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Abstract: In the mosaic creation of multiple high-resolution synthetic aperture radar (SAR) images,
achieving an optimal seamline in overlapping areas is crucial for seamless and visually satisfactory
results. Many existing seamline generation methods are designed primarily for optical remote sensing
images, but due to the differing characteristics of SAR images and optical images, applying these
methods directly to SAR images poses challenges in finding the optimal seamline. In response, this
paper proposes a segmentation-based optimal seamline generation (SOSG) method for SAR image
mosaics. The SOSG method involves a multi-step process. First, SAR image joint segmentation is
performed within the overlapping areas. Subsequently, homogeneous areas are identified based on the
segmentation results. Following this, a pixel cost matrix is constructed, incorporating homogeneous
areas and intensity differences. Finally, the minimum path cost from the starting pixel to the end
pixel is computed using the Dijkstra algorithm to determine the optimal path. To assess the feasibility
and effectiveness of the proposed method, experiments are conducted using multiple SAR images
from the Chinese Gaofen-3 01 satellite as datasets. The experimental results demonstrate that the
proposed method yields seamless mosaic images when compared to other methods, while delivering
satisfactory outcomes. This indicates the potential of the proposed method in addressing the unique
challenges posed by SAR images and enhancing the quality of SAR image mosaics.

Keywords: synthetic aperture radar (SAR); mosaic; optimal seamline; joint segmentation;
homogeneous areas

1. Introduction

The emergence of synthetic aperture radar (SAR) technology marks a significant ad-
vancement in Earth observation, offering high-resolution imaging capabilities independent
of weather conditions and daylight. SAR’s unique advantages make it a powerful tool
in applications such as resource exploration [1], environmental monitoring [2], disaster
assessment [3], ocean monitoring [4], and mapping [5]. Its contribution has elevated SAR
to a crucial role in high-resolution Earth observation and global resource management. As
the range of SAR applications continues to expand across diverse fields, the demand for
accurate image processing techniques becomes increasingly imperative.

In contemporary times, the proliferation of SAR images captured by numerous SAR
satellites has led to the continuous accumulation of data in historical databases. This abun-
dance of data provides extensive coverage of the region of interest (ROI). The limitation of
SAR sensor design constrains the coverage of a single high-resolution image, necessitating
the mosaic of multiple SAR images to achieve a broader coverage [6]. Particularly in the
case of high-resolution SAR images, the coverage of a single image tends to be relatively
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limited. Addressing the diverse requirements of various research and applications has
become progressively challenging due to these limitations. Consequently, the synthesis of
a large-range SAR image is accomplished through the mosaicking of multiple SAR images.
The mosaicking encompasses four key aspects [7]: SAR image registration, radiometric
normalization, seamline generation, and image blending. SAR image registration is pivotal,
ensuring consistent geometric alignment among multiple SAR images to be mosaicked.
This alignment is fundamental for the success of the mosaicking process. Radiometric
normalization plays a crucial role in minimizing radiometric inconsistencies between im-
ages within the SAR mosaic, ensuring visually satisfactory and coherent results. Seamline
generation is an essential step in achieving a seamless mosaic and maintaining the in-
tegrity of ground objects. It involves determining the optimal location for the seamline
among the images, considering factors such as geometry and radiometry. The generated
seamlines serve as a basis for subsequent image blending. Image blending is the final
step in the mosaicking process, aimed at eliminating slight radiometric differences near
the seamlines. This enhances visual performance by creating a cohesive and aesthetically
pleasing composite image. The comprehensive integration of these four aspects ensures
the successful creation of large-range SAR mosaics that meet the diverse needs of various
research and applications.

In the realm of remote sensing image mosaicking, the generation of seamline stands
out as a crucial step, prompting extensive exploration by scholars. The seamline genera-
tion for multiple images commonly involves an initial seamline network, subsequently
refined for optimal results [8]. Various methods have been devised for the initial seamline
network using Voronoi diagrams. Hsu et al. [9] employed a conventional Voronoi diagram
based on a point set and images as the face set, but it led to blank space at the boundary.
Pan et al. [10] introduced a method using area Voronoi diagrams with overlap (AVDO),
which proved efficient but showed limitations in handling complex polygons, especially
concave ones. Another method proposed by Song et al. [11] utilized bounded Voronoi dia-
grams, employing geometric operations to crop diagrams for initial tessellations. However,
this method involved numerous geometric operations, potentially leading to topological
issues in the generated seamline. Yuan et al. [12] introduced a Voronoi centerline-based
seamline network generation method; however, this had high computational effort and
occasional failures when dealing with complex graphs. Recent years have witnessed the
emergence of diverse seamline generation methods, broadly categorized into pixel-based,
object-based, and auxiliary data-based methods. Pixel-based methods focus on constructing
a cost matrix for the image’s overlapping area and selecting search strategies for optimal
mosaic generation. Cost matrices commonly consider gray scale, texture, gradient differ-
ences, and other factors. Commonly used search strategies include dynamic programming
algorithms [13], Dijkstra’s algorithm [14], bottleneck models [15], snake models [16], ant
colony algorithms [17], and graph cut models [18]. For example, Kerschner [19] proposed
an energy-minimizing method using the twin snakes model, yet faced challenges in non-
convergence, particularly in forested areas. Chon et al. [20] employed Dijkstra’s algorithm
and the minimax algorithm, but they required specified start and end points. Dong and
Liu [21] used various graph-cutting methods for seamline generation. Meanwhile, Wang
et al. [22] implemented a continuous space ant colony algorithm based on gray difference
and gradient, albeit with limitations in optimizing the vertices of unordered paths. Object-
based methods integrate object-level information, such as image segmentation, feature
classification, and change detection, to refine seamline generation. Soille [23] utilized a
watershed algorithm to segment images and identify seamlines along feature boundaries,
mitigating potential mosaic seam issues. Other methods involve segmentation-based ur-
ban orthophoto mosaic generation [24], watershed segmentation-based optimization [25],
and determining orthophoto seamlines using regional rate of change [26]. Additionally,
superpixel segmentation has been applied, utilizing a graph cut algorithm to obtain op-
timal seamlines [27]. Auxiliary data-based methods leverage external information, such
as point cloud data, digital surface models (DSM), and vector data, to guide seamline
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direction. Examples include using laser radar point cloud for seamline detection [28],
road vector data for seamline determination [29], and elevation information from DSM
for seamline direction [30]. Wang et al. [31] employed vector road maps to construct a
weighted graph, using Dijkstra’s algorithm to find optimal paths as seamlines. In a similar
vein, Yuan et al. [32] proposed determining seamlines based on road probability maps,
obtained using a D-LinkNet neural network and post-processing. The preferred road areas
are identified through binarizing the road probability maps in overlapping areas, and
Dijkstra’s algorithm determines the optimal seamline.

Presently, the majority of seamline generation methods focuses on optical images,
overlooking the distinct characteristic of SAR images, which are susceptible to random
speckle noise inherent in SAR data, potentially impacting processing outcomes. Recog-
nizing the limitations of pixel-based information in fully distinguishing feature targets
and obtaining high-quality auxiliary data, an object-based method emerges as a suitable
method for seamline generation. In response, a segmentation-based optimal seamline
generation (SOSG) method for SAR image mosaics is proposed, aiming to create seamless
SAR mosaic images. For multiple SAR images, the proposed SOSG method follows a
systematic method. Initially, SAR image registration based on the rational function model
and radiometric normalization processing is completed. Subsequently, joint segmentation
of overlapping areas between images is implemented. Building on these joint segmentation
results, the screening of homogeneous areas is performed. Then, under the constraint of
homogeneous areas, the cost matrix is constructed by combining the intensity information
of pixels. Finally, a shortest path search algorithm is employed to determine the optimal
seamline within the cost matrix. This comprehensive method enhances the seamlessness of
SAR mosaic images, considering the unique characteristics and challenges posed by SAR
data. The SAR mosaic results with complete ground objects are helpful for subsequent
image interpretation and analysis.

The main contributions are as follows:

1. Introducing a SOSG method, this method is designed to identify optimal seamlines
between SAR images, enhancing the seamlessness of the resulting mosaic and the
integrity of ground targets.

2. The method incorporates a joint segmentation technique and a clustering method for
SAR images. This method forms the foundation for effectively classifying areas within
SAR images as either homogeneous or non-homogeneous, providing a valuable basis
for subsequent processing steps.

3. Notably, the proposed SOSG method demonstrates an improvement in the quality of
SAR image mosaics when compared to existing methods. This signifies the effective-
ness and potential advancements introduced by the proposed method in the field of
SAR image processing.

The forthcoming sections of this paper are structured as follows. The relevant theo-
ries and proposed framework are introduced in Section 2. The experimental results are
demonstrated and analyzed in Section 3. The conclusion can be found in Section 4.

2. Materials and Methods
2.1. Overview

The procedural flow of this paper is visually represented in Figure 1. In the initial
phase, registration and radiometric normalization procedures are applied to multiple
single-look complex (SLC) images, representing the essential radiometric and geometric
preprocessing stage crucial for mosaic creation. In the initial seamline network established
through the AVDO method [10], each seamline is generated solely based on geometry,
resulting in paths that traverse numerous feature targets, and hence may not be optimal.
Recognizing the challenges associated with pixel-based information and the difficulty
of obtaining high-quality auxiliary data, an object-based method emerges as a suitable
alternative for seamline generation. The proposed SOSG model initiates with the joint
segmentation of SAR images, followed by the screening of homogeneous areas, the con-
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struction of a cost matrix, and ultimately the generation of optimal seamlines. The final
steps involve mosaicking and image blending processes, culminating in the formation of
a comprehensive mosaic image. This comprehensive model aims to overcome the limita-
tions of pixel-based methods and enhance the effectiveness of seamline generation in SAR
image mosaicking.

Figure 1. Framework diagram of the proposed method.

2.2. Preprocessing and Seamline Network Generation

The fundamental task of mosaicking, image registration, involves aligning images
acquired at different times and under diverse imaging conditions. In this paper, a geometry-
aware image registration method [33] is employed. This method extracts intrinsic ori-
entation features and prioritizes geometry-invariant areas, ensuring consistent geometry
alignment among multiple SAR images slated for mosaicking. Following the registration
step, a radiometric normalization method [34] rooted in the radiometric principles of SAR
is applied to eliminate the radiometric differences between images.

Once the ortho-rectification of all SAR images is completed, the generation of the
initial seamline network is executed using the AVDO method.

2.3. Segmentation-Based Optimal Seamline Generation Model
2.3.1. Joint Segmentation

During the processing of remote sensing image mosaicking, the geometric and radio-
metric differences between ortho-rectificated images make selecting the optimal seamline
a challenge. The goal is to circumvent areas with significant discrepancies, thus ensuring
the visual effect and the integrity of geographic targets in the mosaic images. Furthermore,
the selection and optimization of the seamline are not only critical steps in the mosaicking
procedure but are also complicated. Traditional methods mainly rely on pixels or blocks as
the basic processing units, employing a pixel-by-pixel path search strategy across the entire
overlap area. To achieve optimal mosaicking, a segmentation-based method is employed
to partition the overlap areas to extract consistency parcels. This ensures the radiometric
and geometric consistency of signification features across overlap areas.
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Unlike traditional segmentation-based seamline extraction techniques, this paper em-
ploys joint segmentation of SAR images to process the overlapping areas. For individual
image segmentation, the fractal net evolution approach (FNEA) is used to generate super-
pixels [35]. FNEA is a bottom-up area-merging algorithm that uses spectral and shape
features to describe each parcel. The essence of FNEA lies in its merging rule, which priori-
tizes the combination of adjacent parcel pairs that minimizes the heterogeneity increment
upon merging. The merging criterion is described as follows:{

h = ωspectral × hspectral + ωshape × hshape < T
ωspectral + ωshape = 1

, (1)

where h indicates the heterogeneity increment, which is calculated as the weighted sum
of spectral heterogeneity, hspectral , and shape heterogeneity, hshape. hspectral is derived from
the weighted standard deviation of each of the channels, while hshape consists of the com-
pactness and smoothness of the parcels, with detailed calculations found in reference [35].
T represents a predefined threshold.

Image mosaicking involves processing multiple images, which requires ensuring that
the segmentation results remain consistent across overlap images. To achieve this, a joint
segmentation strategy is introduced to establish an interaction between each individual
image segmentation procedure and produce a common segmentation result. Consider two
images denoted as IA and IB, with segmentation procedures employing thresholds TA and
TB, respectively. The FNEA is then executed according to the following joint strategy:

hA = ωspectral × hspectral + ωshape × hshape < TA

hB = ωspectral × hspectral + ωshape × hshape < TB

hA < TA and hB < TB

, (2)

where hA and hB denote the heterogeneity increment calculated from IA and IB, respectively.
The joint strategy describes the implication that the parcel pairs can only be merged if
the merging conditions in both IA and IB are simultaneously met. The benefit of the
joint segmentation method is that the radiometric consistency and geometric integrity of
segmented parcels in single images can be improved. Meanwhile, the geographic target’s
consistency across overlap images can be maintained. Moreover, this method can be easily
extended to more images. Figure 2 illustrates the comparison between the traditional
segmentation and joint segmentation frameworks.

Figure 2. Schematic of parcels extraction. (a) Traditional segmentation-based parcel extraction
technique. (b) Joint segmentation-based parcel extraction framework.
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2.3.2. Homogeneous Area Screening

After generating parcels by joint segmentation, statistical analysis can be conducted
to identify and extract consistency-stable parcels, that is, homogeneous areas. The extrac-
tion of these consistency-stable parcels is crucial in narrowing the scope of the seamline
search, as it effectively eliminates areas with significant projection differences and notable
radiometric disparity. Through this method, the most optimal seamline can be precisely
searched within the filtered, consistency-stable candidate areas and the effectiveness can be
greatly improved.

Mean and standard deviations are used to describe the stability degree of the parcels.
This is because mean and standard deviation can reveal the microwave scattering mecha-
nism on the surface as well as the scattering characteristics of ground objects to a certain
extent. For example, specular areas typically exhibit low mean and standard deviation,
while double-bounce areas show high mean and standard deviation. Double-bounce
mainly occurs in urban or built-up areas, which have significant geometric distortion. To
reduce geometric misalignments during the mosaicking, seamline should ideally avoid
double-bounce areas. Specular areas usually occur on smooth water surfaces, and mosaick-
ing along these smooth surfaces does not introduce significant geometric and radiometric
differences. It makes a great contribution to improving the overall mosaic quality. The
insights derived from these observations motivate the extraction of consistency-stable
parcels from overlapping images.

Assuming N parcels are extracted by joint segmentation, denoted as p = {p1, p2, . . . , pN}.
For each parcel, pi, its mean (µA and µB) and standard deviation (σA and
σB) in the overlap areas IA and IB are calculated, represented as µA = {µA

1 , µA
2 , . . . , µA

N} and
σA = {σA

1 , σA
2 , . . . , σA

N} for image IA and µB = {µB
1 , µB

2 , . . . , µB
N} and σB = {σB

1 , σB
2 , . . . , σB

N}
for image IB. These statistics describe the homogeneity and stability of parcels in the over-
lap areas. Next, µA, µB, σA, and σB are classified into k classes. In this paper, the larger
the value of k, the better the constraint on the direction of the final seamline. However, in
order to balance classification accuracy and efficiency, k is set to 3 based on experience. By
applying k-means [36], three class sets can be obtained, ωA

µ , ωA
σ , ωB

µ and ωB
σ , each taking

values {0, 1, 2}, where a small class value indicates better stability of parcels. Then, the ωA
µ

and ωA
σ can be added to create a new classification result, ωA, which ranges from 0 to 4.

Similarly, ωB is constructed in the same manner. The ωA and ωB are used to represent the
stability of parcels in IA and IB, respectively.

Due to factors such as the acquisition time, observation angles, polarization mode,
and random errors, the stability of parcels pi in IA and IB may vary, resulting in a different
stability level. Therefore, an integration strategy is employed to take into account ωA
and ωB, to derive a unified classification, ω ∈ {1, 2, . . . , 8}. For parcels pA

i and pB
i , their

stability level in ωA and ωB can be represented as ωA(pi) and ωB(pi), respectively. Then,
the integration rule is described as follows:

ω(pi) =



1, if (ωA(pi) = 0) ∧ (ωB(pi) = 0)
2, if (ωA(pi) = 1) ∧ (ωB(pi) = 1)
3, if (ωA(pi) = 2) ∧ (ωB(pi) = 2)
4, if ((ωA(pi) = 0) ∧ (ωB(pi) = 1)) ∨ ((ωA(pi) = 1) ∧ (ωB(pi) = 0))
5, if ((ωA(pi) = 1) ∧ (ωB(pi) = 2)) ∨ ((ωA(pi) = 2) ∧ (ωB(pi) = 1))
6, if ((ωA(pi) = 0) ∧ (ωB(pi) = 2)) ∨ ((ωA(pi) = 2) ∧ (ωB(pi) = 0))
7, if (ωA(pi) = 3) ∨ (ωB(pi) = 3)
8, if (ωA(pi) = 4) ∨ (ωB(pi) = 4)

. (3)

Finally, a unified stability classification with 8 levels can be derived. In ω, a lower
value ω(pi) indicates that parcel pi has a higher similarity and stronger homogeneity in IA
and IB, suggesting higher stability. The consistency-stable parcels with higher values of
ω(pi) have distinct feature targets in them, so in the optimal seamline generation stage the
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generation is prioritized inside consistency-stable parcels with lower values of ω(pi), which
effectively narrows down the search range and greatly reduces the effect of geometric and
radiometric differences and the seamlines become more accurate and avoids areas that may
reduce the mosaic quality, such as urban built-up areas. Figure 3 shows the classification
process and consistency-stable parcels extraction process.

Figure 3. The process of extracting consistent and stable parcels. (a) Stability classification map ωA

and ωB for IA and IB, where darker areas indicate higher stability. (b) Visualization results obtained
by overlaying ωA and ωB onto IA and IB, with enhanced stability indicated by the direction of arrows.
(c) A unified classification map ω generated ωA and ωB. (d) Color-coded visualization obtained by
overlaying ω onto IA and IB, depicting stability enhancement in the direction of the arrows.

The acquisition of ω reflects the level of homogeneous areas, which lays the foundation
for the subsequent construction of the cost matrix.

2.3.3. Cost Matrix Construction

In the context of optical remote sensing images, an optimal seamline is expected to
traverse the most similar portion of the overlapping areas of two images, minimizing
inconsistencies [37]. Similarly, for SAR images a high-quality seamline should pass through
homogeneous areas. Thus, the optimal seamline in SAR images should preferably traverse
similar homogeneous areas, especially the joint homogeneous areas with lower weights
identified during the screening process described above.

Treating optimal seamline generation as a shortest path problem in a matrix, the
objective is to find a path in the overlapping area that minimizes the cost [37]. In the case
of two SAR images, a cost matrix of dimensions W ∗ H is created, encompassing pixels
in the overlapping area, where W and H denote the width and height of the overlapping
area, respectively. Each pixel in this matrix is assigned a non-negative cost, and the optimal
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seamline should exclude high-cost pixels. Contrasting with a costly short-segment seamline,
a low-cost long-segment seamline has the advantage of bypassing feature targets. This
transformation turns the optimal seamline problem into finding the path that minimizes
the cost in the cost matrix.

The construction of the cost matrix involves calculating the cost for each pixel in the
overlapping area. Using pixel-based methods may be susceptible to speckle noise; the
proposed method extracts joint homogeneous areas and searches for seamlines in joint
homogeneous areas with lower weights to achieve building avoidance. In order to make the
seamlines lie inside the joint homogeneous areas, a combination of parcel and pixel intensity
difference is used to construct the cost matrix, which also reduces the effect of speckle noise
compared to using only pixel-based methods. In this paper, the cost function is constructed
using joint homogeneous areas and image intensity differences, which reflects both the
results of the joint segmentation as well as the relationship between the image pixels. For
two images, IA and IB, the cost function, C(x, y), is defined as:

C(x, y) = ω(pi) · Cd(x, y), (4)

where (x, y) represents the pixel with coordinates (x, y) in the overlap area and Cd(x, y)
is the intensity difference of pixels (x, y) in the overlapping areas of neighboring images,
which is defined as:

Cd(x, y) = |IA(x, y)− IB(x, y)|, (5)

where IA(x, y) and IB(x, y) denote the pixel gray values of the (x, y) of IA and IB, respec-
tively. | · | represents the absolute value.

By utilizing Equation (4), the cost for each pixel in the overlapping area is calculated,
thereby completing the construction of the cost matrix. Finally, the Dijkstra algorithm is
applied to identify the optimal path in the cost matrix. Dijkstra’s algorithm is a widely used
method for searching the shortest path in graph theory. It systematically extends outward
layer by layer from the starting point (following the breadth-first search idea) until reaching
the endpoint. Once the initial seam network is constructed, the intersection points of the
image boundary are extracted, designating these points as the starting and ending points
for the Dijkstra algorithm.

Guided by the optimal seamline, the SAR image mosaic is successfully executed.

3. Results and Analysis
3.1. Experimental Dataset

To assess the effectiveness of the proposed method, two sets of experiments are
conducted using multiple SAR images acquired from the Chinese Gaofen-3 01 satellite. This
satellite is the inaugural civil microwave remote sensing imaging satellite included in the
“National High-resolution Earth Observation System Major Project” and is distinguished as
the initial C-band multi-polarization SAR satellite, featuring a nominal resolution ranging
from 1 m to 500 m. The two datasets are outlined as follows:

(1) Dataset 1: The ROI spans from 44.56◦ to 45.67◦ N latitude and 123.71◦ to 125.05◦ E lon-
gitude. This dataset comprises 10 ascending orbit images collected between November
2019 and April 2021.

(2) Dataset 2: The ROI extends from 33.55◦ to 35.07◦ N latitude and 116.16◦ to 117.57◦ E
longitude. This dataset consists of 21 ascending orbit images collected from October
2022 to December 2022.

All SAR images are SLC products from the Gaofen-3 01 satellite, and the imaging
mode is ultra-fine stripe (UFS). Detailed information is presented in Table 1 [38]. The
geometric distribution can be visualized in Figure 4. Notably, the dataset encompasses
diverse viewing conditions, including various incidence angles and different-side views,
contributing to a comprehensive evaluation of the proposed method.
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Table 1. Detailed information of two datasets.

Dataset OrbitID Imaging
Mode

Nominal
Resolution

Incidence
Angle

Imaging
Date

1

017924 UFS 3 m 32.57◦ 2020-01-05
017924 UFS 3 m 32.57◦ 2020-01-05
024683 UFS 3 m 26.14◦ 2021-04-18
024683 UFS 3 m 26.14◦ 2021-04-18
024683 UFS 3 m 26.14◦ 2021-04-18
017160 UFS 3 m 27.28◦ 2019-11-13
017160 UFS 3 m 27.28◦ 2019-11-13
017160 UFS 3 m 27.28◦ 2019-11-13
022594 UFS 3 m 28.40◦ 2020-11-24
022594 UFS 3 m 28.40◦ 2020-11-24

2

032539 UFS 3 m 33.54◦ 2022-10-15
032539 UFS 3 m 33.54◦ 2022-10-15
032539 UFS 3 m 33.54◦ 2022-10-15
032539 UFS 3 m 33.54◦ 2022-10-15
032958 UFS 3 m 34.49◦ 2022-11-13
032958 UFS 3 m 34.49◦ 2022-11-13
032958 UFS 3 m 34.49◦ 2022-11-13
032958 UFS 3 m 34.49◦ 2022-11-13
032366 UFS 3 m 31.57◦ 2022-10-03
032366 UFS 3 m 31.57◦ 2022-10-03
032366 UFS 3 m 31.57◦ 2022-10-03
032366 UFS 3 m 31.57◦ 2022-10-03
032366 UFS 3 m 31.57◦ 2022-10-03
033375 UFS 3 m 36.30◦ 2022-12-12
033375 UFS 3 m 36.30◦ 2022-12-12
033375 UFS 3 m 36.30◦ 2022-12-12
033375 UFS 3 m 36.30◦ 2022-12-12
032611 UFS 3 m 29.48◦ 2022-10-20
032611 UFS 3 m 29.48◦ 2022-10-20
032611 UFS 3 m 29.48◦ 2022-10-20
032611 UFS 3 m 29.48◦ 2022-10-20

Figure 4. Geometric distribution of two datasets. (a) Dataset 1. (b) Dataset 2.

3.2. Experimental Results

Both of the aforementioned datasets undergo identical preprocessing steps, followed
by the application of the SOSG method. The results obtained from the proposed method are
then juxtaposed with those from Chon et al. [20] and Wang et al. [25]. The Chon et al. [20]
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method is pixel-based, utilizing pixels in the optical image overlapping areas to construct a
difference matrix and searching for optimal seamlines through the Dijkstra algorithm. On
the other hand, Wang et al. [25] presents a typical object-based method for optical image
optimal seamline generation. The experimental results are depicted in Figures 5 and 6, with
detailed results showcased in Figures 7 and 8.

Figure 5. Comparison of results of Dataset 1. (a) Initial seamline network and its mosaic result.
(b) Chon et al. [20] method result. (c) Wang et al. [25] method result. (d) SOSG method result. The
red, yellow, blue, and green lines are the seamline network in (a), (b), (c), and (d), respectively.
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Figure 6. Comparison of results of Dataset 2. (a) Initial seamline network and its mosaic result.
(b) Chon et al. [20] method result. (c) Wang et al. [25] method result. (d) SOSG method result. The
red, yellow, blue, and green lines are the seamline network in (a), (b), (c), and (d), respectively.
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Figure 7. Detail comparison of results of Dataset 1. (a1–a4) Initial seamline network result details,
respectively, corresponding to the orange box area in Figure 5a. (b1–b4) Chon et al. [20] method
result details, respectively corresponding to the orange box area in Figure 5b. (c1–c4) Wang et al. [25]
method result details, respectively corresponding to the orange box area in Figure 5c. (d1–d4) SOSG
method result details, respectively corresponding to the orange box area in Figure 5d.

3.3. Visual Assessments

Figures 5 and 6 reveal that all three methods contribute to optimizing the seamline
compared to the initial seamline. However, the optimization effects of the three methods
vary significantly.

Dataset 1 does not contain very large regions of topographic undulation, and it is
dominated by farmland and urban regions, with a small number of lakes. Figure 7(a1–a4)
show the initial seamlines, which clearly cross obvious features such as buildings.
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Figure 8. Detail comparison of results of Dataset 2. (a1–a6) Initial seamline network result details,
respectively corresponding to the orange box area in Figure 5a. (b1–b6) Chon et al. [20] method
result details, respectively corresponding to the orange box area in Figure 5b. (c1–c6) Wang et al. [25]
method result details, respectively corresponding to the orange box area in Figure 5c. (d1–d6) SOSG
method result details, respectively, corresponding to the orange box area in Figure 5d.
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Figure 7(b1–b4) show the seamlines generated by the Chon et al. [20] method, and it can
be seen that in Figure 7(b1), when there are buildings in the vast farmland, the Chon et al. [20]
method generates a seamline that does not bypass, but crosses right through. In Figure 7(b2),
the seamline generated by the Chon et al. [20] method bypasses a few obvious features such
as buildings, but the seamline is very close to the buildings, which may pose a small challenge
to the feathering fusion afterwards. In Figure 7(b3), there is a very obvious wide road in the
left area and the center area, which is a very desirable route for the seamline to be selected,
and the Chon et al. [20] method successfully recognizes this. As the road extends, there is a
cluster of buildings in the right area, and the Chon et al. [20] method, after searching for the
seamline along the road to the north, did not make the decision to go east earlier and crossed
between the two clusters of buildings. In Figure 7(b4), there are several lakes and a river, with
a distinct cluster of buildings in the right area, and the seamline is satisfactorily routed in the
left area and in the center area, but the decision to bypass the buildings is not accomplished
when confronted with a larger number of buildings in the right side.

Figure 7(c1) shows the choice of the Wang et al. [25] method when faced with vast
farmland, first searching along the east–west road, but buildings appear at the end of
the road, which are not avoided, and then searching to the south after traversing the
buildings, with a farmland region in the middle, which is a more ideal homogeneous area,
the seamline in this area is in line with the optimal seamline, but in terms of the path, there
is a longer path length. In Figure 7(c2), the decision of the Wang et al. [25] method is to
search for the optimal seamline along the road, but there are more building clusters on both
sides of the road, and the method does not perform the dodge, and then the seamline is
selected on the road between the buildings. In Figure 7(c3), there are obvious roads in the
left area and center area, but the segmentation method in the Wang et al. [25] method does
not segment the roads well, resulting in the seamline not fitting the roads perfectly, while
the Wang et al. [25] method makes the same decision as the Chon et al. [20] method in the
right area but crosses more buildings than the Chon et al. [20] method. In Figure 7(c4), in
the left area, the Wang et al. [25] method did not choose to search for the seamline along
the river, but rather searched in a more homogeneous area just below the river, and the
result is acceptable, but on the right side of the complex, it still crosses the building.

Figure 7(d1–d4) shows the optimal seamlines generated by the SOSG method. In
Figure 7(d1), the SOSG method first searches for the seamlines along the farmland in the
upper side area, but unlike the Wang et al. [25] method is different in that it searches
towards the central farmland area when buildings are about to be encountered, thus
effectively avoiding the complexes in the center area, similarly to the Chon et al. [20]
method. In the lower side area there is a small lake, and the nearby area is a more desirable
homogeneous area, and the SOSG method chooses the seamline near this area, because
from the divided consistency-stable parcels this area parcels with lower weight; the SOSG
method has the advantage over the other two methods in d1. In Figure 7(d2), the SOSG
method makes a different decision than either of the other two methods, searching for
a seamline along a very obvious road while fully avoiding the building complexes. In
Figure 7(d3), the obvious roads in the left and center areas are clearly ideal locations for the
optimal seamline, and the SOSG method accomplishes this, but in the right area the SOSG
method traverses directly next to a smaller building because there is a much larger cluster
of buildings in the upper area. In Figure 7(d4), there are quite a few buildings in the right
area. The Chon et al. [20] method and Wang et al. [25] method did not avoid them, while
the SOSG method fully considers the characteristics of consistency-stable parcels and uses
the pond in the bottom-right area to search to avoid buildings. In areas with rivers, the
optimal seamline can also be selected. In this dataset, it is fully demonstrated that the SOSG
method has the advantage over the other two methods, and the generated seamlines have
a stronger ability to avoid obvious ground targets compared to the other two seamlines.

Dataset 2, which is close to Dataset 1 terrain, is dominated by plains, but has some
smaller areas of undulating terrain.
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Figure 8(b1–b6) show the seamlines generated by the Chon et al. [20] method. In
Figure 8(b1), there is a more obvious river in the upper side area, and there is a small stream
on the right side of the road. The Chon et al. [20] method uses the road on the left side
as the optimal choice for searching the seamline, but there are more and more buildings
on both sides of the road, which is a reflection of the fact that the Chon et al. [20] method
cannot accurately identify object-level targets. In Figure 8(b2), there are a large number
of buildings, and there are landforms such as rivers and lakes on the right area, and the
seamline is unable to avoid the building clusters; the Chon et al. [20] method chooses to
traverse it directly. In Figure 8(b3), there is a smaller terrain undulation area, and thus some
layover areas are generated; the Chon et al. [20] method generates the cost matrix based
on the pixel information and does not treat the layover areas specifically, which results in
the generated seamlines not avoiding the layover areas, and at the same time some of the
seamlines follow the boundaries of the layover areas and the non-layover areas for search,
but when there is a road, the Chon et al. [20] method can still recognize it. In Figure 8(b4),
the landscape is dominated by features such as farmland and man-made ponds, and there
are a number of very distinct roads; the seamline crosses the buildings on the left area
and then proceeds along the homogeneous area such as the farmland, and it does not turn
into a road when it encounters one. Figure 8(b5) is a very complex area with a variety of
buildings, a challenge for various algorithms; the Chon et al. [20] method traverses a large
number of buildings when it is not possible to avoid them. Figure 8(b6) has a wide range
of water with many options for the location of the seamlines, in which case the seamlines
generated by the Chon et al. [20] method can meet the requirements for usage.

Figure 8(c1–c6) are the seamlines generated by the Wang et al. [25] method. The
seamline generated by the Wang et al. [25] method in Figure 8(c1) is more similar to the
seamline generated by the Chon et al. [20] method, and the decision-making is similar for
both methods. Similarly, in the presence of more complex scenarios, the seamline generated
by the Wang et al. [25] method is similar to that of the Chon et al. [20] method, as shown in
Figure 8(c2). In Figure 8(c3), the Wang et al. [25] method avoids some of the layover areas,
but still traverses some of the layover areas, compared to the Chon et al. [20] method. In
Figure 8(c4), the decision of the Wang et al. [25] method is to prioritize the crossing of the
road, and therefore the seamlines are concentrated towards the road sides. In Figure 8(c5),
in the same complex scenario, the decision of the Wang et al. [25] method is to search for
the seamline along the road or the boundary between buildings and non-buildings, which
is more reflective of the Chon et al. [20] method than the segmentation effect, but still
traverses more buildings. In the presence of a large amount of water, the Wang et al. [25]
method still has a higher priority for roads, with the seamline preferentially following the
road, as shown in Figure 8(c6).

Figure 8(d1–d6) show the seamlines generated by the SOSG method. In Figure 8(d1),
the SOSG method chooses a river between a road and a river, and the seamline on the
right area uses a stream as the basis for searching, because there are fewer buildings on
both sides of the seamline, and therefore the overall visual effect is better than the other
two methods. The performance of the SOSG method in the case of complex scenarios
faced is demonstrated in Figure 8(d2), where the right area has roads and lakes that have
a very high level of selection of seamlines in the extraction of consistency-stable parcels,
and therefore, in the case of not being able to avoid the complex of buildings, the SOSG
method is more advantageous than the other two methods by traversing the least number
of buildings and moving to parcels with lower weights for the seamline search. Figure 8(d3)
shows the existence of a layover area; in this case, due to the characteristics of the layover
area, the consistency-stable parcel extraction process can also judge the layover area as
parcels with higher weights, so that the layover area can be avoided. As can be seen from
the figure, the parcels are avoided in the face of multiple layover areas, and the parcels can
also be selected in the road when the road appears. As shown in Figure 8(d4), the SOSG
method has good judgment for homogeneous areas like farmland, generating seamlines
in farmland areas while avoiding building clusters as much as possible, and at the same
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time the path is the shortest compared to the other two methods. In complex scenarios,
faced with the unavoidable traversal of building complexes, the seamline generated by the
SOSG method chooses to prioritize the search along roads, as shown in Figure 8(d5), and
the decision is similar to that of the Wang et al. [25] method, but less obvious feature targets
than the Wang et al. [25] method traverses fewer obvious feature targets. In Figure 8(d6),
the large amount of water provides more choices for seamline detection, and the SOSG
method prioritizes searching for seamlines along the water, which is different from the
mosaics detected by the Chon et al. [20] method, but the decision making is similar. In
this dataset, it is well demonstrated that the SOSG method, guided by consistency-stable
parcels, has a better ability to select seamlines, and the location of seamlines is more in line
with human intuition.

In conclusion, the proposed SOSG method proves effective in generating optimal
seamlines for SAR images, yielding more comprehensive mosaic images of feature targets.

3.4. Statistical Analysis

To conduct a more in-depth evaluation of the proposed method, quantitative indicators
such as the number of crossings of visible feature targets and the processing times are
selected for analysis. The statistical results of different methods are presented in Table 2.

In Dataset 1, characterized by a predominantly flat landscape with a few building
complexes, the Chon et al. [20] method traversed 87 obvious buildings within a processing
time of 30 s. In comparison, Wang et al. [25] traversed fewer buildings (67), while showing
that segmentation-based methods can offer advantages over pixel-based methods. The
proposed SOSG method demonstrated the least number of crossings of obvious feature
targets in this dataset but incurred the highest processing time.

Dataset 2 features a large number of buildings and some areas of undulating terrain.
The Chon et al. [20] method and the Wang et al. [25] method showed comparable seamline
performance in this dataset, with Wang et al. [25] requiring more time. The proposed SOSG
method passed through significantly fewer obvious objects than other methods in this
dataset, although it also exhibited the longest processing time.

Table 2. Statistical results of different methods.

Dataset Indicator Chon et al. [20]
Method

Wang et al. [25]
Method SOSG Method

1
Number of crossings of
visible feature targets 83 67 16

Time (s) 30 58 273

2
Number of crossings of
visible feature targets 251 246 47

Time (s) 157 704 1215

In summary, the statistical results affirm that the SOSG method effectively avoids
obvious ground objects, generating optimal seamlines that enhance visual quality and
quantitative performance. However, achieving a balance between efficiency and accuracy
remains a challenge, and future work will focus on improving the time efficiency of the
proposed method.

4. Conclusions

This paper introduces an SOSG method for SAR image mosaicking, aiming to enhance
the integrity of feature targets in mosaic images and realize seamless mosaicking. The
proposed method, designed with a consideration of SAR image characteristics, involves
generating parcels through joint segmentation. Analysis is performed on the parcels
extracted by joint segmentation, and the consistency-stable parcels, namely homogeneous
areas, are extracted and assigned different weights. The consistency-stable parcels with
higher weights contain obvious ground objects. By constructing a cost matrix combining
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segmentation and pixel characteristics, the optimal seamline is selected in the areas with
lower weights, and the obvious ground object target is successfully bypassed. The SOSG
method proves effective in enhancing feature target information in SAR mosaic images, as
is evident in the experimental results. While successfully avoiding obvious feature targets,
it improves both the visual quality and quantitative performance of SAR mosaic images.
However, it is acknowledged that the time efficiency of joint segmentation may impact
the overall efficiency of the SOSG method, and future work will focus on addressing this
limitation. Furthermore, this holistic method presents significant advantages for subsequent
SAR mosaic image interpretation.
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