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Abstract: Pickup vehicle scheduling in steel logistics parks is an important problem for determining
the outbound efficiency of steel products. In a steel logistics park, each yard contains different types of
steel products, which provides flexible yard selection for each pickup operation. In this case, the yard
allocation and the loading sequence for each vehicle must be considered simultaneously in pickup
vehicle scheduling, which greatly increases the scheduling complexity. To overcome this challenge, in
this paper, we propose a pickup vehicle scheduling problem with mixed steel storage (PVSP-MSS) to
optimize the makespan of pickup vehicles and the makespan of steel logistics parks simultaneously.
The optimization problem is formulated as a multi-objective mixed-integer linear programming
model, and an enhanced algorithm based on SPEA2 (ESPEA) is proposed to solve the problem with a
high efficiency. In the ESPEA, a cooperative initialization strategy is firstly proposed to initialize the
vehicle pickup sequence for each yard. Then, an insertion decoding method is designed to improve
the scheduling efficiency, utilizing the idle time of a yard. Furthermore, local search technology
based on critical paths is proposed for the ESPEA to improve the solution quality. Experiments are
executed based on data collected from a real steel logistics park. The results confirm that the ESPEA
can significantly reduce both the makespan of each pickup vehicle and the makespan of the steel
logistics park.

Keywords: pickup vehicle scheduling; steel logistics park; mixed storage; multi-objective optimization

1. Introduction

Pickup vehicle scheduling is important for steel logistics parks, and can greatly reduce
the waiting time of vehicles and improve the logistics throughput [1,2]. On the other hand,
optimizing vehicle scheduling in the industrial or logistics field is also an important way
to reduce CO2 emissions [3,4]. Traditionally, pickup vehicles are manually scheduled,
which is inefficient and always leads to scheduling conflicts since it is too complex to be
efficiently scheduled by humans [5,6]. Therefore, it is essential to develop an automatic
pickup vehicle scheduling algorithm based on the data of pickup vehicles to improve the
outbound efficiency of steel logistics parks.

In recent years, some strategies have been developed to improve the efficiency of
vehicle scheduling. Kulkani et al. (2018) in [7] proposed a timetabled assignment for the
multi-warehouse vehicle scheduling problem and designed a formula for the temporal-
spatial network flow and solved it using the column generation algorithm. Wang et al.
(2021) in [8] proposed a path optimization problem for pickup vehicles in warehouses and
designed a mathematical model and a double-layer coding genetic algorithm to solve the
problem. Priscila et al. (2022) in [9] proposed an integrated problem of pickup vehicle
scheduling and route decision making to reduce the delay time of service customers
in multiple docks and designed a mixed-integer linear programming model and two
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heuristic methods to solve the problem. Wang et al. (2020) in [10] proposed a dynamic bus
vehicle scheduling approach to efficiently generate scheduling solutions, addressing the
problem of traffic congestion. Liao (2020) in [11] proposed a newly formulated model and
a hybrid optimization method for solving the integrated vehicle routing and scheduling
problem in a multi-door cross-dock terminal. Yağmur and Kesen (2021) in [12] addressed
a joint production scheduling and outbound distribution planning problem, considering
a permutation flow shop setting and multiple heterogeneous capacitated vehicles. The
objective is to minimize the total tour time of the vehicles while considering the tardiness
resulting from late deliveries.

However, the aforementioned studies did not consider the vehicle scheduling problem
in the steel logistics field. To solve the pickup vehicle scheduling problem in steel logistics
parks, Wen et al. (2022) in [13] proposed a constrained clustering of vehicle batching
algorithm, which optimized the sequence of vehicles entering a steel logistics park and
the selection of the operation yard to minimize the makespan. Tang et al. (2009) in [14]
considered a pickup vehicle and trailer vehicle scheduling problem and developed an
inherited tabu search algorithm to solve the problem. Kunnapapdeelert and Thawnern
(2021) in [15] addressed the capacitated vehicle routing problem in the steel industry by
utilizing Clarke and Wright’s saving algorithm.

These works provide inspiration for solving the pickup vehicle scheduling problem
for steel logistics parks. However, they are not applicable to pickup vehicle scheduling in a
steel logistics park with mixed storage. In a steel logistics park, each yard contains different
types of steel products [16], which provides the flexible yard selection for each pickup
operation. In this case, the yard allocation and the loading sequence for each vehicle must
be considered simultaneously in pickup vehicle scheduling, which significantly increases
the complexity of the problem.

To cope with these problems, in this paper, we propose to optimize the pickup vehicle
scheduling problem with mixed steel storage (PVSP-MSS) based on the data of pickup
vehicles collected by the IIoT. Firstly, a multi-objective mixed-integer linear programming
model is formulated to describe the PVSP-MSS. Then, an enhanced algorithm based on
SPEA2 (ESPEA) is proposed to solve the problem with a high efficiency.

Specifically, this paper has the following contributions:

1. The pickup vehicle scheduling problem with mixed steel storage (PVSP-MSS) is inves-
tigated in this paper. The PVSP-MSS is formulated as a multi-objective mixed-integer
linear programming model, aiming at simultaneously optimizing the makespan of
pickup vehicles and the makespan of the steel logistics park. By solving this problem,
the optimal yard allocation and loading sequence for vehicles can be obtained.

2. The ESPEA is proposed to solve the PVSP-MSS with a high efficiency. In the proposed
algorithm, a cooperative initialization strategy is first proposed to provide an initial
solution for scheduling optimization. Then, insertion decoding is designed to optimize
the quality of the solution by utilizing the idle time in the yard. Moreover, local search
technology is proposed in the ESPEA to improve the solution quality by swapping
pickup operations on critical paths in steel logistics parks.

3. The experiments are executed based on the data from a real steel logistics park.
The results show that compared with other algorithms, the proposed algorithm
significantly reduces both the makespan of each pickup vehicle and the makespan of
the steel logistics park.

The rest of this paper is organized as follows. Section 2 introduce the framework of
scheduling based on IIoT and the data features of pickup vehicles. An optimization model
is formulated in Section 3. Section 4 proposes an ESPEA to solve the proposed problem.
Section 5 discusses the experiment results, and the conclusion is given in Section 6.

2. Scheduling Framework and Pickup Vehicle Data

This section introduces the framework of pickup vehicle scheduling in a steel logistics
park based on the Industrial Internet of Things (IIoT) to depict how to achieve vehicle
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scheduling in the cloud environment. In addition, in order to facilitate the elaboration of
problem characteristics, the data of vehicles in the cloud platform are introduced in detail.

2.1. Scheduling Framework Based on the IIoT

A cloud platform represents a valuable tool for widely sharing manufacturing ser-
vices and solutions by connecting suppliers and customers in large-scale manufacturing
networks [17,18]. Figure 1 shows the framework of scheduling based on the IIoT in a steel
company. The IIoT collects data from vehicles and uploads them to the platform. Based on
these data, the cloud platform allocates resources for each pickup vehicle operation. It is
worth noting that each yard stores mixed steels ans thus contains a variety of different types
of steel, which allows pickup vehicles to obtain target goods from different yards. The goal
of scheduling is to allocate the most appropriate yard for each vehicle and determine the
optimal operation sequence for individual vehicles, both of which are considered in this
paper. The results of scheduling generate the decision for the vehicle operation sequence
and the yard allocation. Therefore, scheduling is important to increase the efficiency of
vehicles and the throughput of the park.
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Figure 1. The framework of pickup vehicle scheduling.

2.2. Data of Pickup Vehicles

The data in this paper are based on pickup data from a real steel logistics park. Each
pickup vehicle has 13 attributes, including vehicle number, customer ID, steel category,
operation number, delivery date, etc. Figure 2 shows the statistics of the pickup vehicle
numbers over a month, where the star represents the number of vehicles. There are
1695 vehicles in total, and the number of pickup vehicles each day is distributed between
10 and 100. The number of steel types picked up for each vehicle is between 1 and 4.

Base on the data given above, we formulate a pickup vehicle scheduling model, and
the details are given in the following sections.
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3. Pickup Vehicle Scheduling Model

In this section, the pickup vehicle scheduling problem with mixed steel storage (PVSP-
MSS) is formulated as a multi-objective mixed-integer linear programming model (MILP).
This model can accurately describe the processes of pickup vehicles in a steel logistics park.

3.1. Assumptions

For the construction of the model, in this study, the following assumptions are made.

1. All vehicles have the same priority.
2. All vehicles and yards are available at the start time of the steel logistics park.
3. Interruptions during each operation do not occur.
4. The transition time of vehicle operation is short and negligible.

3.2. Pickup Time Model

The pickup time plays a crucial role in allocating vehicles to the yard. The pickup time
of the vehicle depends on the pick up time and movement time of the crane, as well as
the number of corresponding pickup goods. Therefore, the vehicle pickup time t can be
modeled as:

t =
(

2dy

v
+ α

)
N (1)

where dy represents the distance between the storage location of the goods and the pickup
port of the yard, v represents the speed of the crane, α represents the time taken for the
crane to pick up one unit of goods, and N represents the number of goods. Due to the
number of collected goods for each vehicle and the storage location of the goods in each
yard being the variables to be determined, the pickup time of vehicles in each yard is fixed.

3.3. Variable Definitions

To depict the PVSP-MSS effectively, the parameters and decision variables involved in
the optimization model are defined below.
(1) Parameters

n : Total number of vehicles.
m : Total number of steel logistics park yards.
I : Set of vehicles, where I = {1, 2, . . . , n}.
M : Set of yards in the steel logistics park, where M = {1, 2, . . . , m}.
i, i′ : Index of vehicles, where i, i′ ∈ {1, . . . , n}.
ni : Number of operations of vehicles i.
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Ji : Set of operations of vehicle i, where Ji = {1, 2, . . . , ni}.
j, j′ : Index of operations of vehicles i, where j, j′ ∈ {1, . . . , ni}.
k, k′ : Index of yards, where k, k′ ∈ {1, . . . , m}.
Oi,j : The j operation of vehicle i.
Ui,j : Optional set of yards for j operations of vehicle i.
Si,j : Start time of operation Oi,j.
ti,j,k : Pickup time of operation Oi,j at yard k.
Ci,j : Completion time of operation Oi,j.
Cmax : Makespan of steel logistics park.
SCmax : Maximum makespan of all vehicles.
L : A large number for maintaining the consistency of the inequality.

(2) Decision Variables
Xi,j,k: Takes a value of 1 if the operation Oi,j is processed at yard k and 0

otherwise.
yi,j,p,q,k: Takes a value of 1 if the operation Oi,j takes precedence over the opera-

tion Op,q at yard k and 0 otherwise.

3.4. Mathematical Model for the PVSP-MSS

This study presents the MILP model for the PVSP-MSS with two objective functions.
The MILP model is described as follows:

min F1 = Cmax = max{Ci,ni | ∀i ∈ I} (2)

min F2=SCmax=max{Ci,ni−Si,1 | ∀i ∈ I} (3)

where F1 indicates the minimization for the makespan of the steel logistics park and F2
indicates the minimization for the maximum makespan of all vehicles. It is worth noting
that F1 has an implicit conflict with F2. In other words, blindly reducing F2 might lead to a
sharp increase in F1 and vice versa. Thus, the PVSP-MSS is multi-objective optimization
problem subject to:

Si,j + ti,j,k + L
(

Xi,j,k − 1
)
≤ Ci,j, ∀i ∈ I, j ∈ Ji (4)

Ci,j ≤ Si,j+1, ∀i ∈ I, j ∈ {1, . . . , ni − 1} (5)

Sp,q ≥ Si,j + ti,j,k − L(3− yi,j,p,q,k − Xi,j,k − Xp,q,k),

∀i ∈ I, j ∈ Ji, p ∈ I, q ∈ Jp, k ∈ Ui,j ∩Up,q (6)

Si,j ≥ Sp,q + ti,j,k + L(2 + yi,j,p,q,k − Xi,j,k − Xp,q,k),

∀i ∈ I, j ∈ Ji, p ∈ I, q ∈ Jp, k ∈ Ui,j ∩Up,q (7)
Ui,j

∑
k=1

Xi,j,k = 1, ∀i ∈ I, j ∈ Ji (8)

Si,j ≥ 0, ∀i ∈ I, j ∈ Ji (9)

ti,j,k ≥ 0, ∀i ∈ I, j ∈ Ji, k ∈ Ui,j (10)

Ci,j ≥ 0, ∀i ∈ I, j ∈ Ji (11)

Constraint (4) ensures that the completion time of vehicle operations is greater than or
equal to the sum of the start time of operations and the pickup time. Constraint (5) ensures
that start time of the next operation is greater than or equal to the completion time of the
current operation. Constraints (6) and (7) ensure that a yard can only serve one vehicle at a
time. Constraint (8) ensures that each vehicle operation can only be a pickup operation in
one optional yard at a time. Constraints (9)–(11) are value range limitations.

The model is a typical mixed-integer linear programming model with NP-hard charac-
teristics. To test the proposed model, GUROBI 10.0.1 based on the python programming
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language is implemented to solve some instances. The experiments in Section V show that
the complexity of the problem is so high that GUROBI cannot find an optimal solution in
the desired time.

4. ESPEA for Solving the PVSP-MSS

The PVSP-MSS is a complex problem in the pickup vehicle scheduling process. In
order to improve the scheduling efficiency, each vehicle can flexibly select a yard according
to its needs, which greatly increases the scheduling complexity and makes it difficult for
the existing algorithms to obtain high-quality solutions within a reasonable time. Therefore,
this paper proposes an enhanced algorithm based on SPEA2 [19] to solve the PVSP-MSS.
Firstly, a cooperative initialization strategy is proposed, which utilizes the pickup vehicle
sequence and pickup time in different yards to provide an initial solution for the optimal
schedule. Secondly, to optimize the quality of the solution, an insertion decoding method
is proposed to effectively utilize the idle time in the yard. Finally, local search technology is
proposed in the ESPEA to improve the solution quality by swapping pickup operations on
critical paths in the steel logistics park.

4.1. Framework of the ESPEA

In this subsection, the proposed algorithm is outlined in Algorithm 1. In steps S1–S2,
we encode a pickup vehicle arrangement scheme using two one-dimensional sequences
and further use the cooperative initialization strategy to provide an initial solution for the
optimal schedule. In step S3, a null elite archive is created to store elite individuals. During
the population evolution process, steps S4–S6 utilize insertion decoding to optimize the
pickup vehicle sequence. Then, the objective value and the fitness value for each individual
are calculated. Based on the fitness value, steps S7–S8 use the population environment
to select elite individuals for crossover and mutation. In step S9, a local search technique
based on the critical path is used to find a better scheduling solution.

Algorithm 1 Framework of the ESPEA

Input: Initial number of iterations q = 0; maximum number of iterations qmax; near
neighbor threshold k; elite archive size η; population size NP, crossover probability CP,
mutation probability MP;

Output: Pareto front solution for the elite archive Aqmax ;
S1: Particle coding for pickup vehicle arrangement scheme, go to S2;
S2: Generate population P0 using the cooperative initialization strategy, go to S3;
S3: Create a null elite archive A0, go to S4;
while q < qmax do

S4: Insertion decoding for Pq and Aq, go to S5;
S5: Calculate the object value according to (2) and (3) for Pq and Aq, go to S6;
S6: Calculate the fitness F according to (15) for Pq and Aq, go to S7;
S7: Select environment for Pq and Aq, and save the elite individual to Aq+1, go to S8;
S8: Crossover and mutation for Aq+1, and save the results to Pq+1, go to S9;
S9: Local search based on a critical path for Pq+1 to generate new solution, and replace

the parent solution as much as possible, go to S10;
S10: Update q = q + 1;

end while

4.2. Particle Coding for Pickup Vehicle Arrangement

For the pickup vehicle arrangement scheme, two one-dimensional integer sequence
codings are picked to encode particles. An operation sequence chain (OSC) is used to
represent the sequence of vehicle operations and its length is equal to the total number
of vehicle operations. In the OSC, each gene is directly encoded by the vehicle index;
the position where the vehicle index appears indicates the sequence of operations for that
vehicle. The yard allocation chain (YAC) is used to allocate a yard for each vehicle operation
and its length is equal to the length of the OSC. Each gene of the YAC is arranged according
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to the vehicle index and vehicle operation sequence, and each integer represents the serial
number of the yard currently allocated to the operation in the set of optional yards.

Figure 3 displays an instance of chromosome encoding, where the OSC is [1, 3, 2, 1, 4,
3] and the the YAC is [1, 2, 4, 3, 2, 2]. In the YAC, all operations of vehicle I1 to vehicle I4
are arranged in sequence. Operation O1,1 has four optional yards, and the corresponding
‘1’ represents the first yard M1 in the set of optional yards. Similarly, operation O1,2 has
two optional yards, which is yard M2 and yard M4, respectively. The corresponding ‘2’
represents the second yard in the optional yards, which is yard M4. In the OSC, the first
‘1’ represents operation O1,1 of vehicle I1, and the second ‘3’ represents operation O3,1 of
vehicle I3 and so on; the operation sequence of each vehicle is O1,1 → O3,1 → O2,1 →
O1,2 → O4,1 → O3,2.

OSCYAC

1M
2M

4M3M

1 3 21 3 2 1 4 31 4 31 3 2 1 4 31 2 41 2 4 3 2 23 2 21 2 4 3 2 2

1,1O
2,1O 4,1O3,2O3,1O

1,1O 3,1O 2,1O 4,1O1,2O
3,2O

2M 4M2M 4M

Optional yard set 

1,2O

1I 3I 2I 4I1I 3I

Figure 3. An instance of chromosome encoding.

4.3. Cooperative Initialization Strategy

In order to improve the throughput of the steel logistics park and the scheduling
efficiency of pickup vehicles, a cooperative initialization strategy that uses the pickup
vehicle sequence and the pickup time in different yards is proposed to provide an initial
solution for scheduling optimization.

The cooperative initialization strategy used in this paper includes three initialization
mechanisms that have different effects on the optimization, and their details are depicted
in the following.

4.3.1. YWB

YWB refers to yard workload balancing mechanism, which is designed to balance the
workload of a yard to increase the throughput of the steel logistics park. In the procedure
of YWB, we first encode the OSC based on vehicle data and shuffle the encoded sequence.
Then, we allocate the yard with the minimum workload to each vehicle operation. The
procedure of YWB is shown in Algorithm 2.

An example of YWB is shown in Figure 4. It is assumed there are two vehicles and
each vehicle has two operations. According to S1 and S2, assume the OSC is [1, 2, 2, 1]; for
each operation, allocate the yard that has the minimum value from the temporary array
(indicated by a red box). Finally, the yards [M1, M2, M3, M4] are accordingly allocated for
[O1,1, O2,1, O2,2, O1,2] and the YAC is [1, 4, 2, 3].
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Algorithm 2 Procedure of YWB.

S1: Encode for OSC based on vehicle data, go to S2;
S2: Shuffle the OSC, go to S3;
S3: Initialize workload array with all elements set to zero, go to S4;
for O in OSC do

S4: According to the optional yard set of O, add the pickup time to the workload
array and save it in the temporary array, go to S5;

S5: Allocate the minimum workload yard to O, and set the corresponding gene of
YAC to the yard (if there are multiple yards with the same minimum value, allocate the
yard with the minimum pickup time), go to S6;

S6: Update the workload array;
end for
S7: Output OSC and YAC;

5

0 0 0 0

1,1O

5 7 9 10

5 0 0 0

5 0 0 0

2,1O

5 5 0 0

5 7 107

5 5 0 0

5 5 4 0

7 53 4

1097 712 10 12 8 5

5 5 4 0

1,2O

5 5 4 6

3 4

8 8

6 6

11

Yards set

Workload array

Operation

Pickup time

Temporary array

Allocated yard

Update 

5 4 6

2 2O ，

Optional yard set

1M 3M2M 4M
1M 3M2M 4M

1M 3M2M 4M
1M 3M2M 4M

1M 3M2M 4M
1M 3M2M 4M

1M 3M2M 4M
1M 3M2M 4M

1M
2M 3M

4M

Figure 4. An example of YWB.

4.3.2. MPT

MPT refers to minimum pickup time mechanism, which is designed to allocate the
yard with the minimum pickup time to vehicles to improve the efficiency of pickup vehicles.
In the procedure of MPT, we first encode the OSC based on vehicle data and shuffle the
encoded sequence. Then, we allocate the yard with the minimum pickup time to each
vehicle operation. The procedure of MPT is shown in Algorithm 3.

Algorithm 3 Procedure of MPT.

S1: Encode for the OSC based on vehicle data, go to S2;
S2: Shuffle the OSC, go to S3;
for O in the OSC do

S3: Allocate minimum pickup time to O in the optional yard, and set the correspond-
ing gene of the YAC to the allocated yard (if there are multiple yards with the same
minimum processing time, then one of them is randomly allocated);
end for
S4: Output the OSC and YAC;

4.3.3. RVS

RVS refers to the random vehicle sequential mechanism, which is designed to increase
the diversity of vehicle scheduling schemes. The procedure of RVS is very similar to that of
MPT, except that in S3, optional yards are randomly allocated to vehicles.

In solving the PVSP-MSS, the population is cooperatively initialized by YWB, MPT,
and RVS in equal proportions.

4.4. Insertion Decoding

During the operation of the steel logistics park, a redundant yard idle time will affect
the logistics efficiency. In this paper, an insertion decoding method is designed to insert
vehicle operations into the idle time of a yard to sufficiently utilize the idle time of the
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yard if it meets the insertion conditions of the operation. This subsection will elucidate the
implementation details of insertion decoding.

4.4.1. Decoding the YAC

The YAC can be converted into a yard allocation matrix Ym[j, h] and a time matrix
T[j, h], where Ym[j, h] indicates that the h− th operation of the Ij allocated yard and T[j, h]
indicates that the h − th operation pickup time of Ij. It is worth noting that there is a
one-to-one correspondence between Ym and T.

Taking Figure 3 as an example, the yard allocation chain is [1, 2, 4, 3, 2, 2]. The
converted yard allocation matrix and time matrix are:

Ym[j, h] =


1 2
4
3 2
2

, T[j, h] =


5 7
8
6 4
3


Ym[1, 2] = 2 indicates the second operation of I1 has been allocated to the second

optional yard, which is M4. Meanwhile, T[1, 2] = 7 indicates that the pickup time is 7 min
for the second operation of I1 at M4.

4.4.2. Decoding the OSC

Ym and T are used to determine the corresponding yard Mk and pickup time ti,j,k.
For vehicle operation Oi,j and yard Mk, if Oi,j is the first operation of vehicle i and the
first operation of yard Mk, it can be inserted directly into the 0 moment for processing; if
Oi,j is the first operation of Mk but not the first operation of vehicle i, Oi,j can be inserted
directly at the completion time of the previous operation Oi,j−1. Otherwise, find all idle
time periods [TSx, TEx] for yard Mk, where TSx is the start time of the x − th idle time
period and TEx is the end time of the x − th idle time period. During yard Mk’s work
process, if Oi,j satisfies the condition max{Ci,j−1, TSx}+ ti,j,k ≤ TEx, it can be inserted into
the idle time [TSx, TEx] with the start time of {Ci,j−1, LMk}, where LMk is the earliest
available time for the current yard Mk.

Figure 5 shows an insertable example in M2. O4,1 is the first operation of I4, and the
pickup time t4,1,2 is 3, which is less than the idle time period [TS1,TE1] of M2. Therefore,
O4,1 can be inserted ahead of O1,2 without affecting the normal operation of I1.

Figure 6 shows a non-insertable example in M2. O3,2 is the second operation of I3, and
has S3,2 ≥ C3,1 ≥ TE1. Therefore, O3,2 cannot be inserted into the idle time of M2 and it is
assigned to the next operation after O1,2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1M

2M

3M

4M

1,1O

2,1O2,1O

3,1O3,1O

1,2O1,2O4,1O4,1O 4,1O

Time

Yard

35

1TS 1TE

Figure 5. An example of an insertable operation.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1M

2M

3M

4M

1,1O

2,1O2,1O

3,1O3,1O

1,2O1,2O4,1O4,1O

Time

Yard

42

1TE1TS

3,2O3,2O

Figure 6. An example of a non-insertable operation.

4.5. Fitness Value

In the proposed ESPEA, the fitness value is calculated by considering both the raw
fitness and the proximity density. The raw fitness is used to measure the superiority of
individuals in the multi-objective function space and is determined by counting the number
of times an individual is dominated by other individuals. A smaller raw fitness indicates a
higher level of superiority in the objective space. On the other hand, the proximity density
takes into account the distribution density of individuals in the population. It measures
how crowded an individual is in its local region of the objective space. A smaller proximity
density suggests a more even distribution of individuals.

In the iterative process, each individual i of population Pq and elite archive Aq is
assigned a strength value S(i), which is described as follows:

S(i) =
∣∣{j | j ∈ Pq + Aq ∧ i ≻ j}

∣∣ (12)

Specifically, we first need to calculate the dominance relationship for each individual
based on the object value. Then, the strength value S(i) for individual i is calculated. Based
on the value of S(i), the raw fitness R(i) of an individual i is calculated as follows:

R(i) = ∑
j∈Pq+Aq ,j≻i

S(j) (13)

When R(i)=0, this indicates that individual i is a non-dominated individual. The
purpose of the algorithm is to find individuals with smaller R(i) values and save them.
However, most of the individuals do not dominate each other during the actual operation
of the algorithm. Therefore, density information is introduced to distinguish individuals
with the same original fitness value. The density D(i) of individual i is defined as follows:

D(i) =
1

σk
i + 2

(14)

where σk
i is the distance in the objective space between an individual i and the k−th adjacent

individual. The parameter k is the near neighbor threshold, and adding two to σk
i ensures

that the range of values is within the interval (0, 1).
Finally, adding D(i) to R(i) calculates the fitness F(i), as expressed as follows:

F(i) = R(i) + D(i) (15)

4.6. Environment Selection

Environmental selection is the process of selecting elite individuals for the next gener-
ation in the process of evolution in order to select a good pickup vehicle scheduling scheme
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and thus accelerate algorithm convergence. During the selection process, the first step is to
copy all non-dominated individuals in Pq and Aq to Aq+1, as expressed as follows:

Aq+1 = {xi | xi ∈ Pq ∪ Aq} (16)

If the archived Pareto solution size of Aq+1 is over the elite archive size η, the size is
reduced to η, but if the size of Aq+1 is less than η, the dominant solutions from Aq and Pq
are added to Aq+1 until the size of Aq+1 is equal to η.

4.7. Crossover and Mutation

In the ESPEA, an elite archive preserves the outstanding individuals of the previous
generation. The population diversity needs to be increased to prevent algorithms from
falling into local optimization. Therefore, new population individuals need to be generated
via crossovers and mutations from elite individuals.

4.7.1. Crossover Operator

For as much diversity as possible, precedence operation crossover [20] and two-point
crossover [21] are applied to develop a crossover operator in the two one-dimensional
integer sequence chains. The description is given in the following.

The process of precedence operation crossover for the vehicle operation sequence
chain is as follows: (1) Randomly divide the vehicle set into two subsets set1 and set2.
(2) Randomly select two solutions S1 and S2. For each vehicle belonging to set1, copy their
operations into NewS1, and for each vehicle belonging to set2, copy their operations into
NewS2. (3) For an empty space in NewS1 and NewS2, start from one side of S2 and copy
the missing operation which does not appear in NewS1 to the vacant positions in NewS1
from left to right, and perform a similar operation for NewS2. An example of precedence
operation crossover is illustrated in Figure 7.

The process of two-point crossover for the yard allocation chain is as follows: (1) Two
gene sites are randomly selected in S1 and S2. (2) Mutual exchange of all genes between the
two crossover points is performed to produce two new chromosomes: NewS1 and NewS2.
The procedure is illustrated in Figure 8.

1 3 1 2 2 31 3 1 2 2 31S

1NewS 3 1 3 2 2 13 1 3 2 2 1

3 2 1 2 3 13 2 1 2 3 12S

2NewS 1 2 3 2 1 31 2 3 2 1 3

1 2{2}, {1,3}set set= =

1 3 1 2 2 31 3 1 2 2 31S

1 3 1 2 2 31 3 1 2 2 31S

3 2 1 2 3 13 2 1 2 3 12S

3 2 1

1 3 1

2 2

32 3

1

1NewS

2NewS

Figure 7. An example of precedence operation crossover.
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1 3 1 2 2 31 3 1 2 2 31S

3 2 1 2 3 13 2 1 2 3 12S

3 2 1

1 3 1

2 2

32 3

1

1NewS

2NewS

Figure 8. An example of two-point crossover.

4.7.2. Mutation Operator

(1) Vehicle operation sequence chain mutation: randomly select two positions and
exchange the value.

(2) Yard allocation chain mutation: randomly select two positions and choose one new
yard from the optional yard set.

4.8. Local Search Based on Critical Paths

In this paper, we propose local search technology to improve the solution quality by
swapping the pickup vehicle operations on the critical path in the steel logistics park.

The critical path directly affects the maximum completion time of scheduling; it
is defined as the longest path of all paths from the start node to the end node and the
operations in the critical path are defined as critical operations. Moving an operation on the
critical path can optimize the current solution more efficiently [22]. In this paper, adjacent
operations on the critical path in the same yard are called critical sets, and we design a
critical path neighborhood structure based on the idea of critical operation movement.
The detailed procedure of the local search technology based on critical paths is shown in
Algorithm 4. In this local search technique, FindCriticalSetsOnCriticalPath() identifies all
critical sets. LengthOfSet() determines the length of each set. As for LastTwoDiffVehicles(),
if the last two critical operations belong to different vehicles, then LastTwoDiffVehicles()
is true; otherwise, it is false. SwapLastTwoOps() represents swapping the last two critical
operations. For FirstTwoDiffVehicles(), if the first two critical operations belong to different
vehicles, then FirstTwoDiffVehicles() is true; otherwise, it is false. SwapFirstTwoOps()
represents swapping the first two critical operations. An example of a local neighborhood
based on the critical path is illustrated in Figure 9.

...

first critical set

...

last critical set

...

other critical set

...

swap

swap swap

swap

Figure 9. An example of a local neighborhood based on the critical path.
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Algorithm 4 Local search based on critical paths

Input: Schedule S;
Output: Improved schedule S’;
critical_sets← FindCriticalSetsOnCriticalPath(S);
if LengthOfSet(set[0]) > 1 then

if LastTwoDiffVehicles(critical_sets[0]) then
SwapLastTwoOps(critical_sets[0])

end if
end if
if LengthOfSet(set[−1]) > 1 then

if FirstTwoDiffVehicles(critical_sets[−1]) then
SwapFirstTwoOps(critical_sets[−1])

end if
end if
for set in critical_sets do

if LengthOfSet(set) == 2 then
if FirstTwoDiffVehicles(set) then

SwapFirstTwoOps(set)
end if

end if
if LengthOfSet(set) >= 4 then

if FirstTwoOpsDiffVehicles(set) then
SwapFirstTwoOps(set)

end if
if LastTwoOpsDiffVehicles(set) then

SwapLastTwoOps(set)
end if

end if
end for
Return S′

5. Numerical Experiments

This section aims to prove the effectiveness of the proposed scheduling strategy
through numerical experiments. The simulation experiments include the following aspects.

(1) Validation of the proposed MILP model.
(2) Effectiveness analysis of the improved strategies in the proposed ESPEA.
(3) Comparison of the ESPEA with other multi-objective optimization algorithms on the

PVSP-MSS.

All algorithms were coded in Python 3.9 and run on a computer with an Intel Core
i5-12400 (2.5 GHz) and 32 GB RAM (Intel, Santa Clara, CA, USA).

5.1. Evaluation Metric

In this paper, we use Cmax, SCmax, CT(s) and the hypervolume (HV) [23] as the
performance indicators. Cmax is the makespan of steel logistics park, which is defined
in (2). SCmax is the maximum makespan of all vehicles, which is defined in (3). CT(s) is
the running time of the algorithm and HV is an evaluation indicator for multi-objective
algorithms used to measure the quality of the solution, calculated as follows:

HV(P, r) =
P⋃

x∈P
v(x, r) (17)

where P is the Pareto frontier calculated by the algorithms, r is the reference point of the
Pareto frontier and r = (1, 1). The non-dominant solution in the Pareto frontier needs to
be normalized, which can be written as x =

(
f1

f1 max
, f2

f2 max

)
, where f1 max and f2 max are the
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ideal maximum values of the objective function for each problem scale. The larger the
value of HV, the better the performance of the algorithm.

5.2. Test Data

In order to better verify the performance of the algorithm at different data scales, we
select historic vehicle data from a real steel logistics park and extract the data of different
vehicle quantities [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]. The number of operations per
vehicle is distributed between 1 and 4. Table 1 shows the total number of operations for all
vehicles at different vehicle scales.

Table 1. Problem scales of the test data.

Index
Size

Vehicle Number Total Number of Operations

1 10 25
2 20 57
3 30 84
4 40 89
5 50 135
6 60 163
7 70 187
8 80 212
9 90 239

10 100 264

5.3. Validation of the Proposed MILP Model

In this experiment, we use six small-scale examples to validate the model and solve
them using GUROBI 11.0 (the academic license is applied by Jinlong Wang from China)
and ESPEA , where V/O/Y represents the number of vehicles, the number of operations
for each vehicle, and the number of yards. Table 2 shows the comparison results with the
GUROBI solver on a small scale of instances. Bold values represent the best results for the
same metrics. As the test scale slightly increases, it can be seen that the time consumption
of GUROBI increases exponentially. For the first two instances, GUROBI is slightly better
than the ESPEA but the time consumption has increased 1800-fold, which is unacceptable
in the application scenario. For the other instances, GUROBI cannot even find the optimal
solution in the prescribed time; in contrast, the ESPEA can find feasible solutions in a
short time.

Table 2. Comparison results with the GUROBI solver on small scale of instances.

V/O/Y
GUROBI ESPEA

Cmax SCmax CT(s) Cmax SCmax CT(s)

5/4/4 39 37 23.59 43 38 37.13
6/4/4 43 40 43,241 43 41 36.2
7/4/4 - - - 41 30 36.8
8/4/4 - - - 49 30 36.69
9/4/4 - - - 56 30 37.41
10/4/4 - - - 47 32 37.24

5.4. Effectiveness Analysis of Each Improved Strategy

In order to verify the effectiveness of the proposed cooperative initialization strategy,
insertion decoding method and local search technology based on critical paths, one ablation
experiment was conducted. Specifically, three variants of the ESPEA are taken into account,
namely ESPEA-1, ESPEA-2, and ESPEA-3. SPEA2 is the basic algorithm without any
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improvement, ESPEA-1 is SPEA2 with the cooperative initialization strategy, ESPEA-2 is
ESPEA-1 with local search techniques based on critical paths, and ESPEA-3 is ESPEA-2
with insertion decoding. The HV value of SPEA2 is used as a benchmark to evaluate
the performance of the three versions of the ESPEA. To ensure fairness, all experiments
were run 10 times. For the SPEA2 algorithm, “aver” represents the average value of the
10 experimental results, while “best” represents the best result among the 10 experiments.
For the other three improved versions, “aver_gap” represents the improvement in each
version’s average value relative to the average value of the 10 experiments of SPEA2, and
“best_gap” represents the improvement relative to the best result among the 10 experiments.
Table 3 shows the comparison results. Bold indicated the best result for each instance.
As shown, for all test instances, each part improves the performance of the algorithm
compared to the previous one; in particular, as the scale of the problem increases, the
magnitude of the improvement becomes more pronounced. This proves the effectiveness
of each improvement strategy.

Table 3. Values of evaluation metrics for ESPEA variants.

Index
SPEA2 ESPEA-1 ESPEA-2 ESPEA-3

aver best aver_gap best_gap aver_gap best_gap aver_gap best_gap

1 0.54297521 0.557345 3.62% 3.06% 4.79% 3.06% 4.82% 3.06%

2 0.36817818 0.409204 14.87% 8.46% 17.06% 10.03% 19.94% 11.89%

3 0.35772439 0.380317 21.37% 20.68% 26.66% 23.26% 29.43% 26.36%

4 0.36172758 0.400679 17.41% 12.94% 22.50% 16.72% 25.56% 19.06%

5 0.33120254 0.35396 26.70% 24.87% 29.18% 24.62% 33.40% 30.81%

6 0.25820991 0.296639 37.35% 24.16% 41.45% 25.86% 47.79% 31.36%

7 0.22072806 0.248489 48.40% 35.68% 53.32% 41.78% 57.34% 44.66%

8 0.20389379 0.225313 57.08% 49.95% 59.15% 47.52% 64.47% 57.68%

9 0.21106804 0.224812 56.37% 49.36% 59.92% 52.98% 64.26% 58.99%

10 0.21625091 0.235104 53.35% 47.19% 56.03% 48.36% 61.94% 52.91%

5.5. Performance Analysis via an Algorithm Comparison

In order to better illustrate the performance of the proposed ESPEA, the performances
of other excellent multi-objective algorithms are compared with that of the proposed algo-
rithm. These comparison algorithms include ROMA/D [24], MOEA/D [25], SPEA2 [19],
NSGAII [26] and NSGAIII [27], all of which have been proven to have an excellent perfor-
mance. In order to fairly compare the solving ability of different algorithms, all algorithms
used the same cooperative initialization strategy and genetic operators and all algorithms
were run 10 independent times. These algorithms’ parameter settings are shown in Table 4,
and the results of HV are given in Table 5.

As shown in Table 5, it can be seen that the ESPEA is very competitive, obtaining
the optimal values of the average HV and the best HV for different problem scales. It
is worth noting that as the number of vehicles increases, the advantage of the ESPEA
becomes increasingly prominent. This is because the local search technology based on
critical paths in the ESPEA is more targeted than other local search technologies. This
local search technology of swapping critical operations not only reduces the computational
cost, but also optimizes the overall scheduling time. Additionally, the insertion decoding
method adopted in the ESPEA effectively utilizes the idle time in the yard and improves
the logistics efficiency. As the problem scale increases, the advantages of the local search
based on critical paths and insertion decoding become more apparent.
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Table 4. Parameter settings.

Algorithm Special Parameters Common Parameters

ESPEA
Near neighbor threshold k =

√
200

Elite archive size η = 100

Maximum iteration
number qmax = 100

Popsize size NP = 100
Crossover rate CP = 1

Mutation MP = 0.8

RMOEA/D

Memory size LP = 40
Learning rate ε = 0.4
Discount rate γ = 0.6
Greedy factor δ = 0.8

Neighborhood vector T = [5, 10, 15, 20]
Vectors number = 100

MOEA/D
Neighborhood vector T = 20

Vector number = 100

NSGAII None

NSGAIII None

SPEA2
Near neighbor threshold k =

√
200

Elite archive size η = 100

Table 5. HV results for a comparison with other algorithms.

Index
ESPEA RMOEA/D MOEA/D SPEA2 NSGAII NSGAIII

aver best aver best aver best aver best aver best aver best

1 0.56913054 0.574422 0.559479 0.572862 0.556422 0.558821 0.562658 0.57438 0.568211 0.57438 0.564754 0.574212

2 0.44158741 0.457874 0.435142 0.441398 0.412667 0.4349381 0.422917 0.443818 0.422483 0.43538 0.419455 0.444849

3 0.46301166 0.480571 0.448158 0.467332 0.432563 0.4433533 0.434173 0.458972 0.432443 0.444264 0.442867 0.455924

4 0.45417245 0.477058 0.440325 0.455548 0.419309 0.432326 0.424721 0.452521 0.431632 0.442927 0.434009 0.445102

5 0.44181358 0.463014 0.589584 0.610275 0.410716 0.434287 0.419627 0.441983 0.419262 0.430315 0.417667 0.429318

6 0.3816034 0.389679 0.352019 0.372049 0.349841 0.3614302 0.354652 0.368318 0.354481 0.369025 0.354934 0.370934

7 0.34729293 0.359455 0.328926 0.346557 0.321556 0.3286682 0.327551 0.337147 0.327222 0.334943 0.324626 0.341105

8 0.33535407 0.355284 0.318119 0.336925 0.308004 0.3128554 0.320283 0.337848 0.317105 0.327807 0.3167 0.323428

9 0.34669923 0.357434 0.317965 0.336408 0.326519 0.339133 0.330039 0.335774 0.329104 0.338439 0.329755 0.34147

10 0.35019048 0.359495 0.323144 0.338917 0.328994 0.3369403 0.331614 0.346047 0.330904 0.344449 0.33791 0.348614

Figure 10 shows the Pareto frontiers of the various comparison algorithms in instance
5. It can be seen that the Pareto frontier obtained by the ESPEA converges faster and is
more diverse than other comparative algorithms. For the Pareto front obtained by the
ESPEA, we can use the equivalent weight method to obtain the pickup vehicle scheduling
scheme, as shown in Figure 11. In this scheme, the maximum makespan of all vehicles and
the makespan of the steel logistics park of this scheme are [117, 225].
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Figure 10. The Pareto frontier of all algorithms for instance 5.

Figure 11. Pickup vehicle scheduling scheme.

6. Conclusions

In this paper, we propose utilizing the data of vehicles collected from a real steel logis-
tics park by the IIoT to optimize the pickup vehicle scheduling problem with mixed steel
storage (PVSP-MSS). The PVSP-MSS is firstly formulated as a multi-objective mixed-integer
linear programming model. Then, an enhanced algorithm based on SPEA2 is proposed
to solve the optimization problem with a high efficiency. In the ESPEA, a cooperative
initialization strategy is proposed to provide an initial solution for scheduling optimization.
Moreover, an insertion decoding method is proposed to effectively utilize the idle time of a
yard. Additionally, local search technology based on critical paths is proposed to improve
the solution quality. The experimental results show that compared with other algorithms,
the ESPEA can achieve better scheduling results.

This study effectively addresses the problem of cross-yard pickups in logistics scheduling
in the steel industry and significantly improves the vehicle scheduling efficiency. However,
this study does not consider the vehicle rescheduling problem in cases of vehicle delays and
other exceptional situations. In future research, we will expand the model and develop more
advanced algorithms to tackle more complex engineering scheduling problems.
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