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Abstract: This study addresses the challenge of accurately determining the arrival time of stress
wave signals in SHPB test data processing. To eliminate human error, we introduce the time-window
energy ratio method and evaluate six filters for noise reduction using box fractal dimensions. A
mathematical model is established to optimize the stress equilibrium and impact process, which is
solved using particle swarm optimization, resulting in the PSO-TWER method. We explore the impact
of inertia weight and calculation methods on optimization outcomes, defining a stress equilibrium
evaluation index. The results indicate that time-window length significantly affects arrival-time
outputs, and the dynamic inertia weight factor enhances optimization convergence. The method
accurately determines arrival times and effectively screens test data, providing a robust approach for
SHPB test data processing.

Keywords: SHPB; time-window energy ratio; particle swarm optimization algorithm; inertia weight;
PSO-TWER

1. Introduction

Regarding early Hopkinson data processing methods, the classical two-wave method
given by S.L. Lopatnikov [1] is often used for calculations, and the classic two-wave method
is always used to calculate the stress and strain of loading materials. Song [2] pointed out
that the alignment of the wavefront will introduce errors in the data processing, and the
three-wave method with whole times was proposed. The study proved the applicability
of soft materials. However, Song also proposed that the classical three-wave method is
irreplaceable with respect to loading harder materials. According to the description of
association standards (testing methods for determining the dynamic uniaxial compression
strength of rock materials) by the China Society of Explosives and Blasting, the classic
three-wave method is still the mainstream data processing method for rock material. This
viewpoint is also expressed in previous research reports on rock dynamic failure [3–5]. With
regard to test standards, the arrival picking of the incident wave can be calculated by the
wave velocity of the bar, the sampling rate, and the distance between the strain gauge and
the rock specimen, and the arrival point of the signal can be determined by the observer.
However, different arrival pickings cause discreteness in data processing results due to
the differences in test conditions. Therefore, the arrival picking problem still needs to be
paid more attention. Arrival picking has been studied for many years for microseismic and
seismic signals, and the research results are now more mature.

Lixibing [6] composed the discrete wavelet transform (DWT) and the short-time
average to long-time average (STA/LTA) to determine P-phase arrival times. Then, in
continuing research, a seismic P-phase arrival picking method named the EMD-AIC picker
was proposed. The method has generated precision picking results for the microseismic
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signals of mines. Dowan Kim [7] presented an arrival picking method based on the
difference between multi-window energy ratios, and the method obtained precise arrival
picking points for seismic signals with low signal-to-noise ratios. In SHPB test data, the
frequency of electrical signals detected by strain gauges is far lower than for seismic and
microseismic signals. In an efficient time domain, except for noise waves, only one or two
significant peaks are present in incident, reflected, and transmitted waves. The substantial
energy interference caused by the superposition of complex noise is less. In order to
facilitate the calculations, the problem of arrival picking can be solved by the stationary
time-window energy ratio method.

Due to differences in testing equipment, noise often exists in waveform signals, and
denoising processing is necessary; the fractal theory can be used to describe the complex-
ity of signals or images. Wu et al. [4] used the fractal geometry theory to analyze the
development of horizontal and vertical mining cracks quantitatively during coal mining.
Lei et al. [8] analyzed the fractal dimension of fracture images of coal–rock composites
after uniaxial loading. Ivica et al. studied fracture network photographs using fractal
dimensions. Miao et al. [9] analyzed the fractal characteristics of mining fracture networks.
He et al. [10] described the fractal characteristics of carbonate-based sand and silicate-based
sand, and the effect of grain size on the pore size distribution and fractal dimensions was
discussed. According to the standards of the SHPB test, a stress equilibrium check must
be performed prior to test data processing and show the typical waveform of the stress
equilibrium. However, the relevant standards for stress balance need to be clearly defined.
The stress equilibrium process is related to the load force in the terminal face of the incident
bar and the transmitted bar. Based on these characteristics, Hong [11] defined a threshold in
his study; the internal stress of the rock specimen reaches a constant state when the relative
stress difference between the two ends of the specimen is less than 5%. Li [12] proposed the
stress equilibrium factor in their study; it is considered that the stress equilibrium state of
the specimen is better when the factor is close to 0. The above two methods are also widely
recognized and applied; the quality of three-wave selection is closely related to the stress
equilibrium state. Therefore, a mathematical model related to the stress equilibrium factor
can be constructed based on the length of the time window as the independent variable.

The solution of mathematical models often relies on algorithms. Venkata Rao in-
troduced several novel, metaphor-free, and parameter-free optimization algorithms for
addressing diverse single, multi-, and many-objective optimization challenges across sci-
ence and engineering [13,14]. Due to the mathematical modeling of stress equilibrium
factors being diverse single problems, the particle swarm optimization (PSO) algorithm
exhibits excellent performance in solving both single-objective and multi-objective opti-
mization problems [15–18].

In the study of Mohamed El-Sayed M. SAKR [19], the optimal results of particle
swarm optimization, the gravitational search algorithm with particle swarm optimization
(GSA-PSO), and the eagle strategy with particle swarm optimization (ES-PSO) were com-
pared. The problem of antenna positioning in satellite systems was solved. Qi Tang [20]
improved the swarm position update formula of the PSO algorithm, then combined it with
the improved DE algorithm to solve multi-UAV cooperative trajectory planning problems.
Harshala Shingne [21] colligated the firefly algorithm (FA), PSO, and tabu search (TS) to
solve problems in resource allocation and scheduling.

This article introduces the time-window energy ratio method for the arrival picking
of a waveform in the three-wave method for Hopkinson test data processing. The robust
loess fitter is used to denoise the waveform, and the fractal dimensions of signals decrease.
A mathematical wave signal model of a specimen’s stress equilibrium state is established,
and the PSO algorithm is used to solve the mathematical model. The article discusses
the influence of five variable inertia weight factors on the optimization results. A new
evaluation index for test results based on the stress balance factor is proposed, which
provides a reference for Hopkinson test data processing and result evaluation.



Appl. Sci. 2024, 14, 3624 3 of 18

2. Related Work
2.1. Time-Window Energy Ratio Method

For waveform signals of the incident wave, the energy difference between the time
window after the incident-wave start moment and the energy in the time window before
arrival is relatively large, so the energy ratio can judge the arrival moment of the waveform
signal. Assuming that the waveform electrical signal recording channel is [xn], the time (t)
is the center of the time window. Then, the length (M) of the time window is taken before
and after the time (t) in the recording channel. The energy ratio between the frontal and
posterior time windows can be calculated by Equation (1).

R(i) =


k=i
∑

i+M−1
x2

k

i−1
∑

k=i−M
x2

k


1
2

(1)

where xk is the amplitude of k, R(i) is the energy ratio of the frontal time window
and posterior time window, and M is the length of the time window. In the study of
Chang J [22], differences in M influence the selection of arrival times. The fluctuations
generated by external disturbances lead to noise signals recorded during the acquisition
of the voltage signal by the Hopkinson test equipment. As Figure 1a,b show, the noise
signals can be observed in the whole signal [12]. In a small-scale range, noise signals can be
regarded as miniature starting points with high frequency and low amplitude. A and B is
the time-window of the incident wave and transmitted wave, respectively. Therefore, as
Figure 1d shows, the selection of the arrival moment is more susceptible to the influence of
noise signals when the time-window length (M) is too small. Figure 1e shows variation in
the arrival moment for time-window length M, and the mutation evident in M is 500.
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2.2. Denoising of Waveform Signals

The complexity and fractal characteristics of a waveform signal are calculated by the
box dimension method. The principle is that the signal curve is covered by a box with a
side length r, and the number of nonempty boxes in the whole area is recorded as N(r).
Then, as r is constantly changed, N(r) changes accordingly, and the fractal dimension (D)
can be calculated by Equation (2) [23].

D = lim
r→0

log N(r)
log(1/r)

(2)

Signals measured via the SHPB test in the Impact Dynamics Laboratory of the School
of Mining Engineering at the University of Science and Technology Liaoning were selected
for analysis. Six different filters were selected to denoise the stress wave signals, namely,
moving average, lowess, loess, Savitzky–Golay, robust lowess, and robust loess filters.
The raw signal and smoothing results are shown in Figure 2a. It can be seen that there
is a large amount of noise in the original image. From a qualitative point of view, the
scale of the noise signal of the stress wave data is small. Due to the existence of the rod
end shaper, the incident-wave waveform is close to a sine wave; each of the six filters
preserves the overall trend of the stress wave signal. The difference between the results is
reflected in the degree to which the signal details are retained. Since the dynamic response
characteristics of rock loading depend on the values monitored by the strain gauges, the
accuracy of subsequent data processing will be affected if the peak value of the smoothed
curve is too large. If the moving average result leads to a decrease in the peak value of the
curve, the transmitted-wave smoothing result of robust lowess is too different from the
original waveform, and the result of the robust lowess filter not only retains the trend of the
curve better but also has a small numerical error. The fractal dimension calculation curve
for each group of results is calculated using Equation (2), as shown in Figure 2b–e. The
fractal dimension of the original image and the smoothed result are significantly different,
and the fractal dimensions of the incident wave and the transmitted wave are 1.3014 and
1.5471, respectively, which are the highest values in the results. After denoising, the fractal
dimensions of the first group were between 1.0178 and 1.0282, and those of the second
group were between 1.0178 and 1.0432. The reduction in fractal dimensions indicates a
reduction in curve complexity, which further verifies the validity of the filtering results.
Since the difference in the fractal dimension for each component after filtering was small,
combined with the analysis of Figure 2a, it was decided to use the robust loess filter for
subsequent smooth denoising.

When using a robust loess filter for denoising, a span with a range of (0,1) needs to
be used; the setts value represents the number of data points used for smoothing as a
percentage of the total number of curve points. In order to further discuss the influence
of span on the smoothing effect of curves, spans of 0.01, 0.05, 0.1, 0.2, 0.25, and 0.5 were
used for calculations. The results obtained are shown in Figure 3. Analyzing the overall
trend, the size of the span significantly affects the overall trend of the results. When the
span values are 0.2, 0.25, and 0.5, the filtering results are quite different from the overall
trend of the original curve. The trend of transmitted waves at a span of 0.5 is even close
to the level, indicating that there are too many data points for smoothing; the noise of the
original signal is removed, while the signal details are lost to too great an extent. When
the span is 0.1, the transmitted-wave denoising effect is basically the same as the original
signal, and the incident wave is significantly different from the original signal at 420 µs;
the filtering results for the spans of 0.01 and 0.05 are not much different, which ensures the
details of the signal while removing noise. In Figure 3b–e, from the statistical results for
the fractal dimensions, the fractal dimension value tends to decrease as the span increases.
When the span is 0.01, the fractal dimensions are 1.0308 and 1.0671, which shows that the
noise signal is effectively removed. The results at 0.05 are 1.0314 and 1.0571, which are
slightly different from the results at 0.01. This shows that the impact of different spans
on the results is mainly on the trend. Based on the above explanation, given the premise
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of ensuring the operation speed and smoothing effect, the appropriate span value of the
robust loess filter should be 0.01~0.1.
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2.3. The Stress Equilibrium Factor

The assumption of stress uniformity is a precondition for proving the validity of test
data in the SHPB test [12]. Due to the difference in wave impedance between elastic bars and
rock materials, the transmission and reflection are relatively complicated in rock materials.
It takes a certain amount of time for a rock specimen to reach the stress equilibrium; the
equilibrium time can be calculated with the length of the specimen and the p-wave velocity,
as shown in Equation (3):

τs =
Ls

Cs
(3)

This phenomenon of stress difference at the two ends of specimens during dynamic
loading determines the stress response and equilibrium effects in rock specimens. The first
method is the relative stress difference (αk) between the two ends of the specimen, where a
smaller value represents a higher state of stress equilibrium inside the specimen, and αk is
calculated as shown in Equation (4):

αk =
∆σk
σk

× 100% =
TBS[σi(tk)− σi(tk−1)]− FSB∆σk−1

TBS
σi(tk)+σi(tk−1)

2 + FSBσk−1

× 100% (4)
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where ∆σk and σk are the stress difference and the stress average at the two ends of the
rock specimen, respectively. Furthermore, TBS and FSB are the transmission and reflection
coefficients, respectively, while tk and σi(tk) are the time of the kth propagation of the
stress wave in the granite specimen and the corresponding stress, respectively. Another
calculation index used to judge the stress equilibrium state of the specimen is the stress
equilibrium factor. When the stress equilibrium factor is close to 1, this means that the rock
specimen has reached the stress equilibrium state, which can be calculated by Equation (5):

σeq(t) =
σT(t)

σI(t) + σR(t)
(5)

where σeq(t) is the stress equilibrium factor of the specimen at time t, and σI(t), σR(t), and
σT(t) are the stress of the incident, reflected, and transmitted waves at time t, respectively,
in MPa.
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2.4. Objective Function

Firstly, for each given set of xI and xT, σT , σI , and σR are calculated under a condition,
where σT , σI , and σR represent functions related to xI and xT, as shown in Equation (6):

F(σT , σI , σR) = (xI, xT) (6)

where xI is the time-window length of the incident wave and xT is the time-window length
of the transmitted wave.

Based on the above discussion, the stress equilibrium factor evaluates the stress
equilibrium state of the specimen by describing the differences between the incident wave,
the reflected wave, and the transmitted wave at each instant. When the results of picking up
these three waves are accurate, the stress equilibrium factor for all points within the signal
time domain will be close to 1. However, if the selected positions are incorrect, the value
of the stress equilibrium factor will be greater than 1. When the sum of stress equilibrium
factors is minimized, this indicates that the position of the particle has reached its optimal
state. Therefore, the objective function can be constructed as shown in Equation (7):

min(F= sum(σi
eq(t)) = ∑ σi

eq(t) = ∑
t

σi
T(t)

σi
I(t) + σi

R(t)
) (7)

2.5. PSO-TWER Method

In the PSO algorithm proposed by Kennedy and Eberhart [24], firstly, a group of
random particles (random solutions) which simulate birds in a flock are initialized. After
multiple iterations, the optimal results can be found in an n-dimensional space in which the
current positions of particles are recorded as Xi =

(
Xi

1, Xi
2, · · · , Xi

n
)
, the current renewal

speeds of particles are recorded as Vi =
(
Vi

1, Vi
2, · · · , Vi

n
)
, and the best positions of particles

ever experienced are recorded as Pi =
(

Pi
1, Pi

2, · · · , Pi
n
)
. The renewal speed and the position

of particles can be updated by Equation (8).

vi = vi + c1 × rand()× (pbesti − xi) + c2 × rand())× (gbesti − xi) (8)

where vi is the velocity of the particle, rand() is a random number between 0 and 1, xi is
the current position of the particles, c1 and c2 are the learning factors, pbesti is the best
location currently discovered, and gbesti is the best position among all particles.

xi = xi + vi (9)

For the PSO algorithm, the diversity of particles is reduced in later iterations, and the
optimal local phenomenon often occurs. In order to solve this problem, the inertia weight
indicator is introduced to improve the algorithm.

vi = ω × vi + c1 × rand()× (pbesti − xi) + c2 × rand())× (gbesti − xi) (10)

where ω is the inertia factor, which plays a role in balancing global and local searches in
optimization algorithms. When ω is large, the algorithm tends to maintain the current
speed and direction, which helps to conduct a wider range of searches globally and enhance
global optimization ability. On the contrary, when ω is small, the algorithm is more likely
to change the current speed and direction, which helps to conduct more precise searches in
the local range [24].

The processing steps are shown in Figure 4.
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1⃝ Initialize the particle swarm, randomly initialize the initial state of the particles
in the swarm, input the inertia factor and the learning factor, and set the number of
iterations (k).

2⃝ Input the stress wave data of the incident and transmitted waves.
3⃝ Calculate the energy ratio of the particles according to Equation (1).
4⃝ Judge the arrival point of the incident wave and the arrival point of the transmitted

wave at the position with the maximum energy ratio.
5⃝ Take segments of the incident wave, the reflected wave, and the transmitted wave

based on the starting point obtained in step (4).
6⃝ Calculate the stress equilibrium factor at the location of the particles according to

Equation (4).
7⃝ According to Equations (7)–(9), update the individual optimal value and the global

optimal value for the particle population.
8⃝ Judge whether the number of iterations reaches the termination number (k); if so,

proceed to step 9⃝, otherwise return to step 3⃝ to re-evaluate the particles.

3. Results
3.1. Test Example Verification Device

In this study, all laboratory tests were performed in the SHPB loading system at the
Liaoning University of Science and Technology, as shown in Figure 5. The incident bar
is 2100 mm, the transmission bar is 1800 mm, and the absorber bar is 800 mm, and the
bars are all made of high-strength steel with a 50 mm diameter and a 210 GPa elasticity
modulus. All the specimens were taken from a mine in Xinyang City, Henan Province,
China, and the tolerance of uniformity and nonparallelism at the ends of the specimens
was less than 0.02 mm. The specimens were made into cylinders with a diameter of 50 mm
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and a reflection coefficient of −0.55~0.52, and the mechanical parameters of the granite are
shown in Table 1 and Figure 6a. As shown in Figure 6b,c, a typical test was performed to
check the stress equilibrium before formal tests were conducted and to see that the typical
stress wave pattern for a tested rock specimen, as well as the incident wave, the transmitted
wave, and the reflected wave, met the test requirements.
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Figure 5. Diagram of the SHPB experiment system.

Table 1. Mechanical parameters of granite under static load.

Density (kg/m3) P-Wave Velocity (m/s) Elastic Modulus (GPa)

2723 4888 36.68
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3.2. Analysis of Results

According to the mathematical model described above, two groups of signals of inci-
dent and transmitted waves with a total of 28,000 points were selected for the experimental
results. In this operation, the initial population number was set to 500, the population
dimension was 2, the maximum iteration time was 50, the limit of the time-window length
was 2 to 10,000, and the speed limit was −200 to 200; then, the mathematical model was
solved by MATLAB.

The complete stress wave signal taken in this study had 28,000 points. There were
no explicit requirements regarding the time-window length in past research. Figure 7
shows the relationship between the time-window length and the detection results for the
incident-wave, reflected-wave, and transmitted-wave arrival times. In Figure 7a,b, areas
A and B provide a more suitable range for the incident-wave initial arrival time. During
the test process, the incident wave and the reflected wave were recorded by the strain
gauge of the incident bar. The incident and reflected waves had two apparent peaks in a
complete time domain. In Figure 7a, the incident wave curve changes significantly when
the time window is about 5000, which shows that the reflection wave affected the result of
arrival picking. For the arrival picking of the reflection wave, the position of the arrival
time shows a linear decreasing trend with the time-window length. This explains the fact
that the time-window length significantly affected the arrival picking. In Figure 7b, the
suitable time-window length is between 2000 and 6000, which explains the fact that the
suitable time-window length was about 7% to 21.5% of the total number of signals.
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In the application of the particle swarm algorithm, the inertia weight mainly controls
the global and local search ability of the PSO algorithm, and the appropriate inertia weight
factor and learning factor should be selected according to the solution problem [25–27].
However, there is still no exact parameter calculation method. In this optimization, the
learning factor was 0.5 and the inertia weight was 0.1–2.0 for 20 iteration sets of 50 iterations.
The calculation results are shown in Table 1, and the convergence curves are shown in 6.

The convergence of the fitness values for ω = 0.1 to 1.0 is shown in Figure 8a. As
shown in Table 2, in only 6 of the 10 sets of optimization results did the search reach the
optimal fitness in 50 iterations. When ω = 0.4, 0.6, the search results were better and the
algorithm was able to complete convergence within 20 iterations, while in the interval of
ω = 0.7 to 1.0, the number of iterations required to reach convergence was greater than 20,
and for ω = 0.9, 1.0, nearly 50 iterations were required to complete convergence. It can thus
be seen that although it has a significant effect on optimization results, there is no obvious
functional relationship with the increase in ω. In addition, in the experimental results
that did not reach the optimum in Figure 8a, the fitness curve converges to a horizontal
straight line after 30 iterations, and the fitness at this stage basically ceases to change; the
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particles are trapped in a local optimum. A similar situation exists in Figure 8b, where the
particles show a relatively good result in finding the optimum, but the local optimum also
exists in the same way, and the speed of the optimal convergence is relatively slow, close to
50 iterations.
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Table 2. Parameter settings and results for PSO.

Iteration Inertia Weight (ω) c1 c2 First Optimal Fitness

50 0.1 0.5 0.2 0
50 0.2 0.5 0.2 0
50 0.3 0.5 0.2 0
50 0.4 0.5 0.2 12
50 0.5 0.5 0.2 0
50 0.6 0.5 0.2 18
50 0.7 0.5 0.2 22
50 0.8 0.5 0.2 27
50 0.9 0.5 0.2 43
50 1 0.5 0.2 44
50 1.1 0.5 0.2 43
50 1.2 0.5 0.2 42
50 1.3 0.5 0.2 0
50 1.4 0.5 0.2 43
50 1.5 0.5 0.2 50
50 1.6 0.5 0.2 44
50 1.7 0.5 0.2 0
50 1.8 0.5 0.2 0
50 1.9 0.5 0.2 0
50 2 0.5 0.2 0

Five different methods for updating inertia weights were selected, as shown in Table 3.
Methods (1), (2), and (5) are used to limit a range of inertia weight factors and calculate
the inertia weight factor for each iteration according to the boundary size and the process
of the iterations, and the positions of all particles in the population are updated based on
ω. Methods (3) and (4) are based on the relationship between the fitness of each particle
and the current optimal fitness relationship; a separate inertia weight factor is assigned to
all particles.
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Table 3. The setting of inertia weights.

ID Functions Ref. c1 c2

1 ω(t) = ωmin + 1
2 (ωmax − ωmin)

(
1 + cos

(
π(t−1)

T

))
ωmin is the min inertia

weight; ωmax is the max
inertia weight; f is the

current fitness value of the
particle; fmin and favg
represent the current

minimum fitness of all
particles and the average
fitness value, respectively

[28] 0.5 0.2

2 ω(t) = ωmax − ωmax−ωmin
T t [2] 0.5 0.2

3 ωi(t) = ωmax − (ωmax − ωmin) ·
fi(t)− fw

fb− fw [2] 0.5 0.2

4 ω(t) =

{
ωmin − (ωmax−ωmin)( fi(t)− fmin)

favg− fmin
, fi(t) ≤ favg

ωmax, fi(t) > farg
[29] 0.5 0.2

5 ω(t) = ωmax +
ωmin−ωmax√

1+( t
T )

10 [29] 0.5 0.2

The optimal fitness and average fitness variation of the five inertia weight factors are
shown in Figure 9. Method 1 and method 2 were able to reach a near-optimal fitness in
10 iterations, and both reached the optimal fitness value after around 20 cycles after a short
search, as shown in Figure 9a. In Figure 9b, it can be seen that the two methods have a
similar ability at the initial stage and that the average fitness differences in the late iteration
are also similar. Method (3), method (4), and method (5) do not reach the optimal fitness,
and method (5) shows poor search ability in Figure 9a,b. It is worth noting that although
method (5) does not converge to the optimal fitness, the results are close, with an error of
0.058%, and it has outstanding performance in the early convergence and average fitness
convergence of the iterations. The reason is that the inertia weight factor in the original
study introduces a weight control factor (K) in the numerator term; unfortunately, the rules
for the value of this factor are not provided, which also shows the strong search potential.
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Figure 10 shows the optimization results for the PSO-TWER method. Figure 10a
shows the distribution of the 500 initial population particles, and the results show that
the particles are distributed throughout the fetching region; Figure 10b shows the final
distribution of particles after 50 iterations. The particle distribution is significantly more
concentrated, indicating the algorithm’s good global search capability, but some particles
are still at the local optimum. The convergence curves of the best fitness and the average
global fitness of the iterations are plotted in Figure 10c, and the inertial weight updating
method has a good convergence effect. The global best fitness can converge more obviously
within 5 iterations and reach the minimum of the objective function within 15 iterations
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after falling into a short local optimum. The average fitness also shows a decreasing trend
until 25 iterations. The average fitness also decreases until 25 iterations and remains low
after 30 iterations. Figure 10d shows the locations of the final arrival picking of the incident
wave and the transmitted wave, and the optimization results satisfy the requirements of
the test standards.
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4. Hopkinson Stress Balance Effect Index
4.1. Correction of the Segment Interval

The incident wave, the reflected wave, and the transmitted wave are all functions
of the loading time (t). The specific method for selecting the length of each wavelength
is not given in the test standards. The segment interval can be set in advance when the
PSO-TWER method is used for the first operation. The segment interval is less than the
distance between the arrival time of the incident wave and the arrival time of the reflected
wave as the Figure 11. The distance between the incident wave’s starting point and the
reflected wave’s starting point is indicated.

∆x = tfi − tif (11)
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4.2. The Stress Equilibrium Index of SHPB

In the stress equilibrium state described in the study of Hu and Wang, the loading
process can be divided into three stages: the stress superposition stage, the stress equilib-
rium stage, and the stress deterioration stage. The stress difference between the two ends
of the specimen will fluctuate in a range during the impact loading, and it is challenging to
reach absolute stress equilibrium in rock specimens. Because the specimen experiences a
brief state of stress disequilibrium–stress equilibrium–stress disequilibrium, the number of
calculated stress equilibrium factors close to one point can be used to evaluate the stress
equilibrium effect, and a new evaluation index can be established by Equation (12).

R f =
nc

ns
(12)

where R f is the evaluation index of the test results, ns is the number of points in the
segment, and nc is the number of points close to the stress equilibrium position.

The calculation of nc is shown in Equation (13).

c(t) = σeq(t)− a (13)

where c(t) represents the function related to the loading time (t) and a is the correction
coefficient, its physical meaning being the allowable error. In this study, the median is
taken as 1.5.

4.3. Applicability Analysis

The stress equilibrium effect of granite specimens is shown in Table 4, and the stress
balance evaluation indicators range from 0.4884 to 0.6939. Meeting the threshold of the
qualified stress equilibrium is set as R f = 0.5. As shown in Figure 12, most of the data in
the test results meet the stress equilibrium. It is worth noting that it is difficult to reach a
value above 0.7. Maintaining stress equilibrium during the entire period in the specimen
is difficult. Further, due to microfractures and microporosity in rock, there is hole closure
and microcrack expansion, resulting in plastic deformation and irreversible damage to the
specimen, and the stress equilibrium state is poor.
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Table 4. The stress equilibrium effect of the granite specimens.

Specimen ID Aspect Ratio Air Pressure (MPa) Strain Rate (−1) Stress Equilibrium Index

1 0.6 0.12 37.91 0.5078
2 0.6 0.15 65.13 0.6190
3 0.6 0.18 92.74 0.6939
4 0.6 0.24 145.62 0.5821
5 0.8 0.13 67.50 0.5665
6 0.8 0.17 97.18 0.5253
7 0.8 0.23 97.18 0.5253
8 0.8 0.24 114.26 0.6346
9 1 0.12 33.47 0.6627

10 1 0.14 91.83 0.5659
11 1 0.18 109.50 0.6496
12 1 0.23 106.79 0.4972
13 1.2 0.12 31.38 0.6352
14 1.2 0.15 55.94 0.6321
15 1.2 0.18 107.25 0.6390
16 1.2 0.24 112.48 0.5340
17 1.4 0.12 35.84 0.4884
18 1.4 0.14 40.97 0.5447
19 1.4 0.15 40.88 0.5453
20 1.4 0.18 125.27 0.6640
21 1.4 0.22 101.21 0.5896
22 1.4 0.24 111.13 0.6352
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Table 4. The stress equilibrium effect of the granite specimens. 

Specimen ID Aspect Ratio Air Pressure (MPa) Strain Rate (−1) Stress Equilibrium Index 
1 0.6 0.12 37.91  0.5078  
2 0.6 0.15 65.13  0.6190  
3 0.6 0.18 92.74  0.6939  
4 0.6 0.24 145.62  0.5821  
5 0.8 0.13 67.50  0.5665  
6 0.8 0.17 97.18  0.5253  
7 0.8 0.23 97.18  0.5253  
8 0.8 0.24 114.26  0.6346  
9 1 0.12 33.47  0.6627  

10 1 0.14 91.83  0.5659  
11 1 0.18 109.50  0.6496  

Figure 12. The statistical results for the stress equilibrium index.

From the results shown in Figure 12, the highest and lowest R f test results were selected,
and the stress equilibrium curves were plotted, as shown in Figure 13. In Figure 13a,b, the
stress equilibrium index was near the set threshold of 0.5, and the transmission wave curve
and incident + reflection wave curve almost did not coincide during the entire loading pro-
cess, indicating that the stress equilibrium state of the specimen was poor. In Figure 13c,d,
the stress equilibrium index was more significant than 0.65. The difference between the
transmitted wave curve and the incident + reflected wave curve was relatively small, with
overlapping parts. The stress equilibrium state of the specimen met the test requirements.
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5. Conclusions and Future Work

This study addresses the selection of the stress waveform arrival time in SHPB test
data processing, establishes a mathematical model with the stress equilibrium factor as
the objective function, then proposes the PSO-TWER method, studies the influence of the
inertia weight factor on the algorithm seeking effect, and proposes the stress equilibrium
evaluation index according to the importance of the stress equilibrium effect in the impact
test, with the following specific conclusions: the SHPB waveform signal has small-scale
noise, the recognition effect of the time-window energy ratio method is easily affected by
noisy signals, and the time-window length significantly affects the selection of a signal.
The strain signal of the incident bar is less regular due to the existence of two waveforms,
the incident wave and the reflection wave, and the influence of the time-window length
is less regular. The location of the arrival time at a length of about 17.8% of the total time
domain of the signal will produce abrupt changes, and a suitable time-window length
for a signal is between 7% and 21.5% of the total signal. The PSO-TWER algorithm with
dynamic weight improvement can quickly converge within 5 iterations, reach the minimum
value of the objective function within 15 iterations, and meet the testing criteria for arrival
picking, demonstrating the applicability of the PSO-TWER method in Hopkinson data
processing. The proposed stress equilibrium evaluation index is able to judge the stress
balance effect of a specimen during the full impact process and has good applicability. In
the future, we plan to use this method to detect the dynamic properties of more materials,
not just rocks. Furthermore, from an algorithmic perspective, a termination strategy with
a fixed number of iterations may be inefficient, and fitness may be able to establish a
relationship with the termination strategy of the algorithm, which may provide new ideas
in subsequent research.



Appl. Sci. 2024, 14, 3624 17 of 18

Author Contributions: Conceptualization, Methodology, X.W. and L.G.; Data curation, Writing—Ori-
ginal draft preparation, X.W. and Z.X.; Visualization, Investigation, Z.X. and L.G.; Formal analysis,
X.W. Visualization, X.W.; Writing—Reviewing and Editing, X.W. and Z.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was financially supported by the National Natural Science Foundation of China
(No. 51974187), Educational Commission of Liaoning Province of China (Grant No. LJKZ0282) and
Liao Ning Revitalization Talents Program (Grant 2203173) and Foundation for University Key Teacher
by University of Science and Technology Liaoning (Grant No. 601011507-25).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lopatnikov, S.L.; Gama, B.A.; Krauthouser, K.; Gillespie, G. Applicability of the Classical Analysis of Experiments with Split

Hopkins Pressure Bar. Tech. Phys. Lett. 2004, 30, 102–105. [CrossRef]
2. Song, Q.; Yu, L.; Li, S.; Hanajima, N.; Zhang, X.; Pu, R. Energy Dispatching Based on an Improved PSO-ACO Algorithm. Int. J.

Intell. Syst. 2023, 2023, 3160184. [CrossRef]
3. Lopatnikov, S.L.; Gama, B.A.; Krauthouser, K.; Gillespie, G. Influences of the number of non-consecutive joints on the dynamic

mechanical properties and failure characteristics of a rock-like material. Eng. Fail. Anal. 2023, 146, 107101.
4. Wu, D.; Li, H.; Fukuda, D.; Liu, H. Development of a finite-discrete element method with finite-strain elasto-plasticity and

cohesive zone models for simulating the dynamic fracture of rocks. Comput. Geotech. 2023, 156, 105271. [CrossRef]
5. Sun, X.; Jin, T.; Li, J.; Xie, J.; Li, C.; Li, X. Dynamic characteristics and crack evolution laws of coal and rock under split Hopkinson

pressure bar impact loading. Meas. Sci. Technol. 2023, 34, 075601. [CrossRef]
6. Li, X.B.; Zou, Y.; Zhou, Z.L. Numerical Simulation of the Rock SHPB Test with a Special Shape Striker Based on the Discrete

Element Method. Rock Mech. Rock Eng. 2014, 47, 1693–1709. [CrossRef]
7. Kim, D.; Joo, Y.; Byun, J. First-Break Picking Method Based on the Difference Between Multiwindow Energy Ratios. IEEE Trans.

Geosci. Remote Sens. 2023, 61, 1–10. [CrossRef]
8. Lei, S.; Hao, D.; Cao, S. Study on Uniaxial Compression Deformation and Fracture Development Characteristics of Weak Interlayer

Coal–Rock Combination. Fractal Fract. 2023, 7, 731. [CrossRef]
9. Miao, K.; Tu, S.; Tu, H.; Liu, X.; Li, W.; Zhao, H.; Li, Y. Research on Fractal Evolution Characteristics and Safe Mining Technology

of Overburden Fissures under Gully Water Body. Fractal Fract. 2022, 6, 486. [CrossRef]
10. He, S.H.; Ding, Z.; Hu, H.B.; Gao, M. Effect of grain size on microscopic pore structure and fractal characteristics of carbonate-

based sand and silicate-based sand. Fractal Fract. 2021, 5, 152. [CrossRef]
11. Hong, L. Size Effect on Strength and Energy Dissipation in Fracture of Rock under Impact Loads; Central South University: Changsha,

China, 2008.
12. Xibing, L. Rock Dynamics Fundamentals and applications; Science Press: Beijing, China, 2017.
13. Rao, R. Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems. Int. J. Ind. Eng. Comput. 2020,

11, 107–130. [CrossRef]
14. Rao, R.V.; Keesari, H.S. A self-adaptive population Rao algorithm for optimization of selected bio-energy systems. J. Comput. Des.

Eng. 2021, 8, 69–96. [CrossRef]
15. Tharwat, A.; Schenck, W. A conceptual and practical comparison of PSO-style optimization algorithms. Expert Syst. Appl. 2021,

167, 114430. [CrossRef]
16. Meng, Z.; Zhong, Y.; Mao, G.; Liang, Y. PSO-sono: A novel PSO variant for single-objective numerical optimization. Inf. Sci. 2022,

586, 176–191. [CrossRef]
17. Nguyen, H.; Moayedi, H.; Foong, L.K.; Al Najjar HA, H.; Jusoh WA, W.; Rashid AS, A.; Jamali, J. Optimizing ANN models with

PSO for predicting short building seismic response. Eng. Comput. 2020, 36, 823–837. [CrossRef]
18. Zhu, Y.; Li, G.; Wang, R.; Tang, S.; Su, H.; Cao, K. Intelligent fault diagnosis of hydraulic piston pump combining improved

LeNet-5 and PSO hyperparameter optimization. Appl. Acoust. 2021, 183, 108336. [CrossRef]
19. Mohamed, E.M.; Hassanm, A.M. Satellite Tracking Control System Using Optimal Variable Coefficients Controllers Based on

Evolutionary Optimization Techniques. El-Cezeri 2023, 10, 326–348.
20. Tang, Q.; Dai, J.; Ying, J.; Wu, G. Multi-UAV trajectory planning based on differential evolution of Levy flights particle swarm

optimization. In Proceedings of the International Conference on Cyber Security, Artificial Intelligence, and Digital Economy
(CSAIDE 2023), Nanjing, China, 3–5 March 2023; SPIE: Bellingham, WA, USA, 2023.

https://doi.org/10.1134/1.1666953
https://doi.org/10.1155/2023/3160184
https://doi.org/10.1016/j.compgeo.2023.105271
https://doi.org/10.1088/1361-6501/acca3b
https://doi.org/10.1007/s00603-013-0484-6
https://doi.org/10.1109/TGRS.2023.3255261
https://doi.org/10.3390/fractalfract7100731
https://doi.org/10.3390/fractalfract6090486
https://doi.org/10.3390/fractalfract5040152
https://doi.org/10.5267/j.ijiec.2019.6.002
https://doi.org/10.1093/jcde/qwaa063
https://doi.org/10.1016/j.eswa.2020.114430
https://doi.org/10.1016/j.ins.2021.11.076
https://doi.org/10.1007/s00366-019-00733-0
https://doi.org/10.1016/j.apacoust.2021.108336


Appl. Sci. 2024, 14, 3624 18 of 18

21. Shingne, H.; Shriram, R. Heuristic deep learning scheduling in cloud for resource-intensive internet of things systems. Comput.
Electr. Eng. 2023, 108, 108652. [CrossRef]

22. Chang, J.M.; Chao, W.A.; Kuo, Y.T.; Yang, C.M.; Chen, H.; Wang, Y. Field experiments: How well can seismic monitoring assess
rock mass falling? Eng. Geol. 2023, 323, 107211. [CrossRef]

23. Wu, J.; Xie, D.; Yi, S.; Yin, S.; Hu, D.; Li, Y.; Wang, Y. Fractal Study of the Development Law of Mining Cracks. Fractal Fract. 2023,
7, 696. [CrossRef]

24. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995.

25. Shen, C.; Shi, Y.; Fang, J. Evaluation scheme design of college information construction based on a combined algorithm. PeerJ
Comput. Sci. 2023, 9, e1327. [CrossRef] [PubMed]

26. Sahoo, S.; Dalei, R.K.; Rath, S.K.; Sahu, U.K. Selection of PSO parameters based on Taguchi design-ANOVA-ANN methodology
for missile gliding trajectory optimization. Cogn. Robot. 2023, 3, 158–172. [CrossRef]

27. Zhou, B.; Li, S.; Zi, B.; Chen, B.; Zhu, W. Multi-Objective Optimal Design of a Cable-Driven Parallel Robot Based on an Adaptive
Adjustment Inertia Weight Particle Swarm Optimization Algorithm. J. Mech. Des. 2023, 145, 083301. [CrossRef]

28. Wang, C.; Li, W.; Zhao, K.; Shen, X. Fractional Order Control of Airborne Optoelectronic Platform Based on Improved PSO
Algorithm. Electron. Opt. Control 2023, 30, 83–87.

29. Geng, X.Y.; Li, Y.B.; Sun, Q. A Novel Short-Term Ship Motion Prediction Algorithm Based on EMD and Adaptive PSO-LSTM
with the Sliding Window Approach. J. Mar. Sci. Eng. 2023, 11, 466. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compeleceng.2023.108652
https://doi.org/10.1016/j.enggeo.2023.107211
https://doi.org/10.3390/fractalfract7090696
https://doi.org/10.7717/peerj-cs.1327
https://www.ncbi.nlm.nih.gov/pubmed/37346572
https://doi.org/10.1016/j.cogr.2023.05.002
https://doi.org/10.1115/1.4062458
https://doi.org/10.3390/jmse11030466

	Introduction 
	Related Work 
	Time-Window Energy Ratio Method 
	Denoising of Waveform Signals 
	The Stress Equilibrium Factor 
	Objective Function 
	PSO-TWER Method 

	Results 
	Test Example Verification Device 
	Analysis of Results 

	Hopkinson Stress Balance Effect Index 
	Correction of the Segment Interval 
	The Stress Equilibrium Index of SHPB 
	Applicability Analysis 

	Conclusions and Future Work 
	References

