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Abstract: Wearing masks is an effective protective measure for residents to prevent respiratory
infectious diseases when going out. Due to issues such as a small target size, target occlusion leading
to information loss, false positives, and missed detections, the effectiveness of face mask-wearing
detection needs improvement. To address these issues, an improved YOLOv7 object detection model
is proposed. Firstly, the C2f_SCConv module is introduced in the backbone network to replace some
ELAN modules for feature extraction, enhancing the detection performance of small targets. Next,
the SPPFCSPCA module is proposed to optimize the spatial pyramid pooling structure, accelerating
the model convergence speed and improving detection accuracy. Finally, the HAM_Detect decoupled
detection head structure is introduced to mitigate missed and false detections caused by target
occlusion, further accelerating model convergence and improving detection performance in complex
environments. The experimental results show that improved YOLOv7 achieved an mAP of 90.1%
on the test set, a 1.4% improvement over the original YOLOv7 model. The detection accuracy of
each category improved, effectively providing technical support for mask-wearing detection in
complex environments.

Keywords: object detection; YOLOv7; decoupled head; mask-wearing detection; attention mechanism

1. Introduction

With the outbreak of seasonal flu during the winter and spring seasons, wearing
masks has become a crucial protective measure for residents during their daily outings [1].
However, in crowded public places such as stations, hospitals, schools, and malls, there
are still many pedestrians not wearing masks. Relying solely on manual inspections to
encourage mask wearing not only increases labor costs but also raises the risk of virus
transmission. Therefore, researching a real-time detection system for whether people are
wearing masks in complex environments is essential. This can help reduce the risk of virus
transmission, safeguarding the health of individuals and others. Establishing such a system
holds significant practical significance in building a healthier and safer society.

As societal demands and deep learning advancements progress, current mainstream
object detection algorithms can be broadly categorized into two types: two-stage object
detection algorithms based on candidate box regions and single-stage object detection
algorithms based on regression analysis. Common two-stage object detection algorithms
include Fast R-CNN [2], Faster R-CNN [3], and Mask R-CNN [4], while single-stage object
detection algorithms include YOLO, SSD [5], and Retina-Net [6]. Currently, most object
detection algorithms are suitable for face mask detection, but the effectiveness of existing
algorithms for face mask detection in complex environments is often suboptimal due to
challenges such as complex backgrounds, target occlusion, and motion blur. Researchers
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worldwide have made significant strides in developing algorithms for face mask detection.
Sun et al. [7] proposed MDDC-YOLO, an improved mask-wearing detection algorithm
based on YOLOv5 specifically designed for dense crowds under surveillance perspectives.
It achieved a 6.5 percentage point increase in detection accuracy compared with YOLOv5.
However, it did not address the missed and false detections of small targets in complex
environments. Li et al. [8] addressed the issues of dense targets, occlusion, and small-scale
objects in mask-wearing detection in complex environments such as malls and stations by
introducing improved DenseNet into YOLOv5. This achieved a detection accuracy of 97.8%
but with slower model detection speeds. Fu et al. [9] focused on problems related to correct
mask wearing, different shooting angles, and occlusion. They introduced convolutional
attention mechanisms and improved spatial pyramid pooling into the detection head of
YOLOv7, achieving an mAP of 93.8% on the test set. However, their approach was limited
to detecting mask wearing by single individuals in simple environments. Nonetheless, the
aforementioned research efforts still require further improvement in mask-wearing detec-
tion accuracy and speed in complex environments, small target detection, and addressing
information loss due to target occlusion.

To address the above-mentioned issues and improve the effectiveness of mask-wearing
detection in complex environments, the main contributions of this paper are summarized
as follows.

We utilize web scraping techniques to collect images of individuals wearing masks
in various complex scenarios from the internet. Combined with the publicly available
dataset AIZOO, the images are reorganized and annotated using LabelImg software [10].
The dataset is then split into training and testing sets. Then, by employing techniques such
as cropping, flipping, and Gaussian blurring for data augmentation, the diversity of the
dataset can be increased, thereby enhancing the model’s generalization performance.

We introduce an improved real-time mask-wearing detection model based on YOLOv7.
In the backbone network, the C2f_SCConv module is introduced to replace some efficient
layer aggregation networks (ELANs), reducing the network parameters and increasing
the receptive field, thereby facilitating the extraction of richer facial mask features. The
spatial pyramid pooling structure is optimized at the neck, introducing the Spatial Pyramid
Pooling-Fast, Cross-Stage Partial Channel with Attention (SPPFCSPCA) mechanism mod-
ule, which integrates an attention mechanism into the spatial pyramid pooling structure to
improve the training speed and accelerate model convergence. The detection head incorpo-
rates the HAM_Detect decoupling head to mitigate issues such as target occlusion, false
positives, and false negatives, optimizing detection performance in complex environments
and further accelerating model convergence while enhancing detection accuracy.

The experimental results validate that the improved YOLOv7 model addresses the
issues of small target false negatives and false positives in mask-wearing detection in
complex environments. It ensures the superiority of training loss and detection accuracy
performance, providing effective technical support for improving mask-wearing detection
in complex environments.

2. Related Works
2.1. YOLOv7

YOLOv7 [11] is an outstanding single-stage object detector that offers six different
versions: YOLOv7-tiny, YOLOv7, YOLOv7-d6, YOLOv7-e6, YOLOv7-e6e, and YOLOv7-
w6. Among them, YOLOv7 focuses on achieving a balance between accuracy and speed
when performing inference on edge devices. This paper builds upon this version with
improvements aimed at enhancing mask-wearing detection performance.

The YOLOv7 network structure comprises three parts: the input stage, backbone, and
the neck and head. The input stage is responsible for scaling the input image to meet
the requirements of the backbone network. After preprocessing and data augmentation,
the processed image is fed into the backbone network for feature extraction. The neck
part merges the extracted features to generate features of different sizes: large, medium,
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and small. These fused features are then passed to the detection head, which outputs
a tensor containing the class confidence, object center coordinates, width, and height.
YOLOv7 uses the sigmoid function to map the output values between 0 and 1 and applies
a non-maximum suppression algorithm for filtering. During inference, YOLOv7 adopts a
center-based detection approach where the model predicts the center coordinates, width,
height, and object class for each object. Finally, objects are classified and localized based on
the prediction results, followed by non-maximum suppression for filtering, resulting in the
detection output.

The YOLOv7 network structure, as shown in Figure 1, takes 640 × 640 three-channel
RGB training images as input. It adopts the Mosaic data augmentation method proposed
in YOLOv4, which involves randomly cropping four input images and then stitching them
together to form a single training image. This enriches the dataset and enhances training
efficiency. The backbone network consists mainly of efficient layer aggregation network
(ELAN) modules and MP (MaxPool) modules. The ELAN modules are used for image
feature extraction and channel control, while the MP modules maintain consistency in the
number of channels before and after processing. The neck and detection head comprise
the Spatial Pyramid Pooling, Cross-Stage Partial Channel (SPPCSPC) modules, extended
ELAN (E-ELAN) modules, and MP2 modules. It adopts the same Path Aggregation Feature
Pyramid Network (PAFPN) structure as YOLOv5 for aggregating features of multiple sizes.
This structure forms large, medium, and small IDetect detection heads and decouples the
feature information obtained from the neck. The RepVGG Block (REP) structure is used to
adjust the number of channels in the decoupled feature information. Finally, the generated
feature maps are predicted and output using 1 × 1 convolutions. Through the collaboration
of these modules, the YOLOv7 network achieves excellent results in object detection tasks.
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Figure 1. Network structure of YOLOv7. 

In recent years, various improvement methods for YOLOv7 have been proposed, lead-
ing to a continuous stream of research achievements. Wang et al. [12] introduced the 
YOLOv7-CPCSDSA detection model for mask-wearing detection. They utilized the 
CatPConv structure to reduce computational redundancy and memory access, added the 
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In recent years, various improvement methods for YOLOv7 have been proposed,
leading to a continuous stream of research achievements. Wang et al. [12] introduced
the YOLOv7-CPCSDSA detection model for mask-wearing detection. They utilized the
CatPConv structure to reduce computational redundancy and memory access, added the
SD module to enhance the detection of small targets, and introduced the SA mechanism
to enhance the collection of local information. The model achieved an average precision
of 88.4%. Praveen et al. [13] proposed an improved YOLOv7 model for apple detection
in complex backgrounds. By introducing a specific multi-head attention mechanism to
capture complex interactions between regions and features, they improved the accuracy of
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apple detection, achieving a precision value of 91%. Ding et al. [14] presented an improved
mask-wearing detection algorithm based on YOLOv7. They enhanced the perception of
small targets by adding attention mechanisms to the backbone network and introducing
partial convolution methods. Integration of the DSC structure in the detection head reduced
the device requirements and improved computational speed while also enhancing detection
performance by reducing the network parameters and computational complexity. Zeng
et al. [15] proposed a real-time small object detection algorithm, YOLOv7-UAV, by removing
the second downsampling layer and the deepest detection head. They introduced the
DpSPPF module to effectively extract feature information of different scales, optimized the
K-means algorithm, and used weighted normalization operations. As a result, the average
precision increased by 2.89%, while the parameter count decreased by 8.3%.

2.2. Loss Function

In object detection networks, the localization of targets relies on a bounding box
regression model, which encompasses three major geometric factors: the overlapping area,
center point distance, and aspect ratio. The loss function is used to assess the degree
to which the predicted bounding boxes differ from the ground truth boxes. A smaller
loss function value typically indicates better model performance. Currently, the main
introduced loss functions in object detection networks are compared as shown in Table 1.

Table 1. Comparison of different loss functions.

Name Loss Function Description

IoU
Intersection over union: the ratio of the intersection area to the union area between the predicted and true bounding
boxes. It ranges from 0 to 1, with 1 indicating perfect overlap. However, the IoU does not reflect the distance between
non-overlapping boxes or distinguish accuracy when the IoU is the same for multiple predictions.

GIoU
Generalized IoU: an extension of the IoU that introduces the smallest enclosing box for both the predicted and true
boxes. It encourages the predicted box to be as close as possible to the true box, especially when they do not overlap.
The GIoU reduces to the IoU when the boxes are horizontally aligned.

DIoU Distance IoU: builds upon the IoU by considering the Euclidean distance between the centers of the predicted and true
boxes, along with the overlap area. This helps improve the convergence speed of the loss function.

CIoU Complete IoU: an extension of the DIoU that also incorporates aspect ratio information to enhance the stability of object
box regression. It provides better judgment when the aspect ratios differ significantly.

EIoU
Enhanced IoU: an extension of the CIoU that separates the aspect ratio’s influence factor for the predicted and true
boxes. It calculates the lengths and widths independently, improving the convergence speed and achieving better
localization accuracy.

α IoU Alpha IoU: introduces a tunable alpha parameter to the IoU for increased flexibility in adapting to different horizontal
boundary regression box accuracies. It exhibits better robustness in small datasets and noise.

SIoU
Spatial IoU: an extension of the EIoU that adds the angle loss between the predicted and true box centers. It redefines
distance loss, effectively reducing regression freedom. Additionally, it introduces a category information weighting
factor to enhance detection model classification accuracy.

WIoU
Weighted IoU: introduces attention-based bounding box losses. WIoU v1 constructs attention-based bounding box
losses, while WIoU v2 and v3 further enhance the attention mechanism by introducing gradient gain (focus coefficient)
calculation methods.

2.3. Detection Heads

In object detection tasks, the detection head is a specific module used to recognize and
locate targets, and its design significantly influences the model’s detection accuracy and
speed. Currently, detection heads can be mainly categorized into four types: anchor-based,
anchor-free, self-attention, and cascade. Among them, anchor-based and anchor-free are
the most widely used types. For instance, the YOLO series, SSD series, and most R-CNN
series are predominantly designed based on anchors, utilizing predefined anchor boxes to
match real target boxes. On the other hand, models such as CornerNet [16], CenterNet [17],
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and FCOS are designed based on anchor-free principles. The key distinction lies in whether
predefined anchor boxes are employed to match real target boxes.

Furthermore, in object detection tasks, target classification and localization regression
are highly correlated, but the learning mechanisms for these two tasks are inherently
contradictory. Classification tasks, aiming to enhance semantic understanding, require
richer global contextual information and coarse features. On the other hand, regression
tasks prefer detailed information about the bounding boxes, necessitating fine features. As
a result, the coupled detection head for both tasks is widely recognized to significantly
impact model convergence, especially for mask targets that are densely distributed and
prone to occlusion.

Decoupled detection head (Decouple Head) is a method that decouples the tasks of
object classification and localization regression, treating them as independent operations. In
recent years, it has emerged as a new direction for improving object detection tasks, yielding
significant results. Tian et al. [18] introduced the FCOS model, which employs a Decouple
Head structure to separate the two tasks and introduces convolutional layers independently
on each branch, allowing each task to make spatial judgments without affecting each other.
Wu et al. [19] reinterpreted classification and regression, finding that fc-heads are more
suitable for classification tasks, while conv-heads are more suitable for regression tasks. The
YOLOX model proposed by Ge et al. [20] utilizes a Decouple Head structure, separating
the classification and regression tasks into two independent branches. During prediction,
the results are integrated, marking the first introduction of a decoupled detection head
in the YOLO series, significantly improving the convergence speed and performance. Xu
et al. [21] introduced the PP-YOLOE model, employing an anchor-free detection head
design. The detection speed and accuracy of PP-YOLOE are somewhat superior to YOLOX
and YOLOv5, making it an advanced industrial target detector with high performance
and user-friendly deployment. The YOLOv6 model proposed by the Meituan-Dianping
Computer Vision Intelligence team [22], designed for industrial applications, adopts the
anchor-free paradigm. It simultaneously reduces a 3 × 3 convolutional layer on both
an independent classification and regression branch, reducing computational costs and
achieving lower inference latency. The YOLOv8 model, based on optimizing YOLOv5 with
Ultralytics [23], replaces the detection head with a Decouple Head structure compared with
YOLOv5. It separates the classification and regression tasks and introduces the closure
of Mosaic augmentation in the last 10 epochs from YOLOX, effectively enhancing the
detection accuracy.

3. Improved YOLOv7

The improved YOLOv7 network structure proposed in this paper is illustrated in
Figure 2. It is mainly composed of three parts: the input stage (Input), the backbone network
(Backbone), and the neck and detection head (Neck & Head). The modules highlighted in
red indicate the improved modules. In the backbone network, the C2f_SCConv module is
used to replace certain feature extraction modules, enhancing the detection performance
of small targets. In the neck part, the SPPFCSPCA module optimizes the spatial pyramid
pooling structure, accelerating the model convergence speed. In the detection head part,
the HAM_Detect decoupled head is employed to further accelerate model convergence
and improve detection performance in complex environments.
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3.1. C2f_SCConv

The backbone network primarily introduces the C2f_SCConv module to replace some
of the ELEN modules. The C2f_SCConv module combines the C2f structure with Spatial
and Channel Reconstruction Convolution (SCConv) [24], The C2f structure originates from
YOLOv8, which was designed by integrating the C3 module from YOLOv8 and the ELAN
concept from YOLOv7. This ensures it being lightweight while obtaining richer gradient
flow information. However, the original C2f structure still lacks a sufficient feature extrac-
tion capability for masks in complex environments, as it lacks multidimensional feature
information and may exhibit feature redundancy issues when combined with ordinary
convolutions. SCConv effectively mitigates feature redundancy, reducing the model pa-
rameters and computational costs while enhancing feature representation capabilities and
improving network feature extraction performance.

As shown in Figure 3, SCConv consists of two parts: the spatial refined unit (SRU)
and the channel refined unit (CRU). For the input feature map, it first undergoes a
1 × 1 convolution to adjust to the appropriate number of channels. Then, it is processed
separately by the SRU and CRU modules. Finally, the channel number is restored through
another 1 × 1 convolution, followed by a residual operation. The SRU suppresses spatial
redundancy through a separate-reconstruct method, while the CRU adopts a strategy of
segmentation, transformation, and fusion to reduce channel redundancy.
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As shown in Figure 4, the C2f structure is integrated with the SCConv module. The
input features undergo a 1 × 1 convolution to adjust the channel number. Then, instead
of using a 1 × 1 convolution, a split operation is employed to split the input features. All
bottleneck modules in the original C2f structure are replaced with Bottleneck-SCConv
modules, where the value of n is set to one. Compared with the bottleneck module, the
Bottleneck-SCConv module enlarges the network’s receptive field, enabling the extraction
of richer facial mask features.
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3.2. Hybrid Attention Module (HAM)

The attention mechanism scans the entire global image to identify target regions
that require focused attention, benefiting the extraction and fusion of features for small
targets. However, adding attention can increase the computational cost of the model. The
Convolutional Block Attention Module (CBAM), proposed by Woo et al. [25], achieves
better performance through a dual attention mechanism in both the spatial and channel
dimensions, but it comes with a higher computational cost. Efficient Channel Attention
(ECA), proposed by Wang et al. [26], eliminates dimensionality reduction operations and
utilizes one-dimensional convolution for cross-channel interaction, resulting in a lower
model complexity. However, it uses less channel information, leading to less effective
performance in dense scenes.

In order to more effectively utilize attention mechanisms, this paper employs a
lightweight and efficient HAM [27] to enhance the model’s extraction and fusion of mask
features. The HAM consists of channel attention and spatial attention modules, as illus-
trated in Figure 5. Firstly, the channel attention module generates channel attention maps
and refined channel features. Then, the spatial attention module, based on the channel
attention module, optimizes the channel features along the channel axis, dividing them
into two groups and generating a pair of spatial attention descriptors. Finally, refined
features are produced adaptively, emphasizing crucial regions based on these spatial
attention descriptors.
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3.3. SPPFCSPCA

The spatial pyramid pooling (SPP) structure can transform feature maps of any size
into fixed-size feature vectors, addressing the issues caused by varying input image sizes
and simultaneously enhancing the accuracy of object detection. The SPPCSPC module
integrates the advantages of spatial pyramid pooling and cross-stage partial networks,
resulting in a significant performance improvement compared with SPP, albeit at the cost
of increased parameters. This paper proposes improvements to the SPPCSPC structure by
incorporating a Hybrid Attention Module-ResBlock_HAM at the output position and trans-
forming the original three parallel Maxpool pooling layers into a sequential arrangement,
as shown in Figure 6. Despite the introduction of hybrid attention increasing the parameter
count, the use of max pooling can reduce the size of the feature layers. The sequential
computation helps mitigate the increase in parameters and not only enable better capture
of the target object features but also significantly improve the model convergence speed
and, to some extent, mitigate overfitting.
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3.4. HAM_Detect

A well-known issue in object detection tasks is the inherent contradiction between
classification and regression. This paper, inspired by the study of YOLOX and its related
models, leverages the successful application of decoupled heads. The decoupled head
structure is incorporated into the YOLOv7 model. However, YOLOX uses decoupled heads
to separate and independently learn classification and regression, lacking task-specific
learning. To address this, our paper introduces a HAM_Detect module that combines the
attention mechanisms and convolution operations. The structure of this head is depicted
in Figure 7. The head consists of three subheads responsible for target class prediction,
confidence regression, and bounding box regression.
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The HAM_Detect module initially takes the fused feature maps from three different
scales into three corresponding scale prediction heads. The fused feature map undergoes a
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1 × 1 convolution to adjust the channel count before being fed into both the classification
and regression branches. In these two branches, a hybrid attention mechanism is employed
to learn the weights and enhance the feature maps. Subsequently, a 3 × 3 convolution
extracts high-dimensional features. The classification branch extracts texture informa-
tion from the input feature map, the confidence regression branch captures background
information, and the bounding box regression branch extracts positional information. Fi-
nally, a 1 × 1 convolution adjusts the channel count, and the results from each branch are
concatenated through the CONCAT operation.

Overall, the HAM_Detect module combines the hybrid attention mechanism with
convolution operations. The hybrid attention mechanism dynamically assigns different
weights to channels and spatial locations based on different input features, focusing more
on crucial features. Meanwhile, convolution operations extract features within local regions,
sharing weights across different positions. By integrating the hybrid attention mechanism
with convolution operations, the model can better capture the features of target objects,
enhance generalization performance, and become more suitable for various real-world
scenarios. Since classification and regression tasks require different features, the decou-
pled head employs distinct branches for learning, adaptively acquiring features based on
task requirements. This helps the model more accurately discriminate and locate targets,
improving object detection performance in complex scenes.

3.5. Improved Bounding Box Regression Loss Function

The bounding box regression loss function is a crucial component of the object de-
tection loss function, playing a pivotal role in the detection accuracy of object detection
models. The YOLOX model employs the IoU [28] as the bounding box regression loss
function, which reflects the quality of predictions by considering the intersection over
union between the predicted boxes and ground truth boxes. However, calculation methods
based on geometric properties like the IoU assume that the annotated ground truth boxes
in the dataset are all high-quality samples, reinforcing the fitting between the predicted
and ground truth boxes. In reality, annotated datasets often contain a significant number of
low-quality samples. Strengthening regression on these low-quality samples may hinder
the improvement of detection model performance. Therefore, this paper proposes an
improvement to the bounding box regression loss function using the WIoU [29]. It is a
dynamic and non-monotonic focusing mechanism that evaluates the quality of all anchor
boxes using “outlierness”. Through a gradient gain allocation strategy, it focuses on the
anchor boxes of average quality, reducing the adverse gradients generated by extremely
high- or low-quality samples. This improvement addresses the deficiencies of the IoU loss
function in calculating the regression for low-quality samples, thereby reducing the loss
function value and accelerating the model convergence speed.

The IoU schematic diagram for the WIoU bounding box loss function is illustrated in

Figure 8. The predicted box is represented by
→
B = [x y w h], while the ground truth box is

represented by
→
B gt =

[
xgt ygt wgt hgt

]
.

The IoU is used to measure the degree of overlap between the predicted box and the
ground truth box and is defined as follows:

LIoU = 1 − IoU = 1 − Wi Hi
wh + wgthgt − Wi Hi

(1)

The penalty term for constructing the WIoU is defined as the center point distance ratio,
expressed by

RWIoU = exp(
(x − xgt)

2 + (y − ygt)
2

W2
g + H2

g
) (2)

WIoUv1 is defined as follows:

LWIoUv1 = RWIoU LIoU (3)
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The outlierness, which describes the quality of the anchor boxes, is defined by

β =
LIoU

LIoU
∈ [0,+∞] (4)

where the term LIoU represents the exponentially weighted moving average with momen-
tum m, and it is utilized to construct a non-monotonic focusing coefficient using β:

r =
β

δαβ−δ
(5)

where α, δ represents a manually set parameter, which is experimentally validated to
perform well in the YOLOv7 model when its values are set to 1.9 and 3, respectively.
Therefore, LWIoUv3 is defined as follows:

LWIoUv3 = rLWIoUv1 (6)

When the outlierness is relatively small, indicating higher anchor box quality, a smaller
gradient gain should be assigned. This is gain is assigned to focus the bounding box
regression on regular-quality anchor boxes. Conversely, when the outlierness is larger,
indicating lower anchor box quality, a smaller gradient gain should also be assigned. This
helps effectively prevent harmful gradients caused by low-quality anchor boxes. As the
criteria for dividing anchor box quality dynamically change with LIoU , WIoUv3 can adapt
its gradient gain allocation strategy at any moment to best suit the current situation.
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4. Experiments and Results Analysis
4.1. Experimental Environment

The experiments in this paper were conducted on a cloud server with an Intel(R)
Xeon(R) Platinum 8375C CPU with 90 GB of RAM and an RTX4090 GPU with 24 GB
of VRAM. The development language used in this paper is the open-source Python ma-
chine learning library PyTorch deep learning framework, with Python version 3.10 and
PyTorch version 2.1.0. The advantages of the PyTorch framework lie in its support for
GPU-accelerated computation and large-scale floating-point operations, facilitating model
training. The specific configuration of the experimental environment and the hyperparame-
ter settings are shown in Tables 2 and 3, respectively.
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Table 2. Experimental environment configuration.

Configuration Name Value

Operating system Linux (Ubuntu)
Programming language Python

Training framework Pytorch 2.1.0
Framework environment set-up CUDA 12.1

CPU/GHz Intel(R) Xeon(R) Platinum 8375C @ 2.10 GHz
Memory 90 GB

GPU NVIDIA GeForce RTX4090

Table 3. Experimental hyperparameters.

Parameter Value

lr0 0.01
lrf 0.2

weight_decay 5 × 10−4

Batch size 16
Epochs 300

4.2. Dataset

This paper is based on the publicly available AIZOO dataset. Additionally, Python
web scraping techniques were employed to gather images of individuals wearing masks in
various complex scenarios from the internet, expanding the dataset. After reorganization,
the dataset consisted of over 10,000 images with diverse sizes, angles, and lighting condi-
tions. The images were reannotated using LabelImg software to create a dataset specifically
for scenarios involving mask wearing in complex scenes, including images from real-life
situations such as stations, schools, hospitals, and malls. Some examples are shown in
Figure 9. The dataset includes three classes: faces without masks (face), masks (mask),
and faces with masks (face_mask). The dataset was split into training and testing sets at a
4:1 ratio.
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4.3. Evaluation Metrics

This paper uses precision (P), recall (R), and mean average precision (mAP) as the
evaluation metrics to validate and assess the detection performance of the model. The
formulas for calculating P and R are as follows:

P =
MTP

MTP + MFP
× 100% (7)

R =
MTP

MTP + MFN
× 100% (8)

For the “face” category annotated by the data in this paper, as an example, TP repre-
sents the number of face images without masks correctly detected as the “face” category
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after model training. FP is the number of images containing masks or faces with masks
incorrectly detected as the “face” category. FN is the number of face images without masks
incorrectly detected as either having masks or as faces with masks after model training.
Precision (P) describes the accuracy of the detection model in precisely classifying this
category, while recall (R) describes the model’s ability to avoid missing detection in this
category. The average precision (AP) is the area enclosed by the precision-recall curve and
the positive half of the coordinate axes. AP evaluates the detection model for this category
for both the precision and recall aspects. The mAP is the mean of AP for all categories
in the detection model, providing an effective evaluation of the model’s detection perfor-
mance across all categories. The formulas for calculating AP and the mAP are shown in
Equations (9) and (10). In this paper, the detection threshold for the intersection over union
(IoU) is set to 0.5, making the evaluation metric mAP@0.5:

AP =
∫ 1

0
P(R)dR (9)

mAP =

m
∑

i=1
APi

m
(10)

4.4. Experimental Design and Result Analysis
4.4.1. Ablation Experiment

To validate the impact of the proposed improvement modules on detection perfor-
mance, this paper conducts ablation experiments using YOLOv7 as the baseline. The
experiments involved the C2f_SCConv module, the SPPFCSPCA spatial pyramid structure,
and the attention decoupling head. As shown in Table 4, integrating the C2f_SCConv
module into the feature extraction network enhanced the feature extraction performance.
Both the C2f_SCConv module and the SPPFCSPCA spatial pyramid structure significantly
improved the object detection performance, with the YOLOv7-B model showing a 1%
increase in mAP@0.5 compared with YOLOv7. After incorporating the improved attention
decoupling head, the model’s detection accuracy further improved. The final mAP@0.5
reached 90.1%, representing a 1.4% improvement over YOLOv7. At the same time, there
was a slight increase in the model parameters, which also slightly raised the computational
performance requirements for the devices.

Table 4. Ablation experiment.

Model C2f_SCConv SPPFCSPCA HAM_Detect mAP@0.5 (%) Parameters (M) GFLOPs

YOLOv7 × × × 88.7 35.48 105.1
YOLOv7-A

√
× × 88.9 38.58 44.2

YOLOv7-B
√ √

× 89.7 38.58 44.2
YOLOv7-C

√ √ √
90.1 54.11 135.6

4.4.2. Contrastive Experiment

(1) mAP Comparison

To demonstrate the improvement effect of the proposed method on the YOLOv7
network more intuitively, a comparison between the improved YOLOv7 network and the
original YOLOv7 network in terms of the training results is presented in Figures 10 and 11.
Figure 10a,b depicts the precision-recall (P-R) curves of the YOLOv7 network and the
proposed method, respectively. These curves include the mean average precision (mAP)
values for classes such as face, face_mask, mask, and all classes. The horizontal axis rep-
resents the recall, while the vertical axis represents the precision. Figure 11 illustrates the
mAP comparison between the two networks. It is evident that both curves exhibit an
upward trend with increasing training iterations, and they tend to stabilize at approxi-
mately 150 epochs of training. The improved YOLOv7 network outperformed the original
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YOLOv7 network in terms of accuracy, showing advantages in mask-wearing detection in
complex environments.
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(2) Loss Function Convergence Comparison

Figure 12 displays the convergence of the loss function for the original YOLOv7
network and the improved YOLOv7 network proposed in this paper. This comparison
provides a visual representation, showing that the loss function values for the improved
YOLOv7 network were consistently lower than those of the original network. More-
over, the improved network converged faster, indicating superior performance from the
enhanced model.



Appl. Sci. 2024, 14, 3606 14 of 18

Appl. Sci. 2024, 14, 3606 14 of 18 
 

the improved network converged faster, indicating superior performance from the en-
hanced model. 

 
Figure 12. Loss function convergence comparison. 

4.4.3. Performance Comparison and Analysis with Mainstream Detection Models 
To quantitatively evaluate the performance of the improved model, this paper com-

pares the improved model with Faster R-CNN, YOLOv5s, YOLOX, YOLOv7-tiny [30], the 
original YOLOv7 model, and the latest YOLOv8s model based on detection metrics. The 
comparative experimental results are shown in Figure 13 and Table 5. The mAP value of 
the improved model was higher than those of the other models, with a 6.5% improvement 
over Faster R-CNN, a 5.2% improvement over YOLOv7-tiny, and 1.7%, 1.6%, 1.4%, and 
1.8% improvements over YOLOv5s, YOLOX, YOLOv7, and YOLOv8s, respectively. Com-
pared with the original YOLOv7 model, the mAP values for each category were improved. 
Specifically, the mAP for faces without masks increased by 1.5%, that for faces with masks 
increased by 0.9%, and that for the mask category increased by 1.8%. Therefore, based on 
the comparison of mAP values, the detection performance of the improved model sur-
passed that of other mainstream detection models. 

 
Figure 13. Comparison of mAP values for mainstream detection algorithms. 

Figure 12. Loss function convergence comparison.

4.4.3. Performance Comparison and Analysis with Mainstream Detection Models

To quantitatively evaluate the performance of the improved model, this paper com-
pares the improved model with Faster R-CNN, YOLOv5s, YOLOX, YOLOv7-tiny [30], the
original YOLOv7 model, and the latest YOLOv8s model based on detection metrics. The
comparative experimental results are shown in Figure 13 and Table 5. The mAP value of
the improved model was higher than those of the other models, with a 6.5% improvement
over Faster R-CNN, a 5.2% improvement over YOLOv7-tiny, and 1.7%, 1.6%, 1.4%, and
1.8% improvements over YOLOv5s, YOLOX, YOLOv7, and YOLOv8s, respectively. Com-
pared with the original YOLOv7 model, the mAP values for each category were improved.
Specifically, the mAP for faces without masks increased by 1.5%, that for faces with masks
increased by 0.9%, and that for the mask category increased by 1.8%. Therefore, based
on the comparison of mAP values, the detection performance of the improved model
surpassed that of other mainstream detection models.
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Table 5. Performance comparison and analysis with mainstream detection models.

Model Face (%) Face_Mask (%) Mask (%) mAP@0.5 (%)

Faster R-CNN 82.4 84.6 83.9 83.6
YOLOv5s 87.4 90.1 87.8 88.4
YOLOX 86.9 90.3 88.4 88.5

YOLOv7-tiny 85.2 87.3 82.1 84.9
YOLOv7 87.4 90.1 88.6 88.7
YOLOv8s 85.7 90.5 88.6 88.3

Ours 88.9 91.0 90.4 90.1

4.4.4. Visualization

To validate the visual effectiveness of the proposed improved model in various mask-
wearing detection scenarios, images from the test set with complex backgrounds, small
target sizes, partial scene occlusion, and dim lighting conditions were selected for detection.
Figures 14–17 illustrate the visual comparison of the detection results between YOLOv7
and the proposed model in the same scenario.
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demonstrated higher overall accuracy in detecting mask wearing in complex backgrounds.

Figure 15a,b depicts a comparison of the detection results for small-sized targets.
YOLOv7 failed to detect faces wearing masks in the distance, and there were issues with
incomplete detection of masked targets. However, the model proposed in this paper
improved the detection of faces wearing masks in the distance and ensured more complete
detection results, as indicated by the red circle in Figure 15b.

Figure 16a,b depicts a comparison of the detection results for partially occluded faces.
YOLOv7 failed to detect faces wearing masks when partially occluded, while the model
proposed in this paper could correctly detect faces wearing masks even when partially
occluded, as indicated by the red circle in Figure 16b.

Figure 17a,b illustrates a comparison of the detection results in dim lighting conditions.
YOLOv7 exhibited omissions in detecting faces wearing masks under dim conditions,
detecting only one category. In contrast, the model proposed in this paper could cor-
rectly detect faces wearing masks under dim conditions, as indicated by the red circle
in Figure 17b.
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5. Conclusions

This paper proposes an improved mask-wearing detection model based on YOLOv7,
aiming to address the issues of poor detection performance in complex environments,
such as complex backgrounds, small target sizes, information loss due to target occlusion,
false positives, and false negatives. We introduced the C2f_SCConv module as a feature
extraction module, which enlarges the network’s receptive field, allowing for the extraction
of richer facial mask features and improving the detection performance of small targets.
Additionally, we proposed the SPPFCSPCA module, which integrates a hybrid attention
mechanism and optimizes the spatial pyramid pooling structure, resulting in faster model
convergence. Finally, we introduced the HAM_Detect decoupled head, which incorporates
a hybrid attention mechanism and optimizes the loss function, further accelerating model
convergence, mitigating issues caused by target occlusion, false positives, and false nega-
tives, and improving the detection performance of the model in complex environments.

Building upon these improvements, our model trained on the enhanced dataset from
the AIZOO public dataset exhibited excellent performance. Significant improvements were
observed in the model’s bounding box loss function compared with the baseline YOLOv7
model. The detection accuracy reached 90.1%, showing notable improvement compared
with Faster R-CNN, YOLOv5s, YOLOX, YOLOv7, YOLOv7-tiny, and YOLOv8s. In practical
detection scenarios, our proposed model performed well in complex environments, such
as those with complex backgrounds, small target sizes, partial scene occlusion, and dim
lighting conditions. In the future, we will focus on improving the model’s lightweight
direction, aiming to reduce the model parameters and computational complexity and
optimize the model complexity while maintaining good detection accuracy. This will
facilitate deployment of the mask-wearing detection model on mobile platforms with
limited computational resources.
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