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Abstract: Remotely sensed images provide effective sources for monitoring crop growth and the
early prediction of crop productivity. To monitor carrot crop growth and yield estimation, three 27 ha
center-pivot irrigated fields were studied to develop yield prediction models using crop biophysical
parameters and vegetation indices (VIs) extracted from Sentinel-2A (S2) multi-temporal satellite data.
A machine learning (ML)-based image classification technique, the random forest (RF) algorithm, was
used for carrot crop monitoring and yield analysis. The VIs (NDVI, RDVI, GNDVI, SIPI, and GLI),
extracted from S2 satellite data for the crop ages of 30, 45, 60, 75, 90, 105, and 120 days after plantation
(DAP), and the chlorophyll content, SPAD (Soil Plant Analysis Development) meter readings, were
incorporated as predictors for the RF algorithm. The RMSE of the five RF scenarios studied ranged
from 7.8 t ha−1 (R2 ≥ 0.82 with Scenario 5) to 26.2 t ha−1 (R2 ≤ 0.46 with Scenario 1). The optimal
window for monitoring the carrot crop for yield prediction with the use of S2 images could be
achieved between the 60 DAP and 75 DAP with an RMSE of 8.6 t ha−1 (i.e., 12.4%) and 11.4 t ha−1

(16.2%), respectively. The developed RF algorithm can be utilized in carrot crop yield monitoring and
decision-making processes for the self-sustainability of carrot production.

Keywords: carrot crop monitoring; machine learning; Sentinel-2 images; vegetation indices; yield
prediction; random forest (RF)

1. Introduction

The self-sustainability of a country’s food supply is essential for its economic growth
and development. With the adoption of advanced techniques and available best man-
agement practices, Saudi Arabia is keen to expand the area of vegetable crops, especially
carrots, to achieve self-sufficiency. Carrot (Daucus carota L.) is one of the most nutritionally
valuable vegetable crops in the world, and carrot production has received great attention
from researchers around the world, aiming to improve its production practices. The global
production of carrots and turnips in 2021 was estimated at 42,158,403 tons out of a total
cultivated area of 1,137,738 hectares, where Saudi Arabia produced 24,500 tons out of a
total cultivated area of 1383 hectares [1]. Timely information on crop area and production
statistics, agroclimatic regimes, real-time crop health monitoring, and yield prediction
or pre-harvest modeling techniques will provide better options for food sustainability
forecasts [2,3]. On the other hand, such data are crucial for improving agricultural practices
and, subsequently, help decision-making authorities to effectively plan for food security
issues and overcome unstable climatic conditions [4–6].

Investigating local variations in carrot yield and quality would enable decision-making,
the implementation of agronomical guidance, and food self-sustainability. Nowadays, most
of the decision support systems for agriculture practices are dependent on thematic maps,

Appl. Sci. 2024, 14, 3636. https://doi.org/10.3390/app14093636 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093636
https://doi.org/10.3390/app14093636
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5326-4785
https://orcid.org/0000-0003-0927-9688
https://doi.org/10.3390/app14093636
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093636?type=check_update&version=1


Appl. Sci. 2024, 14, 3636 2 of 19

generated from moderate- to low-resolution satellite images [7,8]. Feature extraction and the
assessment of the temporal dynamics of spectral information on agricultural lands are also
crucial in decision processes [9–11]. Information and data analytics on seasonal crop conditions
with periodic advisories on yield prediction in the early stages of the crop or before harvests
are essential and allow a timely intervention to improve crop conditions [3,4]. Advanced
remote-sensing techniques, multi-sensor satellite data, drones, mobile-based field data, and
many other modeling techniques offer the opportunity to identify crop risk assessment,
agro-advisory, yield assessment, and water use efficiency as well as solutions for farmer-
centric and planning-centric activities in the agricultural decision-making process [2]. Spectral
analyses such as vegetation indices, leaf area index (LAI), leaf chlorophyll content, etc., have
been used to estimate the biophysical characteristics of plants [4–6]. For example, crop
vegetation indices (VIs) extracted from satellite imagery, such as the normalized difference
vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation
index (EVI), have been widely used for the early prediction of crop yields [12–14]. The VIs
related to different crop growth parameters, such as plant cover (%), leaf area index (LAI),
and chlorophyll and nitrogen contents, contribute to describing the growth status of different
crops [15–18]. Numerous studies have proven the effectiveness of using various vegetation
indices derived from multispectral wavebands to assess crop growth conditions and yield
modeling in conjunction with ground-truth data on crop characteristics [3,10–14].

Schauberger et al. [19] reported the extent of studies on the yield forecasting of hor-
ticultural crops, while studies by Suarez et al. [20,21] described the importance of carrot
yield forecasting and explored satellite images used for carrot yield prediction. Wei [22]
generated carrot yield maps using planetScope hyperspectral data with a high accuracy
(R2 = 0.68–0.82), and a study by de Lima Silva [23] achieved a good carrot predicted yield
accuracy (R2 = 0.68) using planetScope CubeSat Platform. Similarly, studies [24,25] achieved
carrot yields with a 33–35% variation using Landsat-8 and Sentinel-2 data, respectively.
The successful prediction of crop yield depends mainly on the capability of sensors or
images and the spectral response of a crop [26–29]. The crop yield variability can be as-
sessed by addressing crop growth dynamics and multi-temporal data related to biophysical,
physiological, or biochemical characteristics [30].

Fast and accurate information on crop phenology, crop health, crop water use, yield, etc.
can be achieved with the use of deep-learning (DL) and artificial intelligence (AI) tools [31–33].
Machine learning (ML) is essential for improving the growth of the crop yield in a sustainable
manner, helping to interpret and correlate field data with consumption techniques that can
contribute to support decision-making in agriculture for crop health monitoring, agronomic
suggestions, disease detection, weed-control, yield prediction, etc. [34–36]. Examples include
sunflower [37], sugarcane [38], rice [39], corn [40], wheat [41], carrot [20–22], etc. The ML
algorithms, including neural network (NN), stacked autoencoder (SAE), recurrent NN (RNN),
graph NN (GNN), and restricted Boltzmann machine (RBM), have been widely used in
agricultural applications [32]. Recently, machine-learning techniques, especially regression
decision trees, random forest (RF) regression analysis, and artificial neural networks, have been
widely used in the mapping and monitoring of crops [33–36]. One of the main advantages of
machine learning is the development of a trained model that can be used to classify any scene
so that the procedure can be partially or fully automated. Many authors applied deep-learning
tools for the extraction of information from various satellite datasets, including Landsat-8,
Sentinel-2, World View-2, hyperspectral, POLSAR (Polarimetric SAR), etc. [23–29].

Leaf chlorophyll content (LCC) is an important parameter to understanding the dy-
namic changes in physiological aspects and is highly related to crop health and productivity.
To characterize the spatial variability of LCC in large fields, using traditional methods such
as plant nutrient analysis is a laborious, cost-effective, and time-consuming process. Given
the strong correlation between chlorophyll and nitrogen content in green vegetation, the
non-destructive mode of chlorophyll measurements recorded with the Soil Plant Analysis
Development—SPAD meter (SPAD-502, Minolta Osaka Company, Ltd., Osaka, Japan) is
considered a reliable representation of LCC [42–44]. Recent studies used the SPAD reading
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in conjunction with remotely sensed images, such as Landsat, Sentinel-2, and drone images,
for monitoring crop health conditions and spatial variation [44–47].

Satellites and ML algorithms have been used to predict crop production [20–23].
However, such studies are very limited, especially under dry climatic conditions. Hence,
the current study, which aimed to monitor crop health and generate carrot pre-harvest yield
models using machine-learning techniques, was formulated as part of the self-sustainability
of vegetable crops and their water footprint. The main objective of this study was to address
crop-monitoring strategies for crop phenology, health stress, and yield through the retrieval
of leaf chlorophyll content (LCC) by combining the SPAD readings and remotely sensed
Sentinel-2 multispectral data employing ML techniques. The specific objectives were (i) to
retrieve the leaf chlorophyll content (LCC) of carrot fields by combining the SPAD readings
and Sentinel-2 data for crop health monitoring and yield assessment, and (ii) to incorporate
LCC data for the development of carrot yield forecasting algorithms using the random
forest (RF) approach, a machine-learning (ML) tool.

2. Materials and Methods
2.1. Study Area and the Experimental Procedure

This study was conducted on three carrot fields irrigated with a center-pivot system
(Fields’ IDs: N1, N4, and N6), each with an area of 27 hectares, belonging to the Tawdeehiya
Farms located between the cities of Al-Kharj and Haradh in Saudi Arabia. This farm has an
area of approximately 7000 ha and is located within an arid climatic zone between the latitudes
of 24◦10′22.77′′ and 24◦12′37.25′′ N and the longitudes of 47◦56′14.60′′ and 48◦05′08.56′′ E
(Figure 1). Sandy loam soil was the dominant soil type in the farm, where the main crops
grown during the study period included a group of vegetables, the most important of which
was the carrot crop. The mean annual temperatures in the experimental site ranged between
12 ◦C and 42 ◦C in the winter and summer seasons, respectively. The mean annual rainfall was
about 98 mm, distributed mainly in the period between November and February. Tawdeehiya
Farm produces carrots commercially and has facilities for data collection and measurements
for continuous monitoring and yield assessment.
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2.2. Carrot Cultivation

The experimental work was conducted for two carrot cultivation seasons. The first sea-
son was during the period from February to June 2021, while the second season was from
October 2021 to January 2022 (Table 1). Before planting, soil beds (275 m × 1.75 m) were pre-
pared over the entire field, so each soil bed was managed with four plant rows. The carrot
plant (variety: Soprano) was planted at a seeding rate of 4.0 kg ha−1 with a mean distance
of 4.62 cm between two seeds in a row. A center-pivot irrigation system was used to provide
irrigation water to the crop with an average water amount of 1197 and 1348 mm ha−1 for
the first and second seasons, respectively.

Table 1. Details of satellite images used for the study (DAP—Days after plantation; GDD—Growing
degree days).

Season
Date of Satellite

Overpass
N1 N4 N6

Stage DAP GDD Stage DAP GDD Stage DAP GDD

Season-1

1 February 2021
VS

29 332.9
17 February 2021 45 565.0

5 March 2021
RD

61 781.3
21 March 2021 77 1104.5

VS
26 563.5

VS
19 410.4

6 April 2021
RM

93 1453.6 42 948.4 35 795.3
8 May 2021 125 2258.6

RD
58 1368.6

RD
51 1215.4

24 May 2021 74 1849.8 67 1696.7
9 June 2021

RM
90 2363.9

RM
83 2210.8

11 July 2021 122 3374.8 99 2698.7

Season-2

27 December 2021
VS

27 365.1 105 2781.6
4 January 2022

VS
33 421.1 43 542.7

VS
25 410.4

24 January 2022 53 640.5
RD

55 671.9 45 795.3
13 February 2022

RD
73 884.4 75 915.8

RD
61 1215.4

1 March 2022 89 1125.4
RM

91 1156.8 77 1696.7
30 March 2022

RM
118 1655.2 120 1686.7 RM 90 2210.8

9 April 2022 128 1896.6 105 2698.7

N1, N4, and N6 are experimental fields; VS = vegetative growth stage; RD = root development stage; and
RM = root mature stage.

2.3. Sampling Strategy and Field Data Collection

A total of 90 permanent sampling locations in the three experimental fields (30 from
each field) were randomly selected and georeferenced using a portable GPS receiver
(Trimble Geo XH 6000, Trimble, Westminster, CO, USA). At each sampling location, a
10 m × 10 m plot was laid, which matches the pixel resolution of visible bands (i.e., blue,
green, red, and NIR) of the S2 image (Figure 1). Soil samples (0–15 cm from the surface) and
periodic field data were collected from the 90 sample plots (Figure 1C). For better data, soil
samples were extracted from eleven sub-plots (1.75 m × 1.75 m) and were subsequently
pooled as a composite sample. The soil samples were processed and analyzed for soil
physicochemical properties (EC and pH). On the other hand, the carrot plant population
was enumerated at 10–13 days after plantation (DAP).

2.3.1. SPAD Data and Leaf Samples for Tissue Analysis

Ground data collection of leaf chlorophyll over carrot fields was performed using a
handheld SPAD meter, across the growth period (i.e., 30, 45, 60, 75, 90, 105, and 120 DAP).
The measurements were recorded from five to ten mature leaves per sample from each
of the 90 pre-determined sampling locations in the three experimental fields, as shown in
Figure 1B, coinciding (±2 days) with the Sentinel-2 image acquisition dates/overpasses
(Table 1). After the SPAD measurements, leaf samples were collected and subjected to
laboratory analysis for total nitrogen (%).
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2.3.2. Carrot Yield (YA)

Carrots were harvested at 125 DAP to 140 DAP from the pre-determined 90 sampling
locations of the three experimental fields. After the harvest, crop parameters such as carrot
length, diameter, and weight were measured. Approximately 6–9% of the carrots were
found to be damaged or defective and omitted from the analysis. Carrots with a diameter
of less than 3 mm, those that have deformed structures, or those that have visible physical
damage were not considered when evaluating crop yield. Subsequently, the fresh weight
of carrots was recorded and converted to yield (YA, tons/ha) for each experimental field.

2.3.3. Growing Degree Days (GDDs)

Growing degree days (GDDs) were computed to identify the phenological growth
stages of carrot plants for the determination of the optimal window for effective growth
and yield. Based on the accumulated GDD, season-wise collected data were categorized
as seedling stage (SL), vegetative stage (VS), root development (RD), and root maturation
(RM) stages. The GDDs were calculated using daily temperatures following Equation (1)
provided by McMaster and Wilhelm [48]:

GDD =
Tmax + Tmin

2
− Tbase (1)

where Tmax and Tmin are the daily maximum and minimum temperatures, respectively.
If the (Tmax + Tmin)/2 is less than the base, then GDD is equal to the base temperature
(Tbase). The Tbase temperature was set to 4 ◦C in this study as described by McMaster
and Wilhelm [48]. A cumulative GDD for each S2 image was computed by summing the
calculated GDD values.

2.4. Satellite Data and Image Processing

Satellite images with 10 m resolution are preferably suitable for data analysis and mod-
eling agricultural studies such as decision-making, practicing sustainable agriculture, and
execution of site-specific management practices in fields [49]. Freely available data from
Sentinel-2 fulfill the requirements, as it has both the 20 m and 10 m resolution spectral bands.
Therefore, level 2A cloud-free Sentinel-2 (sensors A and B) satellite images were down-
loaded from the datahub of the European Space Agency (https://dataspace.copernicus.eu/;
accessed on 9 February 2024). The downloaded S2 images were pre-processed and ana-
lyzed for surface reflectance using the SNAP software program (Ver. 3.4.1). Each band of
processed images was resampled to 10 m pixel resolution. The individual bands (2, 3, 4,
and 8A) and selected vegetation indices, VI (Table 2), were computed for the carrot crop
monitoring and yield prediction employing the machine-learning (ML) algorithm such
as random forest. As the study intended to predict carrot production, vegetation indices
related to chlorophyll and vegetation analysis were incorporated for the modeling.

Table 2. List of vegetation indices used for the study.

Vegetation Index Formula Purpose Reference

Normalized Difference
Vegetation Index NDVI = (Band 8 − Band 4)/(Band 8 + Band 4) Chlorophyll, vegetation health [50]

Renormalized Difference
Vegetation Index RDVI = (Band 8 − Band 4)/((Band 8 + Band 4)0.5)

Highlighting healthy
vegetation [51]

Green Normalized Difference
Vegetation Index GNDVI = (Band 8 − Band 3)/(Band 8 + Band 3) Chlorophyll concentration [52]

Structure Intensive Pigment
Vegetation Index SIPI = (Band 8 − Band 2)/(Band 8 − Band 4) Chlorophyll pigment stress [53]

Green Leaf Index GLI = ((Band 3 − Band 4) + (Band 3 − Band 2))/
(2 × (Band 3 + Band 4 + Band 2)) Vegetation condition [54]

https://dataspace.copernicus.eu/
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2.4.1. Retrieval of Leaf Chlorophyll Content (LCC)

As demonstrated in studies [42–44], SPAD readings were directly correlated with
remotely sensed data, and feasible for the retrieval of LCC over carrot fields. A scatter plot
was drawn between SPAD measurements and VIs derived from Sentinel-2 (S2) selected
vegetation indices (VIs) and the performed regression analysis for the retrieval of LCC
over carrot fields. We obtained imperial model for the simulation of LCC and expressed as
Equation (2). The best-fit models were identified with coefficients of determination (R2)
and root mean square error (RMSE), and, subsequently, based on the statistical analysis best
or suitable vegetation index for upscaling of field-measured SPAD readings to simulated
LCC layers. Thereafter, the simulated LCC layers were utilized in crop health assessment
and the development of yield prediction models.

Mi = aVI(x) + b (2)

where a and b are the model parameters, i represents for number of models, and x indicates
the studied vegetation index.

2.4.2. Preparation of Map for Carrot Crop Monitoring

A best-fit-model-generated simulated LCC layers were utilized for the preparation of
maps for crop health monitoring by converting the LCC values to leaf nitrogen content. An
empirical model was generated by performing the linear regression analysis between field-
measured SPAD readings and the laboratory-analyzed leaf nitrogen content. Subsequently,
the generated maps of carrot fields were used for fertilizer management and to identify the
growth stage of carrots.

2.4.3. Random Forest (RF) Algorithm for Carrot Yield Prediction

A geodatabase of processed S2 images, time-series VIs, and LCC layers were devel-
oped. The recorded GPS co-ordinates generated a shape file of 90 sampling plots. Temporal
changes in the spectral reflectance of carrot plants across the growing season were assessed
and categorized as per the carrot growth stage. SNAP and ArcMap 10.8.1 were used to
pre-process the data and build the models. Season-wise mean values of selected S2 bands,
VIs, and LCC of each sampled location were extracted. Carrot crop monitoring and produc-
tivity zones of the three tested fields were assessed. As described in Boltan and Friedl [30],
based on the phenology information (15, 30, 45, 60, 75, 90, 105, and 120 DAP), datasets were
assessed. Due to cloud and haze coverage, and lack of availability of S2 images, the study
ensured that at least one S2 image for each phenology stage. Subsequently, the interpola-
tion was performed using the RF algorithm for spatial variation in crop development and
yield was assessed at the field scale for productivity zones using a machine-learning-based
regression tool of SNAP software (Figure 2). In recent years, various ML models have been
developed to classify satellite images using large volumes of datasets. Random forest (RF),
a popular ML approach, uses many subclasses to classify data subsets that are randomly
picked from the input data [55].

An RF algorithm is a supervised ML algorithm that is widely used for classification
and regression problems in image analysis. The decision trees in the RF algorithm are
the subclass classifiers. The RF procedure was performed in four steps, namely, (i) data
preparation; (ii) model training with the use of Random Forest Classifier in SNAP software
construction; training of carrot fields including variation in yield; (iii) averaging and voting
of data by the decision tree; and (iv) selection of voting results and final prediction based
on the bagging, meaning that the results so based on majority voting and model validation.
The class with the most votes among the trees is introduced as the prediction output, and
voting takes place among all of the trees’ predictions [56].
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In this study, ML algorithms are driven to capture nonlinear relationships between
the inputs (i.e., VIs, LCCs, etc.), and outputs (biophysical properties) through training
datasets. The predictors used for the RF algorithm were ranked. These rankings were
developed based on Pearson’s correlation coefficients, which were initially estimated to
verify the association between carrot yield (YA) and Sentinel-2 bands (2, 3, 4, and 8A),
vegetation indices (VIs), and SPAD values (i.e., LCCs). During the RF algorithm evaluation,
five different categories of models were established based on the following: (a) S2 bands,
(b) VIs, (c) a combination of S2 bands + VIs, (d) a combination of S2 bands + SPAD readings,
and (e) a combination of S2 bands + VIs + SPAD values with correlation coefficient > 0.70).

2.5. Model Validation

During the prediction of results against the field-measured (SPAD and YA) data, the
obtained dataset (90 samples) was randomly divided into two subsets of 63 samples (70% of
the whole dataset) and 27 samples (30% of the whole dataset) for RF signature development
and cross-validation, respectively. The 10-fold cross-validation resampling technique was
used to tune the model hyper-parameters and to evaluate each model, considering the
limited number of samples in the dataset [54]. The best-optimized models were tested
against the remaining dataset (30%) that was not involved in the training-optimization
phase. The range of the actual yield (YA) for each subset was inspected, based on the normal
distribution curve, to ensure that the two subsets were not radically different. The strength
of the developed models was determined through the coefficient of determination (R2)
and the root mean square error (RMSE). The best-fit ML algorithms were utilized for the
determination of the optimal crop growth stage useful for early forecasting of carrot yield.
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3. Results

Descriptive statistics of the collected field data on soil EC, and soil pH, are presented in
Table 3. The values of soil EC across the three experimental fields ranged from 1.23
to 3.27 dS m−1, with a coefficient of variation (CV) value of 41.4%, which indicates that the
soil EC in the experimental field was relatively heterogeneous. The soil pH values, however,
varied between 7.97 and 8.66 with a CV value of 1.91, indicating a homogeneous distribution
of soil pH across the experimental fields. Based on the standard measures of soil EC and
pH scales, the soil of the experimental field was characterized as non-saline and moderately
alkaline. The ideal pH level for growing carrots is between 6.0 to 6.8 [57]. Hence, to the soils
of the experimental fields were added wood ashes or dolomitic lime to balance the pH.

Table 3. Soil electrical conductivity (EC, dSm−1) and pH of experimental fields.

Field
Season-1 Season-2

Soil EC Soil pH Soil EC Soil pH

N1 1.23 7.97 1.21 7.99
N4 2.29 8.12 2.46 8.22
N6 3.19 8.66 3.27 8.64

Mean 2.24 8.25 2.31 8.28
CV% 41.40 1.91 36.90 1.88

The accumulated GDDs of the tested carrot crops varied between 333 at the seedling
stage to 3374 at root maturation (i.e., 120 DAP). The GDD was higher (43%) in season 1
compared to season 2 (Figure 3). Phenological growth stages of carrot plants were as-
signed based on the GDD as the seedling stage-SS (GDD ≤ 948), vegetative growth
stage-VS (GDD = 948 to 1215), root development stage-RD (1216 < GDD > 2210), and root
maturation-RM (GDD > 2210) stages.
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The carrot plant population, enumerated at 10–13 DAP, varied between 54.2
and 64.8 plants m−2, with a mean value of 58.5 and 61.1 plants m−2 for the first season
(CV% = 18.4) and second season (CV% = 14.9), respectively (Table 4). The mean nitrogen
content at harvest time was 2.09 g kg−1, where the minimum and maximum values were
1.31 g kg−1 and 2.58 g kg−1, respectively. The results indicated that the harvested carrot
root yield (YA) ranged between 62.0 t ha−1 (Season-1) and 53.7 t ha−1 (Season-2), with a
mean yield of 55.7 t ha−1 and a CV of 14%
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Table 4. Carrot parameters: root diameter, root length, fresh root weight, and carrot yield (YA).

Season Field Density
(plants/m2) Circumference (cm) Root Length (cm) Fresh Weight

(g/root)
Carrot Yield

(t ha−1)

Season-1

N1 63.8 11.5 18.6 112.2 67.6
N4 54.2 9.4 17.5 98.5 57.5
N6 57.4 12.1 19.3 104.3 60.8

Mean 58.5 11.0 18.5 105.0 62.0

Season-2

N1 56.1 10.6 18.8 101.5 59.5
N4 62.3 8.5 19.3 88.4 51.1
N6 64.8 9.1 17.8 92.6 50.5

Mean 61.1 9.4 18.6 94.2 53.7

Overall Mean

N1 60 11.1 18.7 106.9 63.5
N4 58.3 9.0 18.4 93.5 54.3
N6 61.1 10.6 18.6 98.5 55.7

Mean 59.8 10.2 18.6 99.6 57.8

The temporal advancement of LCC values measured by the SPAD meter is provided
in Figure 4. The mean LCC values of carrot plant leaves increased sharply from 29.4
at a crop age of 30 days after planting (DAP) to 82.1 at 75 DAP, and then decreased to
values of 73.3 at 90 DAP and dropped to 60.5 at 120 DAP (i.e., 15 ± 3 days before harvest),
respectively. The seasonal dynamics of the studied VIs across the growing period of the
carrot crop are provided in Figure 4. It was observed that approximately all the tested VIs
(except the GLI) showed an increasing trend with carrot crop age, where they reached their
peak values at a crop age of 60 DAP.
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3.1. Relationship between Leaf Nitrogen Concentration and SPAD Readings

A regression analysis between SPAD values and leaf nitrogen content showed a
consistent relationship (R2 = 0.68; p < 0.001) as given in Figure 5. The leaf nitrogen content
and the relationship with the SPAD readings are in accordance with the study by [58].
However, there is a variation in the significance of the model with other studies. It is due
to the continuous observation of the SPAD, and laboratory analysis of nitrogen compared
to others. On the other hand, SPAD values and the greenness of the leaf are significantly
correlated, alternately depending on the rate of fertilizer application.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 20 
 

 
Figure 5. Leaf nitrogen concentration (%) vs. absolute SPAD values across the carrot growth 
stages. 

3.2. Relationship between SPAD Readings and Vegetation Indices (VIs)  
Single VI-based best-fit models were assessed and provided in Table 5. The relation-

ship between the simulated ground-measured SPAD readings and studied VIs was found 
to be significant with GNDVI (R2 = 0.78; p < 0.001), while a weak relationship was noticed 
with GLI (R2 = 0.09; p < 0.05). The best-fit models are observed with the peak stage of carrot 
growth at 60 DAP to 70 DAP. The correlation was low with all the studied VI earlier than 
45 DAP, while, during the later stage (i.e., 90 DAP onwards), the results expressed a mod-
erate correlation with RDVI and SIPI (Table 5).  

Table 5. Summary of coefficients of determination analysis between ground-measured SPAD read-
ings and vegetation indices from Sentinel-2 data. 

Source NDVI GNDVI RDVI SIPI GLI 
SPAD-30 0.14 NS 0.26 NS 0.09 NS 0.49 NS 0.24 
SPAD-45 0.38 * 0.30 NS 0.12 NS 0.45 * 0.09 NS 
SPAD-60 0.68 ** 0.67 ** 0.48 ** 0.51 * 0.12 NS 
SPAD-75 0.74 ** 0.78 ** 0.64 * 0.46 * 0.16 
SPAD-90 0.52 * 0.54 * 0.55 * 0.37 * 0.17 NS 

SPAD-105 0.42 ** 0.23 * 0.17 NS 0.41 NS 0.10 NS 
SPAD-120 0.37 * 0.31 * 0.15 NS 0.29 0.14 NS 

Signification codes: ** highly significant (<0.01); * moderately significant (* < 0.05); NS not significant. 

3.3. Random Forest Models for Carrot Monitoring and Yield Management  
To identify the most suitable VI for the prediction of carrot yield (YP, t/ha), the actual 

carrot yield (YA) and the corresponding VIs were subjected to linear regression modeling, 
performed using XLStat (Ver. 19), a statistics software program, compatible with MS Ex-
cel. Linear regression results showed three models with a significant correlation between 
the VIs and the YA, with R2 values ranging between 0.51 and 0.66 (Figure 6). Out of the 

Figure 5. Leaf nitrogen concentration (%) vs. absolute SPAD values across the carrot growth stages.

3.2. Relationship between SPAD Readings and Vegetation Indices (VIs)

Single VI-based best-fit models were assessed and provided in Table 5. The relationship
between the simulated ground-measured SPAD readings and studied VIs was found to
be significant with GNDVI (R2 = 0.78; p < 0.001), while a weak relationship was noticed
with GLI (R2 = 0.09; p < 0.05). The best-fit models are observed with the peak stage of
carrot growth at 60 DAP to 70 DAP. The correlation was low with all the studied VI earlier
than 45 DAP, while, during the later stage (i.e., 90 DAP onwards), the results expressed a
moderate correlation with RDVI and SIPI (Table 5).

Table 5. Summary of coefficients of determination analysis between ground-measured SPAD readings
and vegetation indices from Sentinel-2 data.

Source NDVI GNDVI RDVI SIPI GLI

SPAD-30 0.14 NS 0.26 NS 0.09 NS 0.49 NS 0.24
SPAD-45 0.38 * 0.30 NS 0.12 NS 0.45 * 0.09 NS

SPAD-60 0.68 ** 0.67 ** 0.48 ** 0.51 * 0.12 NS

SPAD-75 0.74 ** 0.78 ** 0.64 * 0.46 * 0.16
SPAD-90 0.52 * 0.54 * 0.55 * 0.37 * 0.17 NS

SPAD-105 0.42 ** 0.23 * 0.17 NS 0.41 NS 0.10 NS

SPAD-120 0.37 * 0.31 * 0.15 NS 0.29 0.14 NS

Signification codes: ** highly significant (<0.01); * moderately significant (* < 0.05); NS not significant.
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3.3. Random Forest Models for Carrot Monitoring and Yield Management

To identify the most suitable VI for the prediction of carrot yield (YP, t/ha), the actual
carrot yield (YA) and the corresponding VIs were subjected to linear regression modeling,
performed using XLStat (Ver. 19), a statistics software program, compatible with MS Excel.
Linear regression results showed three models with a significant correlation between the
VIs and the YA, with R2 values ranging between 0.51 and 0.66 (Figure 6). Out of the studied
VIs, the RDVI, the SIPI, and the GNDVI were identified as the most suitable VIs for the
growth assessment and yield of carrot crops. Subsequently, RDVI and GNDVI along with
field-measured SPAD values were used as inputs in the execution of machine-learning
algorithms, such as random forest (RF), for the determination of the crop growth and
productivity (yield) management zones of the studied carrot fields. A summary of the
dynamics of the carrot crop was monitored using S2 data, and yield prediction maps were
generated based on the five scenarios (Figure 7).
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ment. The SPAD values used in the model were with the Pearson correlation coefficient (R2) > 70
with yield (YA).

4. Discussion
4.1. Carrot Crop Growth Assessment

The results are in agreement with the literature, with regard to the capability of the
selected S2 bands alone (Band 2, Band 3, Band 4, and Band 8A) to extract useful information
about the carrot plant (health, and growth monitoring) status and crop yield prediction
(R2 ≥ 0.62, %RMSE ≤ 24) [21]. Moreover, the use of the SIPI index with S2 bands improved
the performance of ML prediction models. Using the average value of each band or index
reported in [21], the ML algorithms can be used to predict the carrot yields at 70 DAS
with an error of 27%. They also reported that the GNDVI and RDVI are the best VIs
for the early prediction of yield. Band 8A was found to have a better predictive ability
in the early prediction of yield with the R2 of 0.68, and it conformed with the study by
Wei et al. [22]. RDVI relies on the reflectance information provided in the red and NIR
region of the spectrum, retrieving in one of the absorption peaks of chlorophyll and b.
Nevertheless, Wei et al. [22] identified other photosynthetic pigments in carrot plants
whose absorption peaks are located in the blue region of the spectrum. The carrot crop was
monitored throughout the growth period with the help of chlorophyll content (i.e., SPAD
readings) across the DAS. In general, higher SPAD readings indicate a higher relative
chlorophyll content and higher tissue nitrogen content, while lower SPAD readings indicate
a lower relative chlorophyll content and lower tissue nitrogen content. As per Figure 4a,
the SPAD readings reached their peak at 60 DAP and followed a similar trend at 75 DAP.
Thereafter, the SPAD values dropped. The progressive increment in SPAD readings is
due to the healthy condition of the crop and agricultural practices that are implemented.
Furthermore, factors such as moisture, salt stress, etc. alter the vital function of the plants,
resulting in a decrease in the SPAD readings [50]. Nitrogen maps were created using the
simulated LCC of 75 DAP, as most of the studied VIs were found to be significant with
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SPAD readings, still suitable for the farmer to obtain location-specific information of crop N
status in order to apply a side dressing. The crop development at 90 DAP does not express
large variation effects with VIs alone, whereas the model combined with simulated LCC
expressed significant correlation. Therefore, it is recommended that we co-combine the
SPAD meter readings with progressing with the development of the crop, due to the effect
of the crop development and increased vigor, which is an indicator of plant health and
nutrient status. SPAD meter readings can be used to monitor the nutrient status of the corn
crop and adjust fertilizer application rates accordingly.

4.2. ML Algorithm in Yield Assessment

The S2 bands 2, 3, 4, and 8A were used for the Scenario a RF algorithm; Band 2 and
Band 8A performed well compared to Bands 4 and 8A. As depicted in Figure 7, however,
the performance of the RF model executed using the vegetation indices, NDVI, alone as a
parameter was not significant, whereas other VIs performed well at 45, 60, and 75 DAP. The
combination of SPAD and RDVI (Model e) had a different impact on both the 60 and 75 DAP
in RF algorithms. In most of the models, Band 3 was found to be more predictive for the crop
age 60–90 DAP, and the GNDVI and SIPI for the crop age 75 and 90 DAP, respectively. The
RDVI performed well for the crop age 60–75 DAP and was found to be more predictable for
carrot yield (Figure 8). The generated RF models were appropriate in the yearly prediction
of carrot yield with an optimal window of 60 to 75 DAP. Moreover, with the inclusion of
biophysical parameter SPAD values, similar spatial patterns are observed in both the d
and f models, coinciding in terms of spatial variability in the experimental fields. The GLI
index covers both blue and red bands to derive the overall photosynthetic activity of the
plant regardless of the pigment; the green band may also be a good proxy to measure the
chlorophyll a concentration [59], and the SIPI index to assess water stress in carrots [60]
can be achieved at R2 of 0.79 along with SPAD values [61,62].
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The model performance statistics are discussed as shown in Table 6. Of the stud-
ied five scenarios (Models a–e), an algorithm with the maximum predictors (i.e., Sce-
nario e), including individual S2 bands + VIs + SPAD values, performed well (R2 = 0.82;
RMSE = 7.8 t ha−1) compared to other scenarios (a–d). The second-best model with an
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input of VIs and SPAD values (Scenario d) has resulted in a moderate correlation (R2 = 0.67;
RMSE = 10.2 t ha−1). A poor performance (R2 = 0.46; RMSE = 26.2 t ha−1) was noted with
Scenario a, i.e., only individual S2 bands as inputs for the RF model. It may be due to the
impact of the feature selection process to reduce collinearity among predictors; it was also
noticed that the RF model (d) was slightly improved compared to the other RF models (a–c)
after the removal of non-correlated variables.

Table 6. Summary of the best models (ML algorithm, variable predictors, and feature selection) and
the corresponding values of accuracy indicators (R2 and RMSE).

Season Field
Model a Model b Model c Model d Model e

R2 RMSE
(t ha−1) R2 RMSE

(t ha−1) R2 RMSE
(t ha−1) R2 RMSE

(t ha−1) R2 RMSE
(t ha−1)

Season-1

N1 0.39 29.6 0.46 27.1 0.66 20.2 0.73 10.4 0.82 5.2
N4 0.52 22.7 0.61 23.3 0.62 21.1 0.69 11.4 0.81 9.4
N6 0.41 27.4 0.58 23.8 0.58 21.4 0.57 10.9 0.79 8.7

Mean 0.44 26.6 0.55 24.7 0.62 20.9 0.66 10.9 0.81 7.8

Season-2

N1 0.42 24.8 0.42 22.1 0.62 20.8 0.67 8.9 0.84 8.2
N4 0.54 26.4 0.48 21.4 0.64 21.7 0.69 9.8 0.79 7.8
N6 0.48 26.2 0.64 26.3 0.69 20.9 0.68 9.6 0.84 7.7

Mean 0.48 25.8 0.51 23.3 0.65 21.1 0.68 9.4 0.82 7.9

Overall

N1 0.41 27.2 0.44 24.6 0.64 20.5 0.70 9.7 0.83 6.7
N4 0.53 24.6 0.55 22.4 0.63 21.4 0.69 10.6 0.80 8.6
N6 0.45 26.8 0.61 25.1 0.64 21.2 0.63 10.3 0.82 8.2

Mean 0.46 26.2 0.53 24.0 0.64 21.0 0.67 10.2 0.82 7.8

Furthermore, Model e confirmed that the incorporation of LCC in ML modeling
improves the model performance and reduces the bias from 26.2 t ha−1 to 7.8 t ha−1

(Table 6). It is attributed with the correlation between the temporal profile of the in situ
measured chlorophyll (SPAD values), and the harvested carrot yield was reported to be
moderate at 60 DAP (R2 = 0.46; p > 0.0001) and 90 DAP (R2 = 0.52; p > 0.0001). As depicted
in Figure 9, a crop age of 75 DAP (R2 = 0.78; p < 0.0001) was found to be suitable for
the early prediction of carrot yield using the SPAD values. The correlation between the
temporal profile of vegetation indices and the harvested carrot yield (YA) varied across the
VIs. As depicted in Figure 9, carrot yield was positively correlated and showed a moderate
(R2 = 0.59; p < 0.001) to high significance (R2 = 0.74; p < 0.001) for GNDVI and RDVI, at
the DAP of 60 to 90, respectively. On the other hand, SIPI also performed satisfactorily
(R2 = 0.51; p > 0.001), while the correlation was moderately low with NDVI and GLI. When
the simulated LCC layers were incorporated to the ML model, the performance of the
model was superior compared to the models those did not include LCC layers for the early
prediction of carrot yield. The summer prediction is given in Table 7.

Table 7. Summary of coefficients of determination analysis between SPAD and harvested carrot yield
(YA, t ha−1).

Source R2 Standard Error t Pr > |t| Lower Bound
(95%)

Upper Bound
(95%)

p-Values
Signification Codes

SPAD-30 0.058 0.084 0.686 0.493 −0.108 0.224 ◦

SPAD-45 0.611 0.303 2.019 0.045 0.014 1.209 *
SPAD-60 0.460 0.061 4.831 <0.0001 0.173 0.413 ***
SPAD-75 0.780 0.079 10.492 <0.0001 0.675 0.988 ***
SPAD-90 0.520 0.075 9.191 <0.0001 0.545 0.842 ***

SPAD-105 −0.421 0.516 −0.815 0.416 −1.440 0.599 ◦

SPAD-120 −0.688 0.658 −1.045 0.298 −1.987 0.612 ◦

Signification codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < ◦ < 1.
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Nevertheless, to characterize the spatial variability of nitrogen in large fields, using
traditional methods such as plant nutrient analysis and the simulated LCC developed based
on ground-measured SPAD readings may enhance the performance of crop-monitoring
and yield prediction models at convenient DAPs matching with the overpass of remotely
sensed images. Hence, this study confirmed the strong correlation between the chlorophyll
and nitrogen content in green vegetation; remote-sensing techniques in conjunction with
SPAD readings have the potential to assess the spatial variability in large agricultural fields
at lower costs than destructive traditional methods. On the other hand, SPAD readings and
remotely sensed images such as Sentinel-2 have been used together to map chlorophyll
content. Nevertheless, the center of the red band in Sentinel-2 is close to the absorption
peaks of chlorophyll a and b at 662 nm and 644 nm; the SPAD measurements were captured
at the red (650 nm) and infrared (940 nm) bands [60]. Therefore, Model e performed well
with the incorporation of SPAD readings compared to other models and is in accordance
with the recent study [63], which explained the use of SPAD values in improving the yield
estimation model for walnuts combining the spectral indices, texture indices, and structural
indices. Another study by Han et al. [64] on winter wheat revealed the ability of VIs to
identify different aspects of plants and improved prediction performance (R2 = 0.807) by
combining multispectral remote-sensing data with LAI and SPAD values. Hence, the best
model (e) can be applied to monitor carrot fields and their seasonal dynamics and predict
carrot yield in the study region and similar climates, which enhances the opportunities for
sustainable management.

5. Conclusions

In this study, an attempt was made to identify the optimum window for the early
prediction of carrot yield. The specific conclusions of the study include the following:

• The correlation between chlorophyll (SPAD values) content and carrot yield (YA) was
found to be significant (R2 = 0.78; p = 0.0001) at a crop age of 75 DAP. However, a weak
correlation was reported at 30 DAP (R2 = 0.058; p = 0.493) and 105 DAP (R2 = 0.42;
p = 0.416).

• To monitor the development of carrot crops and to assess the optimal window for the
early prediction of carrot yield, five scenarios/models adopting the RF algorithm, a
machine-learning tool, were performed. Of the studied five scenarios, the algorithm
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with the maximum predictors (individual S2 bands + VIs + SPAD values) performed
better (R2 = 0.82; RMSE = 7.8 t ha−1) compared to other scenarios, whereas the model
with an input of VIs and SPAD values returned a moderate correlation (R2 ≤ 0.67;
RMSE = 10.2 t ha−1). A poor performance (R2 ≥ 0.46; RMSE = 26.2 t ha−1) was noted
with Scenario 1, i.e., only individual S2 bands as inputs for the RF model.

• Furthermore, Model e confirmed that the incorporation of LCC in ML modelling
improves the model performance and reduces the bias from 10.4 t ha−1 to 52 t ha−1.
Hence, the current study aimed to monitor the growth and assess and model the
carrot pre-harvest yield using machine-learning techniques. The optimal period for
the early management of carrot crops was found to be between 60–75 DAP and was
formulated as part of the self-sustainability of vegetable crops and their water footprint.
This study assists in exploring the possibilities of non-destructive methods, such as
SPAD measurements and free-of-cost Sentinel-2 data in monitoring the growth and
assessment of carrot yield employing ML techniques.
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59. Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Kapusta-Duch, J.; Kuboń, M.; Komorowska, M.; Karcz, J. Impact of
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