and limitations in real-world railway
inspection scenarios. The effectiveness of each model, using CNNs, YOLO, or GANs,
depended on its applicability in different railway monitoring conditions. Hence, they
differed in specific strengths, such as high accuracy or real-time processing capabilities, and
limitations, such as high computational demands or sensitivity to data quality. The authors
noted several commonalities among the methods. Noteworthy machine vision models
included versions of YOLO, Faster R-CNN, Mask R-CNN, ResNet, VGGNet, and others.
Most of the reviewed studies utilized image datasets comprising hundreds or thousands of
images for training and testing the deep learning models. Some studies incorporated video
footage converted into images, with image resolutions varying from 256 × 256 pixels to
4096 × 2160 pixels.

Some studies discussed the effectiveness of transfer learning in enhancing accuracy
by utilizing pre-trained models like ImageNet [52]. Moreover, models underwent fine-
tuning to set parameters such as learning rate, number of epochs, batch size, dropout rate,
momentum, decay rate, and regularization techniques. Mean Average Precision (mAP) and
accuracy emerged as the most common evaluation metrics, with some studies incorporating
Intersection over Union (IoU) and F1-scores to assess performance. It is noteworthy that
most models achieved high accuracy levels, surpassing 90%. Another notable trend in
the reviewed methods was that both non-ANN and ANN-based methods required pre-
processing steps, such as noise removal, contrast enhancement, and converting RGB to
greyscale. These studies used statistical methods like edge detection, Haar transform, SVM,
kNN, random forest, and frequency-resolved optical gating (FROG) to identify defects
based on real-world image datasets. Some of the studies compared multiple methods.

4.2. Application Classification

Table 5 categorizes the publications based on their application objective. The category
of track defect detection included subcategories such as assessing rail surface deterioration
and detecting rail cracks. It is evident that a majority of the studies focused on defect
detection on the rail tracks or their fasteners.

Table 5. Application method categories.

Objective Publications

Track Defect
Detection

Saha et al. (2022) [30], ŞENER et al. (2022) [22], Sysyn et al. (2019) [32], Wu et al. (2022) [62], Chen et al.
(2021) [40], Niu et al. (2020) [60], Gibert et al. (2016) [23], Zhang et al. (2021) [33], Jamshidi et al. (2017) [24],
Guo et al. (2021) [51], Gan et al. (2017) [58], Bojarczak et al. (2021) [57], Wang et al. (2019) [53], Hashmi et al.

(2022) [20], Wei et al. (2020) [42], Rizzo et al. (2010) [38], Passos et al. (2022) [26], Zhang et al. (2022) [68],
Wu et al. (2020) [59], Jin (2021) [63], Zhang et al. (2021) [18], Zhang et al. (2018) [36], Lu et al. (2020) [69],

Chandran et al. (2022) [70]

Fastener
Inspection

Cao et al. (2023) [43], Wei et al. (2019) [52], Qi et al. (2020) [44], Liu et al. (2019) [34], Franca et al. (2020) [71],
Chandran et al. (2021) [21], Chandran et al. (2021) [35], Cui et al. (2019) [61], Liu et al. (2021) [55], Liu et al.

(2021) [25], Aytekin et al. (2015) [72].

Object
Detection

He et al. (2021) [39], Sharma et al. (2022) [41], Yella et al. (2013) [14], Guo et al. (2019) [19], Chen et al. (2022)
[50], Zachar et al. (2022) [37]

Surrounding
Inspection Sánchez-Rodríguez et al. (2019) [31], Kang et al. (2018) [49], Liu et al. (2019) [65], Chen et al. (2017) [73]

Defect
Segmentation Salehi et al. (2017) [12], Tong et al. (2021) [28], Kim et al. (2020) [56], Yang et al. (2022) [54]

Concrete
Inspection Otero et al. (2016) [29], Ye et al. (2022) [27], Wang et al. (2021) [74]
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4.3. Challenges Reported

Some publications discussed difficulties with their chosen methods, while others grap-
pled with issues related to the quality of the captured images. For instance, Hashmi et al.
(2022) used three deep learning models: convolutional 1D (Conv1D), convolutional 2D
(Conv2D), and long short-term memory (LSTM) [20]. Notably, the training time for Conv2D
exceeded the duration required by the other models. Sener et al. (2022) disclosed that one
disadvantage of their approach was that it requires preprocessing to normalize the images
before training the model [22]. Wang et al. (2021) found that blurred images can severely
decrease detection accuracy [74]. Kangwei et al. (2019) reported that a general disadvantage
of ML methods is oscillations in the training convergence, which require an optimized
learning rate that the model cannot establish itself [53]. Chandran et al. (2021) described
the need for continuous calibration of the data collection system to compensate for distance
variations between the sensor and the object [35]. Zhang et al. (2022) emphasized the
difficulty of pixel-level labeling of faults to train the network [68].

4.4. Future Directions

RS-ML-based railway inspection research pushes the boundaries of the current applied
methods. It inspires researchers to develop new models and algorithms. For instance,
Yang et al. (2022) modified a CNN model to work with fewer training images and to
provide a more precise segmentation [75]. Chen et al. (2022) improved the Mask R-
CNN model [50]. Chen et al. (2021)’s study was inspired by three backbone network
structures [40]. Therefore, the new models may lead to the development of more robust and
adaptable systems capable of handling complex, real-world scenarios in railway inspection
and beyond.

Regarding the efficiency and discriminative capabilities of different ML models, GANs
can be more robust through the generation of high-quality synthetic data, enhancing model
training where real-world datasets are incomplete or biased. While GANs are invaluable for
data augmentation and simulation, their performance in direct defect detection tasks is not
necessarily superior to task-specific models like CNNs or YOLO. These models, particularly
CNNs and fully convolutional networks, leverage the spatial hierarchy in images, making
them more efficient for the high-precision localization required in railway inspection. In
contrast, YOLO’s integrated approach to bounding box prediction and class probability
makes it exceptionally fast and suitable for real-time applications, though sometimes at the
cost of precision when compared to CNNs.

The objective of most of the reviewed publications was to ensure railway safety and
reliability. Using RS-ML methods in railway inspection can enhance public safety by
ensuring more reliable and frequent inspections, potentially reducing the risk of accidents.
These methods also offer the potential for cost reductions in maintenance and repair,
passing on the savings to both service providers and users [36]. Moreover, the ability
of these technologies to pinpoint defects more accurately and quickly than traditional
methods could lead to longer-lasting infrastructure, reducing the environmental impact
through the less frequent need for raw materials and construction activities [43].

4.5. Limitations

The authors acknowledge the limitations of this review, including the possibility that
the chosen keywords may not have captured all the relevant publications. The dynamic
nature of research means that new related studies might emerge during the writing and
analysis phases of the present study. For instance, this work began in 2023, with 2022
being the previous full year for comparative analysis. Therefore, the authors encour-
age researchers in related fields to conduct further searches to ensure a comprehensive
understanding.
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5. Conclusions

This publication offers a thorough overview of previous research on RS-ML-based
railway inspection, providing insights into the various methodologies used and their pros
and cons for academics and practitioners. The study aids future researchers in fields
such as computer science, engineering, and transportation in evaluating methods and
finding relevant literature. The study analyzes research from different angles, including
a descriptive analysis of publication trends by year, journal, country, and methods while
examining the interconnections between studies through a visual map. The study also
reviewed the applied methods in RS-ML-based railway inspection, categorizing them,
detailing significant ANN studies, and focusing on their methodologies, datasets, and
performance metrics. The review identified patterns in methodologies and discussed the
benefits and drawbacks of RS-ML-based railway inspection. Most of the reviewed studies
aimed to enhance safety, reduce costs, or improve railway inspection quality. Noting the
experimental nature of most of the research, the authors propose future research avenues,
such as investigating diverse geographical locations and the unique defects associated with
them, like objects, vegetation, and rust.
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