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Abstract: In recent years, sequential recommendation systems have become a hot topic in the field
of recommendation system research. These systems predict future user actions or preferences by
analyzing their historical interaction sequences, such as browsing history and purchase records, and
then recommend items that users may be interested in. Among various sequential recommendation
algorithms, those based on the Transformer model have become a focus of research due to their
powerful self-attention mechanisms. However, one of the main challenges faced by sequential
recommendation systems is the noise present in the input data, such as erroneous clicks and incidental
browsing. This noise can disrupt the model’s accurate allocation of attention weights, thereby
affecting the accuracy and personalization of the recommendation results. To address this issue,
we propose a novel method named “weight adjustment framework for self-attention sequential
recommendation” (WAF-SR). WAF-SR mitigates the negative impact of noise on the accuracy of
the attention layer weight distribution by improving the quality of the input data. Furthermore,
WAF-SR enhances the model’s understanding of user behavior by simulating the uncertainty of
user preferences, allowing for a more precise distribution of attention weights during the training
process. Finally, a series of experiments demonstrate the effectiveness of the WAF-SR in enhancing
the performance of sequential recommendation systems.

Keywords: sequential recommendation; deep learning; self-attention mechanism; denoise

1. Introduction

With the advent of the internet and the digital age, users are faced with a vast amount
of information and choices. Whether they are online shopping, selecting movies or books,
or browsing news, users find it challenging to locate content of interest among the plethora
of options available. It is in this context that recommendation systems (RSs) have emerged
as a key technology to address this challenge. Recommendation systems employ various
recommendation algorithms to help users filter information in an information-redundant
environment, providing more choices that users might be interested in. Recommendation
systems also utilize advanced machine learning techniques, such as collaborative filtering
(CF) [1], to analyze similarities among users. This means that the system can recommend
content based on the behavior of other users with similar preferences.

In traditional recommendation systems [2], although user preferences and behaviors
are considered, these methods often overlook the temporal sequence and dynamic nature
of user behavior. Sequential recommendation (SR) is a significant branch within the recom-
mendation system field [3], focusing on leveraging the time-sequenced information of user
behaviors to generate personalized recommendations. Unlike traditional recommendation
systems, sequential recommendation systems specifically highlight the order and dynamic
evolution of user behaviors to offer more precise and relevant content or product recom-
mendations. By taking into account the sequence of users’ historical interactions, sequential
recommendation is capable of predicting the items that users might interact with next.
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Traditional methods in sequential recommendation primarily include techniques such
as Markov chains, matrix factorization [4], and k-nearest neighbor (KNN) [5]. These
methods played a pivotal role in the early development of sequential recommendation.
Rendle et al. [6] introduced the factorizing personalized Markov chains (FPMC) model.
The core idea of FPMC is to combine traditional Markov chain approaches with matrix
factorization techniques, constructing a personalized transition matrix for each user to form
a transition cube. This approach retains the sequence-modeling capabilities of Markov
chains while incorporating considerations for individual user preferences. In sequential
recommendation, KNN is a method that considers the sequence of user behaviors [7]. The
core idea of KNN is to find the K most similar neighbors to the target user and predict the
target user’s preferences for unknown items based on the behaviors or ratings of these
neighbors or to recommend items to them. These traditional methods have achieved certain
results in the field of recommendation systems, but their limitations in processing complex
sequence data and understanding deep user preferences have spurred on the development
of sequential recommendation methods based on deep learning.

In recent years, deep learning technology has made significant progress with regard
to recommendation algorithms [8–10]. With the successful application of deep learning
technology in fields such as image recognition and natural language processing, researchers
have begun to apply deep learning models to recommendation systems, especially in the
field of sequential recommendation. Zhou et al. [11] proposed the deep interest network
(DIN), specifically designed to improve the accuracy of click-through rate predictions. The
core of this model lies in its unique user-interest-modeling approach, which captures the
dynamic changes in user interests by learning deep representations of users’ historical
behaviors.

With the rise of the Transformer architecture [12], Transformer-based sequential rec-
ommendation methods have increasingly garnered attention, such as SASRec [13] and
BERT4Rec [14]. The Transformer utilizes the self-attention mechanism to effectively model
long-sequence data, address long-range dependency issues, and boasts an efficient compu-
tational speed. However, recent research [15] has revealed that the attention mechanism
might suffer from inaccuracies in weight allocation, with noisy data inputs [16,17] and
suboptimal position encoding [18] identified as primary causes. The existing sequential
recommendation models typically assume that the target item is related to all historical
interaction items. However, in real-world scenarios, this assumption may not always hold
true, as users may inadvertently interact with items that deviate from their interests or
preferences, leading to noise in the interaction data. These noise sources are difficult to
identify, which presents challenges in accurately discerning users’ true preferences through
the self-attention mechanism, resulting in inaccurate attention weight allocation.

Inspired by previous works [15,19,20], we address the issue of inaccurate attention
weight distribution from two perspectives. (1) We introduce a denoising technique to
mitigate the influence of noisy data input on the attention weight distribution. We set up a
filter layer to clean the data before it flowed into the self-attention layer, to prevent noise
from negatively affecting the model’s interpretation of user behavior and the accuracy of
its recommendations. (2) We enhanced the model’s capability to understand user behavior,
thereby refining the attention weight distribution. We enhanced the model’s grasp of
the logic behind user behavior by introducing a logical representation layer. This logical
representation layer enabled the attention mechanism to more effectively identify the user
interactions that had the greatest impact on the recommendation outcomes.

In summary, our contributions are as follows:

• We propose a novel sequential recommendation method, WAF-SR, which enhances
the accuracy of attention weight allocation by mitigating the interference of noise in
the input data;

• We introduce logical representation technology to correct and optimize the allocation
of weights by the attention mechanism more precisely;
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• We have conducted extensive experiments on three public datasets, and the results
validate the effectiveness and superiority of our proposed method.

The structure of this paper is organized as follows: Section 1 serves as the introduction,
presenting the research background, objectives, and significance of the study. Section 2
provides a review of previous work closely related to our research. Section 3 elaborates,
in detail, our research methodology, including the formal definition of the problem and
key components: the filter layer, self-attention layer, logical representation layer, and
prediction layer. Section 4 describes the specific setup and steps of the experiments,
covering the selection of datasets, evaluation metrics, choice of baseline models, technical
details of implementation, overall performance of the model, ablation studies, and research
on hyperparameters. Section 5 summarizes the findings of this study and includes the
discussion of the results.

2. Related Work

In the early stages of recommender systems, Rendle et al. [21] proposed a universal
optimization criterion for personalized ranking called BPR, which played a revolutionary
role in the research of recommender systems. BPR aims to directly optimize the quality of
rankings, rather than the traditional accuracy of rating prediction. Through this method,
BPR can more effectively handle implicit feedback data, such as clicks or purchases. With
the advancement of deep learning technology, an increasing number of people are applying
deep learning techniques to the field of sequential recommendation. Researchers have
started to use complex network models such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and graph neural networks (GNNs).

GRU4Rec [22] was the first to utilize RNNs to model the sequence of user behaviors
within a session to predict the user’s next possible action. The session-modeling part
employs RNNs to capture the sequence of user behaviors within a session, generating a
fixed-length vector representation. The prediction part takes this vector representation as
input and uses a feedforward neural network to predict the next possible action. Caser [23]
models user interests by embedding items in a sequence into a continuous vector space and
then applying CNNs to the embedded vectors to extract significant features within the item
sequence. Wu et al. [24] proposed a graph-neural-network-based session recommendation
model, SR-GNN, aimed at exploring complex transition relationships between items and
generating accurate item-embedding vectors. SR-GNN constructs directed graphs from
sequences and captures transitions between items through this structure, thereby producing
precise item-embedding vectors.

Recently, Transformer-based methods for sequential recommendation have emerged
in the mainstream, due to their efficient parallel computation capabilities and their signifi-
cant potential in capturing the sequential behaviors of users. SASRec [13] replaces RNNs
with the self-attention mechanism to better capture long-term dependencies and global
relationships, efficiently handling long sequences. Although SASRec effectively encodes
user historical interactions into hidden vectors for recommendation using a self-attention
mechanism, the inherent limitations of its unidirectional model impact the complete-
ness of the hidden representations in the user-behavior sequence. To address this issue,
BERT4Rec [14] employs a deep bidirectional self-attention mechanism to more comprehen-
sively model the user-behavior sequence. This allows each historical item in the sequence
to consider the contextual information from both its left and right sides for more accurate
recommendations. Similar to the original Transformer model, SASRec is fundamentally
a non-personalized model that does not include personalized embeddings for individual
users. SSE-PT [25] overcomes the non-personalization limitations of the SASRec model by
introducing stochastic shared embedding (SSE) regularization.

SASRec and BERT4Rec, which are recommendation systems based on self-attention
networks (SANs), exhibit three main limitations. Firstly, traditional sequential recommen-
dation systems must handle a large number of items, but due to the long-tail distribution
of items, many have sparse interaction data. This leads to the insufficient training of em-
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beddings for these infrequently interacted-with items, thereby affecting the accuracy of the
corresponding attention weights. Secondly, in the SAN model, the item embeddings and
position embeddings are directly added together. This method may introduce noise and
limit the model’s ability to capture patterns in user-behavior sequences. Thirdly, the SAN
model requires direct interactions between all historical items of a user (termed item-to-item
interactions), which results in the computational requirements in terms of time and space
growing quadratically as the length of the historical sequence increases. This can make the
actual operational costs prohibitively high.

To address the high operational costs and the noise issues caused by the direct addition
of item embedding vectors and positional embedding vectors, LightSAN [18] introduces
a low-rank decomposed self-attention mechanism. This adjustment means that the time
and space complexity of the SAN is linearly related to the length of the user’s historical
records. Additionally, by independently calculating the positional relevance, LightSAN
effectively eliminates noisy correlations, thereby better modeling the sequential patterns in
user behavior. LightSAN cannot explicitly utilize low-level spatial information, including
sequence and distance information. Spatial information helps enhance the representational
capability of positional encoding in error-prone data. AC-TSR [15] improves upon the
limitations of LightSAN by explicitly utilizing spatial relationships to compute attention
weights with greater structural significance. We have proposed a method called WAF-SR,
based on AC-TSR. WAF-SR has improved the processing of input noise data. At the same
time, we have added a logical representation layer to enhance the model’s understanding
of user-interaction patterns.

Additionally, Locker [26] and TiSASRec [27] have, respectively, improved the self-
attention mechanism for modeling short-term user behaviors and the issue of implicit time
modeling. Locker [26] enhances the model’s ability to capture short-term user dynamics
effectively by integrating local encoders with existing global attention heads. TiSAS-
Rec [27] explores the impact of different time intervals on the prediction of the next item
by explicitly modeling the interaction timestamps in the sequence and the time intervals
between interactions.

3. Methodology

This section introduces our proposed method, WAF-SR. WAF-SR consists of a filter
layer, a self-attention layer, a logical representation layer, and a prediction layer. We have
adopted two key strategies to address the issue of inaccurate attention weight distribution.
(1) We have introduced denoising techniques to mitigate the impact of noise data. We have
integrated a filter layer to denoise user-interaction data before it enters the self-attention
layer. (2) We have enhanced the model’s understanding of user behavior by introducing a
logical presentation layer. Finally, the prediction layer makes the final recommendation
decisions. In the following sections, we will further elaborate on the specific computational
methods of each WAF-SR component and their roles within the overall framework. Our
framework is illustrated in Figure 1.
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3.1. Problem Formulation

In this section, we will provide the problem definition for sequential recommendation.
Assuming that we had a series of user–item historical interaction sequences, our goal was
to predict the item that a user was most likely to be interested in next, based on these
historical sequences. Define U as the set of users, and I as the set of items. At each time step,
the user u ∈ U interacts with an item from the set I, forming a sequence Su =

{
iu
1 , . . . , iu

|Su |

}
,

where iu
k ∈ I(1 ≤ k ≤ |Su|) represents the item u interacted with at the k-th time step and

|Su| is the length of the sequence for user u. Our model attempts to learn patterns from the
sequence Su and use these patterns to predict the item that user u is most likely to choose
next. Mathematically, we can represent this prediction task as an optimization problem,
where we seek a probability model P to maximize the likelihood of the next item iu

|Su |+1
being a specific item i, given the known sequence Su. This can be formulated as follows:

argmax
i∈I

P
(

iu
|Su |+1 = i | Su

)
(1)

Furthermore, to capture and express the characteristics of each item and the user’s
interactions with them more accurately, we introduced an embedding matrix to map
the IDs of the items to a continuous vector space. Create an item-embedding matrix
M ∈ R|I|×d, where d is the dimension of each vector and |I| represents the number of all
items. Given the input sequence Su, embedding this sequence, Su, results in eu ∈ Rn×d,
where eu = {ms1 , ms2 , . . . , msn}; here, msk ∈ Rd represents the embedding of the item at
position k in the sequence and n represents the length of the sequence.

3.2. Filter Layer

The filter layer is a denoising module. User-interaction data recorded on online
platforms inevitably contain noise. Previous studies, such as SSE-PT [25], TiSASRec [27],
and AC-TSR [15], although demonstrating significant recommendation effectiveness in
sequential recommendation systems, did not systematically consider the handling of input
data noise in their model designs. This oversight may limit their robustness in practical
application scenarios. To solve the problem of the inaccurate allocation of attention weights
due to noise input, we added a filter layer to WAF-SR. The filter layer serves to identify
and remove noise or irrelevant interaction data from the input user-interaction sequences.
This layer utilizes signal processing techniques to preprocess the input sequences, ensuring
that the data passed to the self-attention layer are purified. Specifically, the embedding
matrix of the item eu is first transformed into the frequency domain via the fast Fourier
transform (FFT) [28,29]:

xl = F (eu) ∈ Cn×d (2)

where F (·) denotes the one-dimensional fast Fourier transform, xl is a complex tensor
representing the spectrum of eu, C represents the complex field, and Cn×d represents a
complex matrix with n rows and d columns. The spectrum is modulated by multiplying it
with a learnable filter W ∈ Cn×d: ∼

xl = W
⊙

xl (3)

where
⊙

represents element-wise multiplication. Then, modulate the spectrum
∼
xl back

into the time domain through the inverse fast Fourier transform to update the sequence
representation:

Zl = LayerNorm
(

eu + Dropout
(
F−1

(∼
xl
)))

(4)

where F−1(·) stands for the one-dimensional inverse fast Fourier transform, which con-
verts the complex tensor into a real-valued tensor. To prevent gradient vanishing, skip
connections [30], layer normalization [31], and dropout [32] operations are also introduced
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in the filter layer. It can be summarized that the item’s embedding matrix eu passes through
the filter layer to obtain the filtered matrix Zl :

Zl = FL(eu) (5)

where l ∈ 0, 1, 2, . . . , n represents the number of layers of the filter layer, FL denotes the
filter layer. When l = 0, Zl = eu.

3.3. Self-Attention Layer

The self-attention layer is the core of the sequential recommendation system, calcu-
lating the relationship weights between elements within the sequence through the self-
attention mechanism. This layer enables the model to highlight the most critical interaction
features and suppress less important information, optimizing the distribution of atten-
tion weights. This is particularly crucial for capturing the temporal dependencies in user
behavior. This section will introduce the computational methods of the self-attention layer.

Using the filtered matrix Zl , calculate Q (Query), K (Key), and V (Value), respec-
tively. As with the previous transformer, here, Q, K, and V are all obtained through linear
transformations: 

Q = ZlWQ

K = ZlWK

V = ZlWV
(6)

where WQ, WK, and WV ∈ Rd×d are the learnable matrices in the linear transformations
and d represents the dimension of the vector for each item.

To address the issue of suboptimal position encoding potentially leading to the in-
accurate allocation of attention weights, we adopted a spatial calibrator scheme [15] and
abandoned traditional positional encoding techniques. Specifically, first calculate the order
and logarithmic distance between item pairs relative to their positions in the input sequence.
We can define the actual order oij and the actual logarithmic distance dij between positions
i and j in the input sequence as follows:

oij = I(i < j) =

{
1, i < j
0, otherwise

(7)

dij = ln(1 + |i − j|) (8)

Then, in each self-attention layer, use the query ql
i and key kl

j to predict the order and

distance that items should have. The predicted order ôij and distance d̂ij can be represented
as follows:

ôij = sigmoid
(

affine(o)
([

ql
i ; kl

j

]))
(9)

d̂ij = affine(d)
([

ql
i ; kl

j

])
(10)

The difference between the predictions and the true values is measured using sigmoid
cross-entropy and L2 loss, after which the original attention weights are modified:

s(o)ij = oijln
(
ôij
)
+
(
1 − oij

)(
1 − ln

(
ôij
))

(11)

s(d)ij = −
θ2
(

dij − d̂ij

)2

2
(12)

As = softmax

(
QKT
√

d
+ s(o) + s(d)

)
(13)

where As represents the attention weights and θ is a learnable scalar. In the self-attention
layer, the attention weights can be affected by data noise. To simulate the perturbation
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process, in the l-th attention layer, we incorporate a uniform distribution µ into the attention
weights Al

s through a mask, Ml :

Al
p = Ml ⊙ Al

s +
(

1 − Ml
)
⊙ µ (14)

Ml = sigmoid

QlW l
Qp

(
KlW l

Kp

)T

√
d

 (15)

where ⊙ denotes element-wise multiplication, Ql and Kl are the query and key at the l-th
layer, and Wl

Qp
∈ Rd×d and Wl

Kp
∈ Rd×d are learnable matrices. Then, through Ml , the

important parts of the weights in Al
s are emphasized:

Al
c = Al

s ⊙ e1−Ml
(16)

Afterwards, various attention weights are combined through a gating function:

Al
comb = g ∗ Al

s + (1 − g) ∗ Al
c (17)

g = σ
(

QlWl
g + bl

g

)
(18)

where Wl
g ∈ Rd×d is a trainable matrix and bl

g ∈ Rd is also a trainable parameter. Then, the
attention weights Al

p and Al
comb are fed into the feedforward layer. Note that a filter layer is

added after the feedforward layer. After passing through the filtering layer, the perturbed
output embeddings Fp and the calibrated output embeddings Fc are obtained.

3.4. Logical Representation Layer

Previous sequential recommendation models such as Locker [31], BERT4Rec [14],
and SASRec [13] generally utilized traditional embedding representations. Traditional
embedding representations often fail to fully capture the dynamic changes and uncertainties
in user tastes, which may lead to suboptimal performance in recommendation systems
in understanding both long-term and short-term user preferences. To address this issue,
we have introduced a logical representation method to model the complexity of user
behavior and preferences more accurately. In our model, the logical representation plays a
crucial role; it uses a transformation matrix to map item IDs to a logical space that is better
suited for representing and handling the uncertainties of user preferences. Then, multiple
independent beta distributions are used to represent each item. The beta distribution is a
continuous probability distribution defined within the range [0, 1], which simulates the
uncertainty or variability of user preferences for items. The beta distribution is defined
as follows:

p[(α,β)](x) =
1

B(α, β)
xα−1(1 − x)β−1 (19)

where x ∈ [0, 1 ], and the shape parameters α, β ∈ [0, ∞] determine the shape of the beta
distribution, including its peak position, degree of skewness, and tail thickness. In other
words, the shape parameter affects the shape and properties of the distribution, which, in
turn, can be used to model uncertainty in user preferences for items. B(α, β) is the beta
function. The embedding matrix of input item ID, through two transition matrices, Wα

and Wβ ∈ Rd×d, transforms the item-embedding matrix eu into two shape matrices, α and
β ∈ Rm×d, where m is the length of the user-interaction sequence:{

α = euWα

β = euWβ
(20)
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Define a multi-dimensional vector vi = [(αi, βi)] = [(αi,1, βi,1), (αi,2, βi,2), · · · , (αi,d, βi,d)],
each dimension is described by a pair of shape parameters of the beta distribution to model
the uncertainty in that dimension. Its probability density function pvi (x) can be expressed
as follows:

p(vi) =
[

p[(αi,1,βi,1)]
(x), p[(αi,2,βi,2)]

(x), · · · , p[(αi,,βi,d)]
(x)
]

(21)

This is a multidimensional expression, and each dimension has a corresponding beta
distribution. Given a user behavior Vu = {v1, v2, · · · , vm}, the corresponding embedding
can be expressed as v1 = [(α1, β1)], v2 = [(α2, β2)], · · · , vm = [(αm, βm)]. Define the output
v =

[(
α, β
)]

= C({v1, v2, · · · , vm}), where C is a probability weighting operation, which
can be expressed as follows:

v =
[(

∑m
i=1 wi ⊙ αi, ∑m

i=1 wi ⊙ βi

)]
(22)

where Σ and ⊙ represent the element-wise summation and product, respectively. wi ∈ Rd

is a weight vector, and, in the j-th dimension, wi,j satisfies Σm
i=1wi,j = 1. We use an attention

mechanism to learn the importance of different items:

wi =
exp(MLP(αi ⊕ βi))

∑j exp
(

MLP
(
αj ⊕ β j

)) (23)

where ⊕ represents the splicing operation and MLP is a multi-layer perceptron that takes
the connection of α and β as its input.

3.5. Prediction Layer

The prediction layer is responsible for converting the learned item representation
into a specific recommendation output. Select the last elements Fp

n and Fc
n from Fp and Fc,

respectively. Now, two types of item probabilities can be obtained:

ŷP
i = softmax

(
Fp

n M⊤
)

(24)

ŷC
i = softmax

(
Fc

n M⊤
)

(25)

where M ∈ R|I|×d is the item-embedding matrix. Then, calculate the perturbation loss, LP,
and the calibration loss, LC:

LP = −∑|I|
i=1 yilog

(
ŷP

i

)
(26)

LC = −∑|I|
i=1 yilog

(
ŷC

i

)
(27)

The performance of attention affected by perturbation should be worse. Therefore, the
loss can be defined as follows:

LPfinal

(
θP
)
= −LP(θ) + δLnorm

(
θP
)

(28)

Lnorm

(
θP
)
= ∑L

l=0 ∥ 1 − ml ∥2 (29)

where θP and θ are parameters of the model, L is the number of layers in the transformer,
and δ is a hyperparameter for balancing the loss function. Lnorm is used to ensure that the
perturbation is not too large and avoids the severe degradation of the model performance.

In addition, the logical representation models the variability and uncertainty of user
tastes. In order to deepen the model’s understanding of user preferences, we splice Fp

n , Fc
n

and the logical representation Hu
l together, respectively. The logical representation Hu

l is
calculated from α and β:

Hu
l =

α

α + β
(30)
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The predicted probability p̂a and p̂c of the item can be calculated:

p̂a =
(

Fp
n ⊕ Hu

l

)(
M ⊕ E)⊤ (31)

p̂c = (Fc
n ⊕ Hu

l )
(

M ⊕ E)⊤ (32)

where E = α
α+β , uses the cross-entropy loss function to approximate the true value p:

L p̂a = −∑|I|
i=1 pilog( p̂a

i ) + (1 − pi)log(1 − p̂a
i ) (33)

L p̂c = −∑|I|
i=1 pilog

(
p̂b

i

)
+ (1 − pi)log

(
1 − p̂b

i

)
(34)

Finally, the total loss of our model is as follows:

Lfinal = LPfinal + LC + γ
(
L p̂a + L p̂c

)
(35)

where γ is a hyperparameter that balances various loss functions.

4. Experiments
4.1. Dataset

The experiment used three public datasets that are widely used in real-life scenarios:
namely, Amazon Beauty, Amazon Toys, and Yelp. The statistics of the dataset are shown
in Table 1.

Table 1. Statistics of the dataset.

Statistics Users Items Inters Sparsity

Beauty 22,363 12,101 198,502 99.93%
Toys 19,412 11,924 167,597 99.93%
Yelp 30,499 20,068 317,182 99.95%

The Amazon Beauty and Toys dataset consists of product reviews and metadata from
Amazon, providing insights into specific product categories on Amazon, such as beauty
products and toys. The Amazon Beauty dataset includes user reviews and ratings of beauty
products, such as cosmetics, skincare products, etc. The Amazon Toys dataset covers user
reviews and ratings of toys and game products.

Yelp is a business recommendation dataset that contains a large amount of busi-
ness information, user reviews, user information, and interaction data between busi-
nesses and users. This dataset is widely used in research and experiments in the field
of recommender systems.

4.2. Evaluation Metrics

The experiment selects top-k normalized discounted cumulative gain (NDCG@K) and
top-k recall (Recall@K) as evaluation indicators. The value of k is selected from {10, 20}.
Following previous work, we evaluate model performance in a complete ranking manner.
The final ranking results are based on the entire set of items. The experiment adopts the
leave-one-out method, and the last two items of the interaction sequence of each user and
item are used as the verification set and test set.

4.3. Baseline Models

We select the following models as baseline models for comparison. (1) General recom-
mendation methods: PopRec, BPR [21], and GRU4Rec [22]. (2) Sequential recommendation
methods: LightSANs [26], Locker [31], BERT4Rec [14], SASRec [13], SSE-PT [25], TiSAS-
Rec [27], and AC-TSR [15]. Note that the AC-TSR that we compare is implemented based
on SASRec.
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4.4. Implementation Details

In the experiments, both the baseline models and our proposed method’s imple-
mentation leveraged the RecBole framework [33], an open-source, deep-learning-based
recommendation system framework. For all baseline models and our proposed method,
Adam was used as the optimizer for training over 200 epochs, with the batch size set to 256.
The sequence length was set to 50, and the learning rate was 1 × 10−4. The hyperparameter
γ in Equation (35) was set at 0.003 for all datasets. We employed a grid-search strategy
to configure the optimal parameter settings for each dataset, where the hidden size was
selected from {64, 128}, the inner size from {64, 128}, the number of self-attention layers
from {2, 3, 4}, and the number of attention heads from {2, 4, 8}. Notably, for the Beauty
dataset, we configured the self-attention mechanism with three layers and eight heads. For
the Toys dataset, the configuration comprised four self-attention layers and two heads. As
for the Yelp dataset, we utilized three self-attention layers and four heads. The hidden
size was set at 128 for both the Toys and Yelp datasets and at 64 for the Beauty dataset.
Additionally, the inner size was assigned as 64 for the Toys and Yelp datasets and as 128
for the Beauty dataset. All computational tasks were efficiently performed on an NVIDIA
GeForce RTX 2080 GPU, which is manufactured by NVIDIA Corporation, headquartered
in Santa Clara, CA, USA. Our development and experimental setup were conducted in a
Linux environment, with code constructed in Python and PyCharm used as the integrated
development environment (IDE), supporting the coding, debugging, and management of
the project.

4.5. Overall Performance

The comparison of our method with various baseline models is shown in Table 2.
From Table 2, it can be seen that SASRec significantly outperforms earlier methods, such as
PopRec, BPR, and GRU4Rec. Models based on the transformer architecture demonstrate
a notable advantage in modeling long-sequence data. This advantage is primarily due to
the transformer’s ability to capture dependencies across longer sequences more effectively
than traditional methods, which is crucial for understanding user-behavior patterns and
improving recommendation accuracy. Furthermore, the use of self-attention mechanisms
allows these models to focus on the most relevant parts of the input sequences, enhancing
their predictive performance. Additionally, side information can have a certain impact
on the performance of sequential recommendation systems. Methods that integrate side
information, such as TiSASRec, outperform the basic SASRec model. The inclusion of
side information allows the model to gain a deeper understanding of user preferences.
However, incorporating too much side information might increase the complexity of the
model. The superior performance of AC-TSR is attributed to its consideration of noisy
inputs on attention weights. We improved the model’s denoising ability based on AC-TSR
and modeled the uncertainty of user preferences, showing the advanced nature of our
proposed method across multiple datasets.

Table 2. Overall performance. Bold data represent the best results. Underlined data signify the
second-best results.

Model

Yelp Toys Beauty

Recall NDCG Recall NDCG Recall NDCG

@10 @20 @10 @20 @10 @20 @10 @20 @10 @20 @10 @20

PopRec 0.0099 0.0161 0.0051 0.0067 0.0105 0.0172 0.0060 0.0077 0.0157 0.0242 0.0076 0.0097
BPR 0.0589 0.0830 0.0324 0.0384 0.0344 0.0560 0.0151 0.0205 0.0375 0.0590 0.0168 0.0222

GRU4Rec 0.0418 0.0679 0.0206 0.0271 0.0449 0.0708 0.0221 0.0287 0.0654 0.1002 0.0322 0.0410
LightSANs 0.0630 0.0904 0.0385 0.0453 0.0768 0.1116 0.0354 0.0442 0.0770 0.1177 0.0358 0.0461

Locker 0.0603 0.0869 0.0380 0.0446 0.0755 0.1094 0.0345 0.0430 0.0802 0.1197 0.0365 0.0464
SASRec 0.0618 0.0879 0.0387 0.0453 0.0776 0.1100 0.0352 0.0434 0.0779 0.1152 0.0353 0.0447

BERT4Rec 0.0467 0.0710 0.0264 0.0325 0.0489 0.0769 0.0253 0.0324 0.0557 0.0868 0.0279 0.0358
SSE-PT 0.0556 0.0779 0.0323 0.0379 0.0560 0.0837 0.0255 0.0325 0.0587 0.0936 0.0278 0.0366

TiSASRec 0.0618 0.0909 0.0387 0.0460 0.0819 0.1171 0.0367 0.0456 0.0794 0.1208 0.0356 0.0461
AC-TSR 0.0664 0.0955 0.0407 0.0480 0.0825 0.1166 0.0371 0.0456 0.0817 0.1218 0.0375 0.0454
WAF-SR 0.0688 0.1014 0.0419 0.0501 0.0849 0.1219 0.0382 0.0474 0.0844 0.1258 0.0389 0.0493
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4.6. Ablation Study

We conducted ablation studies on the Beauty dataset, and the experimental results
are shown in Table 3. In Table 3, WAF-SR represents the performance without removing
any modules. We performed eliminations on the logic representation layer and the filter
layer, respectively. When only the logic representation layer is eliminated, Recall@10 and
Recall@20 decrease by 0.0062 and 0.0082, respectively. NDCG@10 and NDCG@20 decrease
by 0.003 and 0.0034, respectively. When only the filter layer is eliminated, Recall@10
and Recall@20 decrease by 0.0037 and 0.0086, respectively. NDCG@10 and NDCG@20
decrease by 0.0026 and 0.0038, respectively. The experiments demonstrate that both the
logic representation layer and the filter layer significantly enhance the model. WAF-SR
optimizes the allocation of attention weights with the action of both modules.

Table 3. Ablation study on Beauty dataset.

Model
Recall NDCG

@10 @20 @10 @20

WAF-SR 0.0844 0.1258 0.0389 0.0493
w/o logical

representation 0.0782 0.1176 0.0359 0.0459

w/o filter layer 0.0807 0.1172 0.0363 0.0455

4.7. Hyperparameter Study

The number of layers and heads in self-attention significantly impacts the model. We
analyzed the effect of parameter settings on WAF-SR using the Toys dataset. As shown in
Table 4, we fixed the number of heads at two, and as the number of layers increased to the
third layer, the gains began to diminish, possibly due to overfitting leading to a decline in
model performance. Due to limited experimental equipment resources, we did not stack
more layers. We visualized the impact of the attention layer number, as shown in Figure 2.
With the number of layers fixed at two, as the number of heads increased (starting from
two heads, with performance data identical to when the number of layers was two), the
overall performance of the model did not improve. Too many heads might introduce too
many parameters, increasing the model’s complexity and leading to overfitting or a decrease
in learning efficiency. Therefore, when designing models based on self-attention, it is crucial
to choose an appropriate number of layers and heads to ensure that the model can maintain
sufficient expressive power while avoiding unnecessary computational resource wastage
and performance degradation. Through further experimental analysis, we recommend
carefully balancing different combinations of layers and heads when applying the self-
attention mechanism to find the optimal configuration balance. This balance helps improve
model performance while controlling model complexity and computational costs.

Table 4. The impact of different numbers of layers and heads in the attention layer of the Toys dataset.

Settings
Recall NDCG

@10 @20 @10 @20

1 layer 0.0846 0.1205 0.0376 0.0466
2 layers 0.0849 0.1219 0.0382 0.0474
3 layers 0.0845 0.1223 0.0375 0.0470

4 heads 0.0834 0.1229 0.0371 0.0471
8 heads 0.0839 0.1225 0.0376 0.0473
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We analyzed the impact of different values of the hyperparameter δ in Equation (28)
on the Beauty dataset, and the experimental results are shown in Figure 3. On the Recall@20
metric, the model achieves a superior performance when the hyperparameter δ is set to
either 0.03 or 0.07. Furthermore, the model obtains an outstanding performance on the
NDCG@20 metric at a δ value of 0.07. By appropriately adjusting the value of δ, we can
effectively enhance the model’s performance in terms of accuracy and personalized recom-
mendations. Considering the performance of the above two indicators, we ultimately set
the value of δ to 0.07 for the Beauty dataset and to 0.03 for both the Toys and Yelp datasets.
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5. Conclusions

Self-attention-based sequential recommendation models currently face challenges due
to inaccurate attention weight distributions caused by noisy data inputs. We addressed this
challenge with two approaches, building on the AC-TSR [15] model. AC-TSR reallocates at-
tention weights based on the contribution of each historical item to the model’s predictions
to mitigate the issue of noisy inputs. Unlike AC-TSR, we added a denoising module and
a logical representation layer. The denoising module enhances data quality, thereby im-
proving the distribution of attention layer weights. Additionally, the logical representation
layer models the uncertainty of user preferences and deepens the model’s understanding
of user behavior, thus refining the attention weight distribution during training. Ultimately,
we validated the effectiveness of our proposed method through extensive experiments.

We compared WAF-SR with several baseline methods, and, across multiple datasets
and various evaluation metrics, WAF-SR consistently achieved the highest accuracy. We
conducted ablation studies to individually remove the filtering and logical representation
layers, demonstrating that these added components significantly impact recommendation
performance. We also studied the hyperparameters within the model, observing the impact
on WAF-SR by adjusting the values of these parameters. We provided settings for some
of WAF-SR’s parameters to enable researchers to replicate our experiments. In future
production implementations, not only does the WAF-SR algorithm have the potential to
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help enterprises uncover market trends and user needs, providing robust data support
for product development and marketing strategy adjustments, but its superior recom-
mendation performance can also significantly enhance user satisfaction and conversion
rates. However, despite its considerable advantages, WAF-SR also poses certain limitations.
Specifically, the introduction of the denoising module and logical representation layer may
lead to model overfitting, especially in scenarios with small datasets or limited feature
diversity. Given these challenges, we plan to further research and develop more efficient
and robust denoising techniques in future work to reduce the likelihood of overfitting and
enhance the model’s generalizability across various application scenarios.
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