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Abstract: Owing to the development of technology, the majority of nations throughout the world
now rely on fossil fuels and nuclear power plants to meet their energy needs. However, as academic
research on this subject has shown, it has become clear that alternative energy uses are necessary due
to the gradual depletion of these fuels and their significant negative effects on the environment. In
order to ensure energy diversity and end the energy shortage, the development of renewable energy
sources is crucial. The prediction of wind power is crucial for effectively utilizing the potential of
wind energy. In this study, an adaptive neuro-fuzzy inference system (ANFIS) and an artificial neural
network (ANN) have been developed for the prediction of wind power. In this study, data sets were
created by taking the daily average wind speeds of the selected wind turbine, the daily average power
values it produces, and the daily average wind speed values in the Velimese region. By creating
single-hidden layer and multi-hidden layer ANN models, the network was trained multiple times
with different activation functions and different numbers of neurons, and wind power prediction was
performed. In the ANFIS model, the number of membership functions is kept constant, and wind
power prediction is performed using different membership functions. With these ANFIS and ANN
models developed with different parameter combinations, it is aimed to determine the most efficient
model by performing daily average wind power prediction. Parameter combinations were tested to
determine the appropriate models, and as a result, the ANN and ANFIS models were compared with
each other.

Keywords: ANFIS; fuzzy logic; wind energy; prediction of wind power; artificial neural networks;
renewable energy

1. Introduction

One of the most basic human needs is energy. Energy demand is increasing all over the
world, including Turkey. Providing adequate and affordable energy is essential to eradicate
poverty, improve human well-being and raise living standards around the world. Thanks to
the decrease in the cost of renewable energy sources over time, it has been possible to meet
the demand for electricity generation in recent years. Fossil fuels have been the main source
of global electricity generation. However, it is essential to increase the use of renewable
energy sources for power supply in the world due to the adverse environmental effects of
electricity generation from fossil fuels, climate change, the demolition of fossil fuel reserves,
and fluctuating charges [1]. Alternative “clean” energy sources that are independent of
fossil fuels and have a manageable environmental impact are being developed in order to
satisfy the rising global energy demand while preserving the environment and leaving the
possibility of the use of fossil fuels in the future [2].
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Promoting the use of renewable energy sources has been identified as one of the most
effective strategies to mitigate the effects of current and future climate change. Therefore,
a worldwide renewable energy policy is being developed and implemented to facilitate
the growth of the renewable energy sector [3]. Energy sources that can be classified as
renewable include solar, geothermal, hydro energy systems such as hydroelectric, wave,
tidal, and ocean thermal energy conversion systems, as well as biomass and wind energy [4].
Wind and solar systems are attracting more attention due to their significant natural
potential in many parts of the world [5].

Wind energy has been the focus of attention due to its clean and environmentally
friendly nature and because it is one of the most economically viable renewable energy
sources. An electric current is produced when wind turbines capture the kinetic energy
of air flows. Wind farms usually consist of several wind turbines covering many square
kilometers of land or ocean. Developments and innovations in the wind energy sector have
led not only to improvements in the design and manufacture of turbines but also to better
capacity factors, resulting in lower wind energy costs, confirming that this technology is
a key driver of the clean energy transition. The rapidly growing use and production of
wind energy requires extensive research in various fields. The most precise technique of
converting wind energy into clean electricity is provided by turbine systems, which even
have lower operational and maintenance expenses. The precise prediction of wind power
is considered a major contribution to large-scale wind power generation [6–9].

Artificial neural networks (ANNs) are widely accepted as a technology that offers an al-
ternative way to overcome complex and ill-defined problems. Artificial neural networks are
computer networks that aim to roughly simulate the decision-making process in neural net-
works of biological (human or animal) central nervous systems [10]. They can be described
as a collection of processing units represented by artificial neurons connected by numerous
interconnections (artificial synapses), implemented by vectors and synaptic weight matri-
ces, and capable of acquiring and maintaining knowledge (knowledge-based) [11]. ANNs
have been successfully used in a variety of domains, including mathematics, engineering,
medicine, economics, meteorology, psychology, and neurology. The analysis of electromyo-
graphs and other medical signatures, the identification of military targets, pattern, voice,
and speech recognition, and the detection of explosives in checked baggage are some of the
most significant. They are also employed in the prediction of electrical and thermal loads,
adaptive and robotic control, weather and market trends, and mineral exploration sites.
Process control uses artificial neural networks because they can develop prognostic models
of the process from multidimensional data that are routinely collected from sensors [12].
An ANN model comprises many nodes and their connections. Structure, transfer function,
and learning algorithms define its capacity [13]. ANNs are not programmed to perform
specific tasks when applied to computers. Instead, they are trained on datasets until they
learn the patterns available to them. They can be trained to generate quick predictions and
generalizations; are fault-tolerant in that they can deal with noisy and imperfect data; and
can learn from examples. Once trained, new models can be presented to them for prediction
or classification. ANNs have been used in a variety of applications in control, robotics,
pattern recognition, prediction, medicine, power systems, manufacturing, optimization,
signal processing, and social and psychological sciences [12].

The study of thinking systems in which the ideas of truth and falsity are handled
gradually is known as fuzzy logic. Fuzzy logic examines ambiguity in natural language
as well as in a number of other application domains. In essence, fuzzy logic makes it
possible to characterize values that fall between assessments like high–low, yes–no, and
true–false [14]. A mathematical theory called fuzzy logic uses verbal explanations to deal
with datasets whose meaning does not directly correspond to a single numerical value
but rather to a range of potential values. On these datasets, domain-specific functions
can be designed to produce results with a sufficient degree of approximation that are
relevant to the receiver. The meaning of the field-specific values of the dataset can be
explained using fuzzy terms that have ambiguous definitions at their borders thanks to
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input membership functions. Fuzzy logic systems are knowledge- or rule-based systems
built from human knowledge in the form of fuzzy IF-THEN rules. Fuzzy system theory, a
systematic procedure, enables the use of the knowledge-base to transform it into nonlinear
mapping. The fuzzy IF-THEN rule is an IF-THEN statement in which some words are
characterized by continuous membership functions [15]. The fuzzy logic controller has
five basic elements such as blurring, knowledge base, rule base, fuzzy inference, and
defuzzification [16]. These steps help us define a logical framework based on linguistic
values that are defined and characterized using fuzzy sets.

The adaptive neuro-fuzzy inference system (ANFIS) combines the self-learning ca-
pacity of an artificial neural network (ANN) with the language expression function of
fuzzy inference. Sugeno operates in a fuzzy inference system with a structure similar to a
multilayer feedforward neural network. The first fuzzy rules and membership functions
are chosen based on the human knowledge of the outputs to be mimicked. ANFIS offers a
variety of benefits, such as the capacity to depict the nonlinear nature of a process, adapt-
ability, and quick learning capabilities. For the supplied input–output matches, ANFIS
creates a collection of fuzzy IF-THEN rules with the relevant membership functions. A
significant amount of the accessible data have been used to learn membership functions
and fuzzy rules. Then, the ANFIS can alter these fuzzy IF-THEN rules and membership
functions to lessen the output inaccuracy or clarify the relationship between an intricate
system’s inputs and outputs [17,18].

Applications of artificial neural networks include wind energy systems for forecast-
ing, defect diagnosis and detection, design optimization, and control optimization. Al-
though predicting wind power generation is a difficult undertaking, it is crucial that energy
providers, participants in the wind energy market, owners and operators of wind farms,
maintenance crews, etc., construct the best plans possible. The primary factors that must be
predicted are wind power and speed [19]. The most significant approaches for predicting
wind speed include physical techniques like numerical weather forecasting (NWF), statisti-
cal techniques like the ARIMA model, intelligent models with artificial neural networks,
and hybrid prediction models that combine multiple types of algorithms [20,21]. While
physical techniques are better at predicting wind speed over the long run, statistical and
artificial intelligence models are useful at predicting wind speed in the short term. The
majority of studies and wind speed forecasting techniques concentrate on very short-term
forecasts. For turbine control applications, very short-term projections are relevant in the
second range. As a result, the computational cost of models that will be employed in online
applications is crucial. It has been claimed that multilayer perceptron (MLP) findings are
more accurate when compared to wavelet-based networks and particle swarm optimization
outcomes; however, this comes at a significant computational cost [22].

Monfared et al. [23] used fuzzy logic and an artificial neural network to forecast the
wind speed. They pointed out that, in comparison to conventional models, the model
offers a substantially smaller rule base and a greater level of anticipated wind speed
accuracy. The experimental findings demonstrate the improved wind speed prediction
and faster computation times of the suggested model. Galdi et al. [24] extracted the most
energy possible from variable-speed wind power generation systems using an adaptive
Takagi–Sugeno–Kang (TSK) fuzzy model. An integrated control approach was presented
by Kaneko et al. [25] for a wind farm to lessen frequency variations in a small power
system. The least squares method was used to forecast the short-term forward wind speed
in order to adjust the wind farm’s output power command in response to the changing
wind speed. The output power command of the wind farm is multiplied by the projected
wind speed using fuzzy reasoning. The model was validated by the researchers using
numerical simulations. ANFIS was utilized by Mohandes et al. [26] for the wind speed
profile and by De Giorgi et al. [27] for the prediction of wind power.

The objectives of the present study were to determine the most suitable model by
estimating the wind power with artificial neural networks and fuzzy logic methods using
the wind speed values of the Velimese region. In order to predict the wind power, it
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was examined which of the different activation functions applied with different numbers
of neurons in ANN gave better results. With the ANFIS method, tests were carried out
using different membership functions, and it was investigated in which function the best
predictive values were reached. It was examined how close the results obtained from these
models were to the real values.

2. Materials and Methods

MATLAB is a programming and computing language widely used in mathematics,
engineering, and scientific calculations. MATLAB was invented by mathematician and
computer programmer Cleve Moler. The first early version of MATLAB was completed in
the late 1970s. The software was first publicly demonstrated in February 1979 at the Naval
Postgraduate School in California, USA.

The study was performed in the MATLAB 2020b program. In this study, the prediction
of daily average wind power from daily average wind speed by using fuzzy logic and
an artificial neural network model has been attempted. Various transfer functions and
numbers of neurons for ANN and Sugeno architecture for ANFIS were used.

Enercon is a wind turbine manufacturer based in Germany. The company was founded
in 1984 by Aloys Wobben. Enercon is a worldwide developer and manufacturer of innova-
tive and efficient wind turbines. Enercon’s wind turbines are available in various capacities
and sizes. Among the company’s most popular turbine models are the E-82, E-92, E-101
and E-126. In this study, daily average wind speed and wind power values of Enercon
E-92 turbine and wind speed data of Velimese region were used to estimate the average
wind power.

2.1. Determination of Wind Energy

Wind energy systems are naturally energized by the flowing wind, so they can be
considered a clean energy source. Wind energy is one of the lowest priced renewable energy
technologies available today. However, the biggest challenge of using wind as a power
source is that the wind is intermittent and does not always blow when electricity is needed.
Wind energy cannot be stored, and not all winds can be utilized to meet the timing of
electricity demands. The option of storing energy in battery banks is beyond economically
feasible limits for large wind turbines. Although wind power plants have relatively little
impact on the environment compared to other conventional power plants, there are some
concerns about the noise generated by rotor blades and their esthetic (visual) impacts. Most
of these issues have been resolved or greatly reduced by technological development or the
appropriate siting of wind farms [28].

Wind turbines can be broadly classified as vertical-axis machines and horizontal-
axis machines, depending on the direction of the rotor shaft relative to the approaching
wind [29].

In a vertical-axis machine, the rotor shaft carrying the blades is oriented perpendicular
to the ground. This allows the turbine to rotate regardless of changing wind direction,
eliminating the need for a tail blade or yaw motor and the associated complexities. Further-
more, the gearbox, generator, and associated controls can be located close to the ground
surface, allowing easy access for repair and maintenance work. Vertical axis machines
are commonly installed in urban environments where wind speed is relatively low and
turbulent [29].

The rotation axis of the horizontal axis wind turbines (HAWT) used in this study is
parallel to the wind direction. The blades are perpendicular to the wind direction (Figure 1).
In these turbines, the condition for faster rotor rotation is to reduce the number of blades.
The efficiency of HAWT turbines ranges from approximately 10 to 45%. These turbines
should generally be 20 to 30 m above the ground [30].
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A wind turbine is the most important part of a wind energy system. It converts the
kinetic energy associated with the wind (wind energy) into mechanical energy and then
into electrical energy (Figure 2) [32].
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Figure 2. The conversion of wind energy into electrical energy [33].

Basically, the power equation obtained by a turbine with rotor area Ar with density
pw and speed v∞ is given below:

Pw = 1/2 × pw × Ar × v∞
3, (1)

Power is proportional to wind speed and rotor area. However, the size of the rotor,
production costs, and site restrictions are all limits for large-scale wind turbines. However,
areas with high wind speeds can be effectively utilized to boost the capacity of wind
farms to capture energy. The theoretical power that might be produced from the wind is
determined by the expression in Equation (1). Different rotor layouts in wind turbines
result in different power coefficients. The Betz limit is the power coefficient’s highest value,
which is 0.5926 [34].

The change in volume (V) with respect to length (l) and time (t), when considering
area (A) and applying a wind speed (v), is as follows:

∆V = A × ∆l, (2)
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v = ∆l/∆t, (3)

which give,
∆V = A × ∆t × v. (4)

Kinetic energy (E) is the form that the wind’s energy takes. The following Equation (5)
characterized the kinetic energy:

E = 1/2 × m × v2, (5)

where m denotes the wind mass. The relation between the change in mass and the change
in energy is linear is defined as follows; i.e.,

m = V × pa, (6)

where pa is the specific density of air. Therefore, if we arrange the v and m yields in
Equation (6), we obtain

E = 1/2 × A × pa × v3, (7)

The previous Equation (7) shows that the energy in the wind is proportional to the
cube of the wind speed v:

P = E/t = 1/2 × A × pa × v3, (8)

The power shown as P is defined by Equation (8) [33].

2.2. Testing of Activation Functions

Activation functions are used specifically in artificial neural networks to convert an
input signal into an output signal, which in turn is fed as an input to the next layer in the
stack. In a neural network, we calculate the sum of the products of the inputs and their
corresponding weights and finally apply an activation function to it to take the output of
that layer and provide it as input to the next layer. The prediction accuracy of the neural
network depends on the number of layers used and, more importantly, on the type of
activation function used.

A neural network works like a linear regression model, where the predicted output is
the same as the provided input when an activation function is not defined. The same is the
case when a linear activation function is used, where the output is similar to the fed input
with some errors. The limit of the linear activation function is linear, and if they are used,
the network can only adapt to linear changes in the input; however, in the real world, errors
have nonlinear properties along with the ability of neural networks to learn from erroneous
data. Therefore, in a neural network, nonlinear activation functions are preferable to linear
activation functions. The most important feature of artificial neural networks is their ability
to adapt their behavior to the changing characteristics of the system [35].

The tanh and sigmoid functions are similar, but the tanh is symmetrical according to
the origin. As a result, different output signals from previous layers are provided as input
to the subsequent layer. With values between −1 and 1, the tanh function is continuous
and differentiable. The gradient of the tanh function is steeper compared to the sigmoid
function. Tanh is preferred to the sigmoid function because it has gradients that are not
limited to changing in a certain direction and is zero-centered [35]. The activation functions
were calculated with Equations (9) and (10) below:

tansig:
f(x) = tanh(x) = (ex − e−x)/(ex + e−x), (9)

logsig:
f(x) = 1/(1 + e−x). (10)
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2.3. Testing of Membership Functions

A member’s level of accuracy inside a specified fuzzy set is defined by a membership
function. They are curves that show how each point in the input space is translated to a
membership degree ranging from 0 to 1 [36]. One-dimensional membership functions like
triangle, trapezoid, gaussian, and sigmoidal can be utilized, depending on how the input
variables behave.

The complexity and requirements of the fuzzy logic system determine the number of
membership functions. More complex systems usually require more membership func-
tions. The number of membership functions to be defined for each input variable must
be determined. This is usually determined by expert knowledge or experience in the
problem domain.

The representation and initial design of a fuzzy system are made simpler by linear
membership functions, which also have a linear form for triangular and trapezoidal mem-
bership functions. Although more difficult to build, uniform membership functions like
Gaussian and sigmoidal are more effective for automatic control [37]. The membership
functions were calculated with Equations (11)–(13) below:

TriMF:

µ (x; α, β, γ) = {(if α ≤ x ≤ β, (x − α)/(β − α); if β ≤ x ≤ γ, (γ − x)/(γ − β); if γ ≤ x or x ≤ α, 0)} (11)

TrapMF:

µ (x; α, β, γ, λ) = {(if α ≤ x ≤ β, (x − α)/(β − α); if β ≤ x ≤ γ, 1; if γ ≤ x ≤ λ, (x − λ)/(γ − λ); if x > λ or x < α, 0)} (12)

GaussMF:
µ (x; c, s, m) = expˆ(−1/2 × |(x − c)/s|ˆm), (13)

2.4. Data Used in the Study

While predicting the wind energy potential with ANN and ANFIS, the daily average
wind speeds of the wind turbine were used as input data and output power values were
used as output data. The annual daily average wind speeds of the Velimese region used
to predict daily average wind power are taken from Meteoblue company which at Basel
in Switzerland.

2.5. Wind Speed Data

The process of obtaining electricity from wind turbines varies depending on parame-
ters such as the difference in turbine-specific drivetrains, mechanical components, generator
losses, etc. For this reason, the amount of electrical energy generated from wind speed will
vary from turbine to turbine. The wind power to be obtained from wind speed will not
carry these differences. Therefore, this study is based on wind power estimation from daily
average wind speed.

The fields in the data set used were preprocessed according to the wind turbine
characteristics. The turbine subject to the study has some specific characteristics. The main
one is that it stops when the wind speed is below 2 m/s and produces a constant value
when the wind speed is above 13 m/s. For this reason, the 365-day wind speed daily
averages collected from the Velimese region are ignored for wind speeds less than 2 m/s,
and those higher than 13 m/s are set to 13.

The wind speed values used in the study are shown in Table 1.
Above and below a certain wind speed, the turbine is stopped and no power is

produced. When the wind speed drops below 2 m/s, the Enercon E-92 wind turbine
stops producing power. In addition to this, it rotates at a constant speed of over 13 m/s.
These values were ignored while training ANN and ANFIS models. The amount of power
produced by the Enercon E-92 wind turbine according to the wind speed between 0 and
25 m/s is shown in Table 2.
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Table 1. Daily average wind speed values for the first 6 months (m/s).

Days January February March April May June

1 8.05 6.98 3.62 9.87 4.35 3.41
2 11.17 7.24 7.10 12.07 4.76 2.73
3 5.37 8.84 7.27 4.25 3.25 3.47
4 3.69 6.10 5.61 7.94 5.43 6.18
5 6.59 8.84 5.56 17.02 3.82 5.92
6 17.78 11.00 4.56 19.36 6.04 3.80
7 17.14 8.51 6.57 16.94 4.27 6.00
8 13.72 9.18 6.70 13.31 4.60 4.55
9 7.25 4.53 5.59 8.47 4.29 3.85

10 1.57 6.18 8.15 2.91 3.88 6.03
11 1.57 10.88 4.87 5.60 4.94 3.15
12 6.96 3.98 4.80 7.96 8.27 4.76
13 3.89 5.08 6.14 5.71 8.46 4.31
14 2.49 5.19 8.16 8.08 3.71 3.84
15 6.17 6.58 12.23 9.72 6.35 4.21
16 9.26 8.40 11.57 5.47 6.08 4.98
17 9.01 6.36 5.48 3.36 6.15 4.35
18 6.87 2.85 6.69 4.71 9.76 2.68
19 6.77 4.38 8.13 3.87 8.82 3.66
20 9.25 6.67 3.80 9.28 5.73 5.64
21 6.80 8.63 2.74 9.82 10.41 5.26
22 3.41 5.32 6.12 10.54 7.31 3.36
23 8.51 4.45 9.23 9.34 4.41 2.95
24 5.48 9.66 10.23 9.57 4.54 3.35
25 7.39 5.88 11.18 4.61 5.33 6.02
26 5.03 10.16 13.50 4.76 4.36 9.31
27 4.96 12.77 9.37 4.27 7.57 8.79
28 6.32 5.36 4.41 6.37 2.77 8.07
29 8.03 9.44 5.98 5.10 3.11 5.59
30 6.81 - 5.41 4.32 5.60 2.63
31 7.85 - 8.80 - 5.37 -

Table 2. The amount of power produced by the Enercon-E92 wind turbine according to the wind
speed (kW).

Wind Speed (m/s) Wind Power (kW)

1(−) 0
2 8
3 25
4 75
5 192
6 351
7 660
8 980
9 1395
10 1800
11 2060
12 2270

13(+) 2350

2.6. Modeling with ANN

While determining the ANN model, the model parameters were changed and the
feedforward backpropagation algorithm with the highest prediction success was used. The
ANN model was designed by using the traingdx algorithm, and the learngdm function as a
learning function, and the tangent sigmoid (tansig) and logistic sigmoid (logsig) activation
functions in training datasets.
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The performance of the model was calculated with the mean square error (MSE)
function. In the designed model, wind speeds are used as input data and the output power
of the Enercon E92 turbine as output data. The single-layer model was first used in the
network structure, and the number of neurons in the hidden layers was determined as
10, 15, and 20, respectively. After training the network with a single layer and generating
predictive values, tests were conducted using two hidden layers as a multilayer model,
and the number of neurons in the hidden layers were determined as 10 and 15, 10 and 20,
and 15 and 20, respectively. Tests were carried out with the tansig and logsig functions
as transfer functions and the number of neurons mentioned above. The model, which
is multilayered from the created ANN structure and in which the number of neurons is
determined as 10 and 15, is shown in Figure 3.
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Figure 3. ANN structure with multi-hidden layers.

The training data were divided into 70% training, 15% validation, and 15% testing with
the dividerand function. In the model created, the stopping criterion of “1000” iterations,
the “0” error 1 × 10−5 gradient value, and the “1000” validation error number were used.
The training stopped after reaching 1000 iterations in 1 s. The error performance values of
the training, validation, and test data are shown in Figure 4.
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As a result of comparing the actual values and the output values produced by the
network to determine the performance of the network, the regression values for all of the
training, validation, and test data were close to 1. According to these results, it can be
concluded that the output values of the network and the real data are close to each other.
Regression curves for all data are shown in Figure 5.
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After the ANN training, predicted test output values are produced for the input data
set presented to the network for testing. Tables 3 and 4 show actual and predicted output
values for the single-hidden layer ANN model and the multi-hidden layer ANN model,
respectively.

Table 3. Single-hidden layer ANN model prediction values.

Wind Power
(kW) Tansig 10 Tansig 15 Tansig 20 Logsig 10 Logsig 15 Logsig 20

8 26.17 27.60 14.38 33.74 19.76 29.91
14 27.08 27.29 14.51 34.87 19.40 36.06
25 33.58 30.24 18.67 42.38 11.40 90.65
45 47.83 35.45 39.80 57.55 17.12 63.25
75 57.94 46.11 69.67 68.80 48.84 36.05
130 109.35 145.19 154.27 124.04 125.84 134.26
192 195.60 213.16 117.93 198.36 192.86 182.97
270 269.44 188.74 227.86 260.27 271.60 245.47
351 378.16 343.32 306.13 392.51 352.20 376.96
506 451.86 498.18 420.75 482.17 453.56 491.70
660 595.15 657.47 818.74 704.91 764.05 380.06
810 715.47 821.79 979.26 828.25 813.56 814.81
980 1015.56 978.25 849.16 967.57 855.58 980.07
1190 1153.57 1202.69 1070.48 1134.97 1197.56 1187.68
1395 1243.94 1376.15 1291.69 1252.28 1376.89 1370.39
1610 1620.30 1597.99 1545.73 1642.41 1543.62 1611.51
1800 1818.05 1799.18 1748.57 1819.05 1817.21 1811.21
1940 1942.18 2002.59 1889.36 1953.25 1945.22 1954.75
2060 2079.98 2215.55 2031.19 2068.31 2057.42 2065.51
2190 2157.52 2195.65 2173.06 2168.17 2190.06 2294.78
2270 2301.06 2225.55 2268.87 2309.38 2272.91 2268.18
2310 2312.67 2268.37 2283.10 2316.78 2286.02 2274.43
2350 2321.08 2307.84 2337.31 2326.45 2305.09 2327.82
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Table 4. Multi-hidden layer ANN model prediction values.

Wind Power
(kW)

Tansig
10_15

Tansig
10_20

Tansig
15_20

Logsig
10_15

Logsig
10_20

Logsig
15_20

8 30.22 40.51 25.17 25.13 31.13 15.54
14 30.58 42.17 25.01 27.72 31.40 15.55
25 44.30 36.65 33.97 37.43 37.60 26.41
45 60.60 49.86 47.03 60.21 59.85 42.64
75 67.45 62.47 76.14 77.66 75.92 82.31
130 127.56 104.48 127.98 128.61 124.71 123.51
192 212.38 170.31 153.97 214.90 221.64 146.39
270 260.68 259.06 271.32 254.09 263.32 272.06
351 370.84 383.50 377.72 368.70 374.91 360.78
506 483.00 467.21 506.54 478.09 491.66 506.94
660 697.10 712.49 657.24 737.91 899.82 677.52
810 819.62 825.14 824.66 809.50 813.13 823.87
980 977.89 969.51 995.75 999.26 951.07 996.38

1190 1191.47 1188.62 1191.64 1157.94 1216.23 1192.47
1395 1239.71 1352.29 1400.57 1293.28 1335.92 1418.11
1610 1637.50 1657.05 1617.93 1625.73 1646.74 1619.93
1800 1842.57 1800.66 1812.96 1800.58 1798.08 1809.58
1940 1939.00 1904.71 1925.80 2109.51 1957.88 1903.73
2060 2054.95 2067.22 2060.28 2101.20 2086.95 2060.23
2190 2182.83 2173.54 2178.86 2141.00 2160.02 2179.79
2270 2303.43 2306.11 2286.45 2300.18 2295.22 2284.77
2310 2307.30 2313.32 2312.67 2307.62 2302.72 2309.93
2350 2319.53 2322.55 2333.51 2307.27 2309.82 2331.29

After the network is trained and the predicted test values are produced, the predicted
values should be compared with the actual data. In Table 5, the performance criteria of the
ANN model calculated by the RMSE (root mean squared error), MAPE (mean absolute
percentage error), and R2 methods are given. The equations of performance criteria are
as follows:

MAPE = 100/n ∑ i
n (|yi − ŷi|)/yi, (14)

RMSE =
√

(1/n ∑ i
n (yi − ŷi)2), (15)

R2 = 1 − ∑ (yi − ŷi)/(∑ (yi − ӯi). (16)

Table 5. Performance measures of ANN models.

Activation
Function

Hidden
Layer

Number of
Neurons RMSE MAPE R2

Tansig Single 10 45.31 20.27 0.9973
Tansig Single 15 43.41 21.70 0.9975
Tansig Single 20 73.58 13.87 0.9928
Logsig Single 10 38.58 27.73 0.9980
Logsig Single 15 40.98 17.01 0.9978
Logsig Single 20 66.92 37.73 0.9941
Tansig Multi 10 and 15 37.97 24.79 0.9981
Tansig Multi 10 and 20 26.97 32.89 0.9990
Tansig Multi 15 and 20 13.63 16.22 0.9998
Logsig Multi 10 and 15 49.51 20.42 0.9967
Logsig Multi 10 and 20 55.59 25.43 0.9959
Logsig Multi 15 and 20 15.92 7.45 0.9997

As seen in Table 5, the best performance values were calculated as RMSE 13.63, MAPE
7.45, and R2 0.9998. When the results were compared, it was seen that the two-hidden layer
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ANN model with 15 and 20 neurons using the Tansig transfer function produced the closest
prediction value to the real values.

Table 5 shows that the mean RMSE values of the ANN models with two hidden layers
(33.27) are significantly lower than the mean RMSE values of the ANN models with one
hidden layer (51.46). When the mean MAPE values are considered, it is seen that there is
no significant difference between the models with one hidden layer and two hidden layers
(23.05–21.2). When the average R2 values are analyzed, it is seen that the average of the
two hidden layer models (0.9982) produces slightly better results than the average of the
single-hidden layer models (0.99625). When analyzed according to the number of neurons,
it is understood that models with 15 neurons give better results than single-hidden layer
models by looking at different activation functions. Two hidden layer models, on the other
hand, confirm the number of 15 neurons in the first layer, and using 20 neurons in the
second hidden layer improved the results.

2.7. Modeling with ANFIS

The data used in the development of the ANFIS model were divided into two sets:
70% for training and 30% for testing the data sets. The membership function parameters
were then adjusted and used in the creation of the fuzzy inference system.

After the data were introduced in the system, the network training proceeded by
sequentially selecting the membership functions to be used. The model underwent multiple
training sessions utilizing triangle, trapezoidal, and Gaussian membership functions, with
each membership function having three functions and a fixed number of iterations set
at 1000.

After all parameters are determined, the training of the model is performed. The
training interface of the ANFIS model is shown in Figure 6.
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Actual values and values predicted by ANFIS are given in Table 6.

Table 6. ANFIS model prediction values.

Wind Power
(kW) TriMF TrapMF GaussMF

8 22.03 10.93 12.49
14 26.11 10.93 14.57
25 47.00 10.93 31.16
45 61.14 10.93 52.78
75 71.91 70.68 80.93

130 118.62 134.07 125.47
192 185.89 183.65 184.88
270 270.22 259.54 266.29
351 368.93 363.94 364.92
506 492.60 499.46 486.07
660 496.22 634.21 637.84
810 739.93 727.68 812.17
980 996.63 991.18 1002.61

1190 1217.87 1217.66 1198.21
1395 1421.48 1425.62 1401.64
1610 1621.49 1629.43 1615.60
1800 1792.31 1803.14 1799.16
1940 1948.62 1947.24 1957.56
2060 2079.45 2054.38 2076.29
2190 2193.68 2186.26 2174.36
2270 2245.96 2330.53 2264.86
2310 2261.38 2330.53 2282.77
2350 2325.79 2330.53 2333.13

After the prediction values were produced with ANFIS, the predicted values were
compared with the actual data.

The model’s error performance values were calculated for the predicted values pro-
duced by various functions. As a performance measure, the RMSE, MAPE, and R2 methods
were used. The model’s error performance values are given in Table 7. When the error
performance values were compared, it was seen that the ANFIS model, which produced
the closest prediction value to the real values, was the model trained using the Gaussian
membership function.

Table 7. Performance measures of ANFIS models.

Membership Function RMSE MAPE R2

TriMF 41.40 19.82 0.9977
TrapMF 26.39 10.39 0.9991

GaussMF 12.94 6.02 0.9998

Figure 7 shows the comparison of the best single-hidden layer ANN, multi-hidden
layer ANN, and ANFIS results with linear fitting results. As can be seen from the figure,
the differences between the ANN and ANFIS models in the linear direction are close to
each other.
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3. Results

In the study, average wind power was predicted using the daily average wind speed
and wind power values of the Enercon E-92 turbine and the wind speed data of the Velimese
region. ANN and ANFIS methods, which are frequently used as forecast models for wind
energy forecasts, have been applied.

While determining the ANN model, different parameters were evaluated and tested.
First, a single-layer ANN model was created, and the network was trained many times
using different numbers of neurons and different activation functions. In the created model,
the Tansig activation function and the number of neurons in the hidden layer were given
as 10, 15, and 20, respectively, and the network was trained and the prediction results
were obtained. The prediction results obtained using a single-layer network structure were
compared with the actual values, and error performance values were calculated using the
RMSE, MAPE, and R2 methods. The RMSE value of the model using 10 neurons in the
hidden layer was 45.31, the MAPE value was 20.27, and the R2 value was 0.9973; the RMSE
value of the model using 15 neurons was 43.41, the MAPE value was 21.70, and the R2 value
was 0.9975; the RMSE value of the model using 20 neurons was calculated at 73.58, the
MAPE value was 13.87, and the R2 value was 0.9928. By using the logsig activation function
and giving the same number of neurons, the network was retrained, and predicted values
were obtained. Error performance values were calculated with the RMSE, MAPE, and R2

methods by comparing the estimated values with the actual values. The RMSE value of
the model using 10 neurons in the hidden layer was 38.58, the MAPE value was 27.73, and
the R2 value was 0.9980; the RMSE value of the model using 15 neurons was 40.98, the
MAPE value was 17.01, and the R2 value was 0.9978; the RMSE value of the model using
20 neurons was calculated at 66.92, the MAPE value was 37.73, and the R2 value was 0.9941.
The model that recorded the best performance among the tests using a single-layer network
was the one created using the logsig activation function with 10 neurons. A new ANN
model using two hidden layers was created after the single-layer ANN model had been
evaluated. The numbers of neurons in the hidden layers were 10 and 15, 10 and 20, and
15 and 20, respectively, and firstly, the network was trained using the Tansig function. In
the trained network, 355 wind speed values were simulated, and predicted output values
were produced. When the performance measurements were calculated by comparing the
produced predictive values with the actual values, the RMSE values were 37.97 for the
model using 10 and 15 neurons, 26.97 for the model using 10 and 20 neurons, and 13.63 for
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the model using 15 and 20 neurons; the MAPE values were 24.79 for the model using 10
and 15 neurons, 32.89 for the model using 10 and 20 neurons, and 16.22 for the model using
15 and 20 neurons; and the R2 values were calculated as 0.9981 for the model using 10 and
15 neurons, 0.9990 for the model using 10 and 20 neurons, and 0.9998 for the model using 15
and 20 neurons. Prediction values were produced by retraining the network with the logsig
activation function using the same number of neurons. The RMSE values of the models that
produced predictive values using two hidden layers were 49.51 for the model with 10 and
15 neurons, 55.59 for the model with 10 and 20 neurons, and 15.92 for the model with 15
and 20 neurons; the MAPE values were 20.42 for the model with 10 and 15 neurons, 25.43
for the model with 10 and 20 neurons, and 7.45 for the model with 15 and 20 neurons; and
the R2 values were calculated as 0.9967 for the model with 10 and 15 neurons, 0.9959 for the
model with 10 and 20 neurons, and 0.9997 for the model with 15 and 20 neurons. When the
computational results were compared among the two-layer models, the model using the
Tansig activation function with 15 and 20 neurons in the hidden layer gave the best results.
When the single-layer and two-layer ANN models were compared based on the above, it
was seen that the ANN model, in which the Tansig activation function was used and the
number of neurons was determined as 15 and 20, produced the closest prediction values to
the real values.

By determining the training parameters for the ANFIS model, the performance of
three membership functions was evaluated, and the closeness of the prediction values
to the real values was tested. Triangle, trapezoidal, and Gaussian functions were used
as membership functions in the models created with the Sugeno inference system, and
the number of functions was determined as 3 for each. After the network was trained,
predicted power values were produced for 355 wind speed values. The error performance
results for the predicted values were calculated with the RMSE, MAPE, and R2 methods.
The RMSE values for the models using triangular, trapezoidal, and Gaussian membership
functions were 41.40, 26.39, and 12.94, respectively; the MAPE values were 19.82, 10.39, and
6.02, and the R2 values were calculated as 0.9977, 0.9991, and 0.9998. When all membership
functions were evaluated among themselves, it turned out that the membership function
that produced the values closest to the real values was Gaussian.

Considering the results mentioned above, different models belonging to both tech-
niques will be able to predict wind power close to the actual values as long as meteorological
data are available. A comparison of both models showed that the difference was not signifi-
cant. The graphs given in our study also confirm this. Finally, when the predicted values
from the ANN and ANFIS models were compared with the actual values, it was seen that
the ANFIS model produced slightly better results than the ANN model in estimating the
wind power.

4. Discussion

Artificial neural networks and fuzzy logic methods are techniques that are applied
in many fields, and their importance is increasing. There are many parameters, such as
the number of hidden layers, the number of neurons in the hidden layers, and activation
functions, when creating models of artificial neural networks. The selection of these
parameters can be made by heuristic, experience-based, or trial and error methods that
are generally used according to the data. Similarly, the selection of membership functions
in fuzzy logic methods can be performed in the same way. The models created with the
selected parameters are optimized using techniques such as cross-validation.

In this study, ANN and ANFIS models with different parameters for the prediction of
average wind power were created, and research was carried out to use the most efficient
model by changing the parameters.

The results were obtained by conducting many trials with the available data, and a
comparison between the two methods could be made. Increasing the number of data points,
enriching the study by adding new and popular methods, applying them to different fields,
and making inferences according to the results obtained will form the basis of future studies.
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5. Conclusions

The existing relevant literature on wind energy and predictions on impact on electricity
production has been comprehensively reviewed. In addition, two popular techniques,
artificial neural networks and fuzzy logic methods, and the prediction models created with
these methods have also been researched in the literature. There are many parameters that
need to be taken into consideration when creating a model using both methods. In order
to examine the effects of these parameters on the prediction results, the field of renewable
energy, which is increasingly important today, was chosen as the subject. Prediction models
for wind power production with wind energy from both methods have been created.
The focus of the study is to express this rationally by investigating the effect of different
parameters of two artificial intelligence methods on prediction models. In the study, daily
average wind power predictions were made using 1-year meteorological data from the
Velimese region. The results show us that both techniques obtained very efficient results
with the data and the models created, but when the proximity to the actual values was
examined, it was seen that the values obtained from the ANFIS method were observed to
be closer in proximity to the actual values than the values obtained with the ANN.

Author Contributions: Conceptualization, G.O.E. and H.N.B.; methodology, G.O.E. and H.N.B.;
software, G.O.E.; validation, G.O.E.; investigation, G.O.E. and H.N.B.; resources, G.O.E.; data cu-
ration, G.O.E.; writing—original draft preparation, G.O.E.; writing—review and editing, H.N.B.;
visualization, G.O.E.; supervision, H.N.B.; project administration, H.N.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data were ob-
tained from Meteoblue and are available from at https://www.meteoblue.com/ with the permission
of Meteoblue.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Aboagye, B.; Gyamfi, S.; Ofosu, E.A.; Djordjevic, S. Status of renewable energy resources for electricity supply in Ghana. Sci. Afr.

2021, 11, e00660. [CrossRef]
2. Maradin, D. Advantages and disadvantages of renewable energy sources utilization. Int. J. Energy Econ. Policy 2021, 11, 176–183.

[CrossRef]
3. Hereher, M.; El Kenawy, A.M. Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated

climatic-socioeconomic approach. Renew. Energy 2020, 161, 662–675. [CrossRef]
4. Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Rabaia, M.K.H.; Abdelkareem, M.A.; Chae, K.J.; Olabi, A.G. A critical review on

environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total
Environ. 2021, 766, 144505. [CrossRef] [PubMed]

5. Mehrjerdi, H. Modeling, integration, and optimal selection of the turbine technology in the hybrid wind-photovoltaic renewable
energy system design. Energy Convers. Manag. 2020, 205, 112350. [CrossRef]

6. Rahman, M.A.; Rahim, A.H.M.A. Performance evaluation of ANN and ANFIS based wind speed sensor-less MPPT controller. In
Proceedings of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 13–14
May 2016; pp. 542–546.

7. Singh, U.; Rizwan, M. Analysis of Fuzzy Logic, ANN and ANFIS based Models for the Forecasting of Wind Power. In Proceedings
of the 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi,
India, 22–24 October 2018; pp. 1–7.

8. Geçmez, A.; Gençer, Ç. Wind Energy Production Estimation with ANN and ANFIS. In Proceedings of the 2021 9th International
Conference on Smart Grid (icSmartGrid), Setubal, Portugal, 29 June–1 July 2021; pp. 167–173.

9. Muneer, T.; Gago, E.J.; Berrizbeitia, S.E. Solar and Wind Energy Technologies. In The Coming of Age of Solar and Wind Power;
Springer International Publishing: Cham, Switzerland, 2022; pp. 21–103.

10. Graupe, D. Principles of Artificial Neural Networks; World Scientific: Singapore, 2013.

https://www.meteoblue.com/
https://doi.org/10.1016/j.sciaf.2020.e00660
https://doi.org/10.32479/ijeep.11027
https://doi.org/10.1016/j.renene.2020.07.144
https://doi.org/10.1016/j.scitotenv.2020.144505
https://www.ncbi.nlm.nih.gov/pubmed/33421793
https://doi.org/10.1016/j.enconman.2019.112350


Appl. Sci. 2024, 14, 3598 17 of 17

11. da Silva, I.N.; Hernane Spatti, D.; Andrade Flauzino, R.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial neural network architectures
and training processes. In Artificial Neural Networks; Springer International Publishing: Cham, Switzerland, 2017; pp. 21–28.

12. Kalogirou, S.A. Artificial neural networks in renewable energy systems applications: A review. Renew. Sustain. Energy Rev. 2001,
5, 373–401. [CrossRef]
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31. Terzioğlu, H.; Arslan, M.; Demirok, H.D. Rüzgar enerjisi ile elektrik üretimi. In Research Articles in Engineering; Gece Akademi:

Ankara, Turkey, 2019; pp. 219–241.
32. Beig, A.; Muyeen, S.M. Wind energy. In Electric Renewable Energy Systems; Academic Press: London, UK, 2015; pp. 60–77.
33. Yaramasu, V.; Wu, B. Model Predictive Control of Wind Energy Conversion Systems; John Wiley & Sons: Hoboken, NJ, USA, 2016.
34. Dhiman, H.S.; Deb, D.; Balas, V.E. Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction; Academic Press:

London, UK, 2020.
35. Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. Towards Data Sci. 2017, 6, 310–316. [CrossRef]
36. Singh, H.; Lone, Y.A. Artifical Neural Networks. In Deep Neuro-Fuzzy Systems with Python: With Case Studies and Applications from

the Industry; Apress: Berkeley, CA, USA, 2020; pp. 157–198.
37. Belyadi, H.; Haghighat, A. Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms,

Codes, and Applications; Gulf Professional Publishing: Oxford, UK, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S1364-0321(01)00006-5
https://doi.org/10.1016/S0951-8320(02)00179-5
https://doi.org/10.1016/j.jobe.2022.104323
https://doi.org/10.1016/j.apenergy.2018.07.084
https://doi.org/10.1016/j.apenergy.2015.08.014
https://doi.org/10.3390/en10081111
https://doi.org/10.1016/j.renene.2008.04.017
https://doi.org/10.1016/j.enconman.2008.09.004
https://doi.org/10.1016/j.apenergy.2010.09.024
https://doi.org/10.1016/j.apenergy.2011.04.015
https://doi.org/10.1016/j.apenergy.2010.10.035
https://doi.org/10.1007/978-3-030-00542-9
https://doi.org/10.33564/IJEAST.2020.v04i12.054

	Introduction 
	Materials and Methods 
	Determination of Wind Energy 
	Testing of Activation Functions 
	Testing of Membership Functions 
	Data Used in the Study 
	Wind Speed Data 
	Modeling with ANN 
	Modeling with ANFIS 

	Results 
	Discussion 
	Conclusions 
	References

