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Abstract: Controlling for confounding bias is crucial in causal inference. Causal inference using
data from observational studies (e.g., electronic health records) or imperfectly randomized trials
(e.g., imperfect randomization or compliance) requires accounting for confounding variables. Many
different methods are currently employed to mitigate bias due to confounding. This paper provides a
comprehensive review and tutorial of common estimands and confounding adjustment approaches,
including outcome regression, g-computation, propensity score, and doubly robust methods. We
discuss bias and precision, advantages and disadvantages, and software implementation for each
method. Moreover, approaches are illustrated empirically with a reproducible case study. We
conclude that different scientific questions are better addressed by certain estimands. No estimand
is uniformly more appropriate. Upon selecting an estimand, decisions on which estimator can be
driven by performance and available background knowledge.

Keywords: confounding; propensity score methods; outcome regression; doubly robust methods;
observational data; covariate adjustment

1. Introduction

Randomized controlled trials (RCT) continue to be the gold standard for evaluating
the efficacy and safety of new medical interventions [1]. However, researchers sometimes
use observational studies to estimate the effectiveness of treatments and exposures on
health outcomes [2]. Direct unadjusted comparisons are misleading when the subjects
receiving one treatment differ systematically from the subjects receiving another treatment.
For rare diseases, single-arm trials are common due to the impracticability of conducting
large randomized trials [3]. Instead, an external control arm is used for comparison under
the assumption of no systematic differences across contexts. When there is imperfect
compliance, randomized trials no longer estimate the effect of the actual “take up” of a
treatment. In per-protocol analyses, the effectiveness of treatments on outcomes can be
subject to confounding bias in which those who adhere are systematically different from
those who do not; therefore, minimizing potential bias is critical [4,5]. Regulatory agencies
have thus issued guidelines for the application of external data in drug development [3,6,7].

There is substantial discussion in the literature regarding estimating the causal treat-
ment effects from observational data via the potential outcome model, in which exchange-
ability, positivity, and consistency are key assumptions [8–13]. Various ways of adjusting co-
variates are proposed for causal inference to reduce bias and increase precision (i.e., smaller
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variance) of the estimator, such as the traditional regression models, g-computation, propen-
sity score (PS), and doubly robust approaches [11]. Some researchers have made compar-
isons for certain methods [13,14]. Ding and Li (2018) [15] provided a systematic review of
causal inference from the missing data perspective. However, much of the existing work
compares those different methods for a single estimand; therefore, different estimands and
the relative performance of various estimators have not been reviewed comprehensively.
This work provides a review of common estimands and confounding adjustment ap-
proaches. We also discuss bias and precision, advantages and disadvantages, and software
implementation for each method.

We start with outlining the causal inference framework and discussing related esti-
mands for different populations in Section 2. Section 3 systematically reviews the most
common statistical methods for confounding adjustment. We then briefly discuss diagnosis
of checking variable balance in Section 4. An example using real data is then illustrated
on how to use various estimators and causal methods with different software tools. This
paper then concludes with a brief discussion.

2. Causal Framework and Estimands

Assume that there are N subjects and, for each subject, there is a binary treatment
indicator Ai (i = 1, 2, . . . , N), where Ai = 0 for the control and Ai = 1 for the active
treatment. The observed endpoint variable is Yi, and Yi(0) denotes the potential outcome
under the control (Ai = 0) for subject i, whereas Yi(1) is for the potential outcome under
the active treatment (Ai = 1). There are p covariates Xi =

(
Xi1, Xi2, . . . , Xip

)
for subject i,

such as the baseline characteristics, demographic features, risk factors, etc. The covariates
can be binary, categorical, or continuous.

The individual treatment effect is the difference between the two potential outcomes
for a subject, Yi(1)−Yi(0). The causal consistency assumption relates an observed outcome
to the potential outcome [11].

Yi = AiYi(1) + (1 − Ai)Yi(0),

which states that the observed response Yi is equal to the potential outcome with a treatment
level that matches the actual treatment level. It is not possible to observe both Yi(1) and
Yi(0) for a single individual. Therefore, the individual treatment effect is not identifiable,
and, instead, we focus on the causal effects averaged over subjects.

A commonly used population-level treatment effect is the average treatment effect (ATE),
which is defined as the expected individual difference in potential outcomes as below:

ATE = E[Y(1)− Y(0)].

The ATE estimand gives the average effect of treatment in the population and is most
relevant when we want to compute an average effect estimate that summarizes the effect
for all members in the target population.

The treatment effect may be heterogeneous if it affects individuals differently. In this
case, we can divide the population into subsets (e.g., male versus female) and contrast the
average effects by subsets. This type of ATE is called the conditional average treatment
effect (CATE) and is conditioned on covariates in the subset, as follows:

CATE = E[Y(1)− Y(0)|X = x].

In some scenarios, average treatment effects for subpopulations related to treatment
are of interest. Two common subpopulations are the subjects in the active treatment group
and the subjects in the control group, which are the basis for the average treatment effect
for the treated (ATT) and the average treatment effect for the control (ATC), as follows:

ATT = E[Y(1)− Y(0)|A = 1],
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ATC = E[Y(1)− Y(0)|A = 0].

ATT is the estimand that is most relevant when we want to evaluate the effect of a
treatment among those who are treated, whereas ATC is most relevant when we want to
consider the cost incurred by subjects who are not given treatment. The same approaches
can be used to estimate the ATT and ATC. For this reason, we only discuss the ATT hereafter.

Moreover, if a matching method is used to pair subjects from the active treatment
group to those in the control group, we have a matched subpopulation that may be different
from the target (such as the whole or treated) population. The matching approach creates
matched sets of treated and untreated subjects who have similar values of PS. The response
variable is then compared between the treated and untreated subjects in the matched set.
The corresponding estimand is called the average treatment for the matched set (ATM),
as follows:

ATM = E[Y(1)− Y(0)|M = 1],

where M = 1 for matched observations.
Recently, another subpopulation is considered to be of interest, which is the set with

the most overlap in the observed covariates between the control and treated [16–18]. This
subpopulation contains subjects that are eligible to be recruited and assigned to either
treatment arm with a similar probability, and thus may more closely mimic a population
enrolled in a RCT [17]. The estimand for the overlap population is called ATO (Web
appendix of Li et al. [18]):

ATO =
E[e(X)(1 − e(X))(Y(1)− Y(0))]

E[e(X)(1 − e(X))]
,

where e(X) is the propensity score, i.e., the probability of a subject being assigned to the
active treatment arm given the covariates, e(X) = Pr(A = 1|X = x).

The choice of estimand(s) will depend on the research objectives. If the research
question is about the effect on outcomes for all subjects, then the ATE is likely the best
choice. If the research goal is to evaluate the effect on outcomes among subjects who
received the active treatment, then the ATT would be most appropriate. If the research
interest is regarding the subpopulation of those who have equal probability to be in either
the active treatment or control group (e.g., the randomized controlled trial), then ATO is
the best option.

3. Confounding Adjustment Methods

Once the estimand is selected, the next task is to express the estimand in terms of the
observed data, referred to as ‘identification’. Identification often relies on the assumptions
of causal consistency and exchangeability (or ignorability) with positivity [19,20]. As
described above, the causal consistency assumption links the potential outcomes to the
observed outcomes. Exchangeability stipulates that the potential outcomes and treatment
are independent marginally or conditionally. Conditional exchangeability is mathematically
expressed as E[Y(a) | X] = E[Y(a) | A = a, X] for all values a of treatment. In other
words, exchangeability is the assumption that there are no unobserved common causes
of the exposure and outcome. For exchangeability to be mathematically well defined, we
further assume that the probability of receiving a treatment is non-zero for every covariate
combination relevant for exchangeability. This assumption is referred to as positivity and
written as Pr(A = a | X) > 0 [21].

In an RCT, marginal exchangeability is met by design and covariates are balanced in
expectation. However, chance imbalances can still occur, particularly when a sample size is
small. Accounting for chance imbalances by covariates strongly predictive of the outcome
can provide more precise estimates of causal effects [22]. Here, the goal of covariate
adjustment is to improve precision and power in estimating causal effects.

If a study is not randomized, there can be systematic imbalance in covariates for
different treatment arms (i.e., marginal exchangeability does not hold). Instead, one can
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assume there is a sufficient adjustment set for confounding (i.e., conditional exchangeabil-
ity). Confounding adjustment can then be achieved via different ways, such as traditional
outcome regression, g-computation, PS adjustment, and doubly robust approaches.

Outcome regression methods were first developed to estimate conditional effects
accounting for covariate imbalance between treatment arms [23,24]. However, standard
adjustment by parametric regression models is sensitive to model mis-specification [8].
G-computation has been proposed as a way to estimate the marginal causal effect using
an outcome regression model [25]. G-computation allows for a treatment effect to be
different for different levels of the covariates, and it is also relatively robust to model mis-
specification if there is no unmeasured confounding [26]. Alternatively, propensity score
(PS) methods that use PS in different ways to control confounding include matching [10,27],
stratification [28,29], weighting, and conditional adjustment using PS as a covariate [30].
For example, the inverse probability weights (IPW) can be applied to subjects in each
treatment arm to balance the covariate distributions, and the comparison is made between
the weighted outcomes [17,23,31–34]. Researchers [35] used a few large-scale cardiovascular
observational studies to compare the performance of a conventional regression with PS
methods. PS is the most widely applied causal inference tool for observational studies and
it has theoretical advantages over conventional confounding adjustment using outcome
regression. Another option is the doubly robust approach that combines PS methods and
outcome regression. One of the doubly robust methods is the augmented IPW estimator,
which can provide unbiased estimates if one of the models is mis-specified. We discuss
each approach in more detail below.

3.1. Traditional Regression

For traditional regression, a model is fit for the response Y on the treatment indicator
A, covariates X, and sometimes their interactions A ∗ X. For example, a multiple linear
regression for a continuous endpoint is set up as

Yi = β0 + β1 Ai + β2X1i + β3X2i + · · ·+ εi,

where (β0, β1, β2, . . .) are the regression coefficients and εi is the random error. The least
square estimator of β1 can be taken as the estimator of CATE.

A logistic regression for a categorical endpoint is constructed as

logit[Pr(Y i|Ai, Xi)] = β0 + β1 Ai + β2X1i + β3X2i + · · · .

The difference Pr(Y = 1|A = 1, X = x)− Pr(Y = 1|A = 0, X = x) can be used as the
estimator of CATE when X = x.

One concern of fitting a logistic regression is that the number of covariates may be
very large compared to the number of events when the event of interest is rare. The rule of
thumb is to have at least 10 events of the endpoint for each covariate in the regression, but
that rule can be relaxed [36]. The regression model further assumes that the treatment effect
measure is constant across the levels of covariates (or confounders) included in the model,
but this is not often expected to be the case. Model mis-specification may lead to bias
and impact precision in unbalanced designs with treatment effect heterogeneity [37]. With
non-linear models, like logistic regression, the coefficient of treatment may not represent
the marginal effect due to non-collapsibility [38]. For parameters such as odds ratios (OR),
the subgroup-specific conditional treatment effects may be different from the unconditional
treatment effect, even in the absence of confounding bias.

3.2. G-Computation

In 1986, a paper by Greenland and Robins demonstrated that, under the previous iden-
tification assumptions, a consistent estimate of the unconditional treatment effect can be ob-
tained by using the g-computation formula [26,38,39]. G-computation is a generalization of
standardization with respect to the covariates’ distribution. G-computation takes the model
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from traditional regression and computes P(Y = 1|A = 1, Xi) and P(Y = 1|A = 0, Xi) for
all subjects, which are the two predicted probabilities of events for a subject’s covariates
vector Xi under both treatment and non-treatment. These predications can then be used to
estimate the reviewed estimands by taking the corresponding mean. For ATE, we include
all subjects in the prediction set; for ATT, only treated subjects are included. G-computation,
based on the estimation of the components, allows for a treatment effect to vary by different
covariates. More in-depth walkthroughs of how g-computation is applied can be found
in the following references [14,39]. G-computation is fairly robust in regard to model mis-
specification for estimating the marginal (or adjusted population-averaged) risk difference
if there is unmeasured confounding is not an option [38,40].

3.3. Propensity Score Methods

Propensity score (PS) methods are increasingly popular in observational studies as
an alternative to traditional covariates adjustment via a regression model. PS is one of the
most frequently used causal inference methods [9]. The PS methods are a set of statistical
tools that seek to balance non-equivalent groups with non-randomized designs. Simply
speaking, an individual’s PS is their probability to have received a treatment conditional
on a set of covariates, i.e., e(X) = Pr(A = 1|X = x). PS is commonly estimated by the
standard logistic regression model. Other methods, such as nonparametric regression,
generalized additive models, and machine learning methods, can be used to improve PS
estimation [41].

In a randomized trial, the true PS is known by design, whereas, in an observational
study, the PS must be estimated. The PS is typically estimated through a logistic regression
that incorporates variables that are associated with treatment assignment. Because the
PS summarizes all covariates as a single PS variable, it is able to mitigate problems of
overfitting for the outcome model [35,42]. The PS approach would not help much if the
outcome model is linear; however, tut the PS estimation may reduce overfitting for binary
outcome models (especially with rare diseases), as the PS summarizes all other covariates
into a single variable for the outcome model. Since the treatment assignment between the
active and the control is often well balanced (which is relatively common in practice), one
can flexibly model many covariates in the PS model. After the PS scores have been obtained,
we use them to estimate the treatment effect. PS-based approaches separate the design and
analysis in the sense that the PS model can be developed using only data regarding the
covariates and treatment variables. Excluding the outcome from development of the PS
estimation can avoid the “fishing expedition” of fitting models until favorable results are
obtained [38].

There are various methods of using PS for estimating treatment effects: (1) matching;
(2) stratification; (3) weighting; (4) using PS as a covariate in an outcome regression.

3.3.1. PS Matching

This approach creates matched sets of treated and untreated subjects with close PS
values. The matching ratio can be different, with one-to-one pair matching being the most
common. The response variable then is compared between the treated and untreated
subjects in the matching set. The matching can be with or without replacement, and each
untreated subject is paired to only one treated subject in matching without replacement,
while each untreated subject can be matched to more than one treated subject in matching
with replacement. Two common methods of matching are optimal matching and greedy
matching. Optimal matching involves forming matched pairs to minimize the average
within-pair difference in the PS. Greedy matching selects treated subjects sequentially for
matching. For a given treated subject, select the closest untreated subject, even if that
untreated subject would better serve as a “match pair” for a subsequent treated subject.
Gu et al. [43] compared these two matching methods, concluding that optimal matching
performed no better than greedy matching in producing balanced matched samples.
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3.3.2. PS Stratification

PS stratification divides a dataset into several strata based on PS scores. A treatment
effect is studied in each stratum and an overall treatment effect is computed using a
weighted average across all strata. This method compares the outcome between treated
and untreated subjects who are similar in their PS and thus also likely to be similar in the
distribution of their measured covariates. Stratification uses weights that are proportional
to the number of subjects in each stratum and allows for estimating the average treatment
effect. The weight is 1/k when there are k equal strata. The ATT can be estimated if we
weight by the stratum-specific number of treated subjects, while the ATE is estimated if we
weight by the sum of stratum-specific numbers of treated and control subjects [28,29].

3.3.3. PS Weighting

PS weighting is another important tool in causal inference that can be implemented in
different ways.

(1) Inverse Probability of Treatment Weighting (IPTW)

By IPTW, subjects are weighted by the inverse probability of being assigned to the
treatment: wi =

Ai
ei
+ 1−Ai

1−ei
. However, we often need to estimate the weights in observa-

tional studies, so ei would be estimated. Additionally, notice that weights can become quite
large when ei is near zero. For variance estimation, the distinction between the known
weights and estimated weights is important [32]. The covariate imbalance between treat-
ment groups is reduced by the weighting approach, and so an outcome can be compared
directly between treated and untreated subjects in the weighted data. The IPTW can be
used to estimate the ATE (Table 1).

Table 1. Summary of various types of population, corresponding estimands, and weights for both
treated and control subjects.

Population Estimand Weight

Combined ATE w1 = 1
ei(x) , w0 = 1

1−ei(x)

Treated ATT w1 = 1, w0 =
ei(x)

1−ei(x)

Overlap ATO w1 = 1 − ei(x), w0 = ei(x)

Matchable Treated ATM
w1 =

min{ei(x),1−ei(x)}
ei(x) ,

w0 =
min{ei(x),1−ei(x)}

1−ei(x)

(2) ATT Weighting

Alternate weighting wi = Ai +
(1−Ai)ei

1−ei
is used to obtain ATT, that is wi = 1 when

a subject is in the treatment group and wi =
ei

1−ei
when a subject is in the control group

(Table 1). A key requirement for both IPTW weighting and ATT weighting is the positivity
assumption, meaning that PS should not be too close to 0 or 1. When this assumption fails,
a small number of highly influential weights may lead to unstable weighting estimators.
A few alternative methods have been proposed, including trimming and the overlap
weighting [44].

(3) Overlap Weighting (OW)

The overlap weight is the probability that a subject is assigned to the opposite group,
i.e., 1 − ei for a subject in the treated group and ei for a subject in the control group. The
OW focuses on the causal effects on the population with the most overlap in covariates
between two treatment groups [18]. Estimation under unconfounded or ignorable treatment
assignment is often hampered by a lack of overlap in the covariates, which may result in
imprecise estimates and lead to estimators that are sensitive to the choice of specification.
The OW procedure involves the following a few steps: (1) estimating the ei from a model;
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(2) calculating the weights based on the estimated PS: ŵ1 = 1 − êi(x) if in the treatment
group and ŵ0 = êi(x) if in the control group; (3) normalizing the weights so that the sum
of the weights equals 1 within each group; (4) estimating the average treatment effect for
the overlap population by the difference of the OW-weighted average outcomes between
the groups.

Compared to the traditional IPTW weights and associated trimming methods, OW has
several advantages: (1) there are no extreme weights; (2) it gives minimum variance of the
weighted estimator of causal effects among all balancing weights (including IPTW); (3) the
exact mean balance of covariates is achieved when PS is estimated via a logistic regression;
and (4) there is no need to choose an artificial cutoff point, as required by trimming.

3.3.4. Use PS in Regression

Rosenbaum and Rubin [9] suggest to add the PS term in the regression model. For
example, the estimated PS term (ê(Xi)) is added into a linear regression model:

Yi = β0 + β1 Ai + β2 ê(Xi) + εi,

where Ai indicates the treatment assignment for subject i and β1 is the treatment effect
conditional on the PS values that are calculated based on the covariates.

3.4. Doubly Robust Estimator

Doubly robust estimators combine models for the treatment and outcome in such
a way that they provide unbiased estimates for the treatment effect as long as one of
the models is correctly specified. Augmented Inverse Probability Weighting (AIPW) is
a commonly used doubly robust estimator. The AIPW is built by combing an inverse
probability weighting approach with g-computation [45]. For each treatment group, a
separate model for the outcome variable is fitted by using a set of covariates, and the
potential outcomes that correspond to each treatment assignment are predicted for all the
subjects as follows:

Ŷi(0) = g−1
(

Xi β̂c

)
, Ŷi(1) = g−1

(
Xi β̂t

)
where g−1 is the inverse link function used in the generalized linear model for the outcome
variable, β̂c is the regression coefficient estimate for the outcome regression model in the
control group, and β̂t is the coefficient estimate for the outcome regression model in the
treatment group. The AIPW estimates are given by [46]

µ̂0 =
1
n

n

∑
i=1

(1 − Ai)Yi
1 − êi

+
(Ai − êi)

1 − êi
Ŷi(0),

µ̂1 =
1
n

n

∑
i=1

AiYi
êi

− (Ai − êi)

êi
Ŷi(1),

where êi is the predicted PS for a subject from the treatment model.
A targeted maximum likelihood estimator (TMLE) is another doubly robust estimator

that is based on a targeting step to optimize the bias-variance tradeoff for the parameters
of interest [47]. Like the g-computation, TMLE estimates the predicted probabilities of
potential outcomes for each subject. Then, g-computation calculates the difference in those
two predicted probabilities over all levels of the covariates, whereas TMLE involves an
extra targeting step incorporating the inverse probability weights prior to calculation of
treatment difference.

4. Diagnostics of Covariate Balance

We outline the methods used for assessing balance in covariates suggested in Zhang et al. [48].
These diagnostics compare whether the distributions of relevant covariates are similar
between the treated and untreated subjects [30,49].
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The common measures of balance include the standardized differences and com-
parison of the distributions of covariates. The standardized mean difference (SMD) is
defined as

SMD1 vs 0 =

∣∣ X1 − X0
∣∣

2
√(

S2
1 + S2

0
)
/2

,

where X1, X0 are the sample means of the covariate for the two arms and S2
1, S2

0 are the
corresponding sample variances. The SMD for the dichotomous variable is

SMD1 vs 0 =
| p1 − p0 |

2
√
( p1(1 − p1) + p2(1 − p2))/2

,

where p1, p0 are the sample proportions for the two treatment arms. This formula can be
extended for categorical variables where the comparison can be employed at each level of
the variable or the Mahalanobis distance can be used, as proposed by Dalton [50]. SMD is
interpreted as the mean difference in a unit of the standard deviation and does not depend
on sample sizes or units of the variable that is measured. Because SMD does not depend
on the measurement unit, it allows for comparisons between variables with different units.
SMD is often presented with a love plot that graphically displays a covariate balance before
and after adjusting. Generally, 0.1 represent reasonable SMD thresholds for balance [48].
Other common balance measures include the Kolmogorov–Smirnov (KS) test statistics and
t-statistics [51]. Variance is the second central moment of the mean and should also be
compared. A variance ratio of 1 between treatment groups indicates a good balance, and a
variance ratio between 0.5 and 2 is generally acceptable [48].

Moreover, we can look at the interactions, higher order terms, etc. The standard
distribution tests can be employed, such as empirical cumulative distribution functions or
non-parametric estimates of the density function of each covariate. Simple plotting, such as
with side-by-side boxplots, Q-Q plots, and residual plots, is helpful and convenient.

Prognostic scores, defined as the predicted probability of the outcome in the control,
can be used for assessing balance as well [52]. We can first regress the response on covariates
only in the control group; then, that fitted model is employed to predict an outcome for all
subjects. Simulation study has shown that the prognostic score approach can outperform
mean differences and significance tests for assessing balance [52].

5. Software Tools for Implementation

Several software programs that implement confounding adjustment are available in
many programming languages, including R, Python, SAS, and Stata. There are a num-
ber of R packages for PS methods, including twang [53], CBPS [54], PSW [55], ATE [56],
WeightIt [57], causalweight [58], sbw [59], and PSWeight [60], as well as several pack-
ages that implement doubly robust estimators, including AIPW [61], CausalGAM [62],
npcausal (nonparametric causal inference) [63], and tmle (targeted maximum likelihood
estimation) [64]. The Comprehensive R Archive Network (CRAN) task view for causal
inference provides a list of many more packages related to this topic [65]. Some packages
are available in Python, such as zEpid [66], delicatessen [67], and PyWhy [68]. SAS provides
many procedures for general confounding adjustment, such as PSMATCH, LOGISTIC,
CAUSALGRAPH, CAUSALMED, and CAUSALTRT [46,69]. These causal procedures can
be used to calculate PS, produce matched sets, estimate various estimands, and assess
covariate balance. There are many ways of calculating standard errors in causal inference.
The CAUSALTRT Procedure in the SAS/STAT® 15.3 User’s Guide provides details and
formulas for standard errors and confidence intervals [69]. Ding [13] gives good coverage
of obtaining standard errors for various estimators.

6. Example

This example uses the Study to Understand Prognoses and Preferences for Outcomes
and Risks of Treatment (SUPPORT), which was a multi-center observational study on
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seriously ill and hospitalized patients to examine the effectiveness of Right Heart Catheteri-
zation (RHC) in the initial care of critically ill patients [70]. The dataset pertains to Day 1 of
hospitalization. This example includes all 5735 subjects who were admitted to an ICU in
the first 24 h after entering the study. RHC was coded as present if it was performed, and
there were 2184 patients who received RHC. The outcome of interest is patients’ chance
of surviving by the end of first month. The original analysis by Connors et al. [70] used a
binary logistic model to obtain PS to match RHC patients with No-RHC patients. Their
results provided evidence that RHC patients had a decreased survival time.

Here, we apply the reviewed methods (i.e., regression with all covariates, g-computation,
weighting, stratification, matching, and AIPW) and describe important steps for their imple-
mentation. In the Supplementary document, we provide code to replicate the analyses.

All the covariates (~50) are included, as suggested by Connors et al. [70]. The logistic
regression is used to determine the PS, i.e., the probability of receiving RHC for each
subject. The effectiveness of using PS to account for major covariates’ imbalance is tested
for differences between the two RHD groups (with and without RHC).

The PS distributions for the two RHD groups are displayed in Figure 1. The graph
shows apparent differences in the PS distributions. There are many subjects with small PS
values (around 0) and large ones (close to 1), indicating some covariate combinations were
highly predictive of receiving RHC. The patients whose PS and RHC status do not agree
may be atypical but received large weights.
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Figure 1. Histogram of the propensity score distributions for the two treatment groups. The blue
and red curved lines are the probability density curves of the propensity score distributions for the
two groups.

The love plot in Figure 2 compares the standardized differences of selected covariates
included in the PS model: (1) blue for the original data in the regular regression; (2) purple
for ATT weighting; (3) red for ATE weighting; (4) black for matching; (5) green for overlap
weighting. We can see that the mean differences for most covariates are quite large in the
traditional regression but are reduced with the adjustment methods. For all the methods,
the largest SMD in absolute value is less than the recommended limit of 0.1 [48]. These
indicate the effect of those methods on reducing the differences in covariates. The SMD
with overlap weighting is the smallest (very close to zero in green). PS matching and
weighting seem to remove a greater portion of systematic differences between the treated
and untreated subjects compared with many other approaches, such as stratification and
traditional regression, which is in agreement with Peter Austin’s 2009 paper [71]. Among
weighting approaches, overlap weighting seems to perform the best in terms of having the
smallest mean difference, as expected.
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Figure 2. A love plot comparing the absolute standardized difference of selected covariates included
in the model with different methods: (1) blue for original data in the traditional regression, (2) purple
for ATT weighting, (3) red for ATE weighting with IPTW, (4) black for matching, and (5) green for
overlap weighting.

The endpoint was surviving up to one month post-ICU admission. A binomial model
with the logit link is used to obtain the risk difference and odds ratio for comparing the treat-
ment effect of RHC versus No-RHC. We present the point estimates on the risk difference,
standard errors, p-values, and corresponding confidence intervals for various methods. The
results are displayed in Table 2, where the content is first arranged by the type of estimands,
then by confounding adjust methods. In the Estimand column, we list the crude effect
estimate, ATE, ATT, ATM, and ATO. For the crude effect, no covariates were included in
the logistic model except for the treatment variable, and SAS’s LOGISTIC procedure was
used. For ATE, many methods were implemented, including the traditional regression
with all covariates (SAS LOGISTIC), g-computation (SAS CAUSALTRT), PS stratification
(SAS PSMATCH), PS weighting (SAS PSMATCH), and doubly robust estimators (SAS
CAUSALTRT, the AIPW and PSWeight packages in R). For the remaining ATT, ATM, and
ATO estimands, almost all estimators were employed as well. In Table 2, the results from
using SAS are presented whenever there is a suitable procedure available in SAS, with the
exception that the PSWeight package in R is used for the doubly robust estimator for ATT
and overlapping weighting.

The crude estimate, without accounting for any covariates, and the CATE with a
traditional regression, accounting for all covariates, give relatively larger risk differences
(0.074 and 0.072, respectively) compared to most other methods (0.050–0.059). Most other
methods, such as g-computation, PS weighting, etc., produce similar results in terms of
having comparable point estimates and confidence intervals. The risk difference between
the RHC and No-RHC control groups is all positive, indicating that patients with RHC had
an increased rate of 30-day mortality after adjusting for treatment selection bias. This result
confirms with the original analysis by Connors et al. that RHC patients had decreased
survival rates compared to No-RHC patients [70].
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Table 2. Analysis results for the binary outcome of passing the first month: The point estimates on
risk difference in having 30-day mortality between RHC and No-RHC groups, associated standard
errors, p-values, and confidence intervals for various methods. All methods except for the crude
model include all available covariates.

Estimand Methods
Risk

Differ-
ence

Standard
Error p-Value 95% CI of Risk

Difference

Crude Regression without
covariates 0.074 0.013 <0.0001 [0.048, 0.099]

CATE Traditional regression
with all covariates 0.072 0.021 <0.0001 [0.031, 0.114]

ATE

G-computation 0.059 0.014 <0.0001 [0.032, 0.087]

PS stratification
(5 strata) 0.055 0.032 0.1622 [−0.008, 0.119]

PS weighting: IPTW 0.053 0.010 <0.0001 [0.035, 0.070]

Doubly robust 0.059 0.014 <0.0001 [0.032, 0.087]

ATT

G-computation 0.056 0.014 <0.0001 [0.028, 0.085]

PS stratification
(5 strata) 0.055 0.030 0.1623 [−0.008, 0.118]

PS weighting 0.053 0.014 <0.0001 [0.025, 0.081]

Doubly robust 0.062 0.016 <0.0001 [0.029, 0.094]

ATM PS matching 0.049 0.017 0.0035 [0.016, 0.08]

ATO
Overlap weighting 0.057 0.012 <0.0001 [0.031, 0.083]

Overlap weighting with
doubly robust 0.059 0.012 <0.0001 [0.033, 0.085]

Note: The results from using SAS are presented whenever there is a suitable procedure available to use in SAS.
For the doubly robust estimator for ATT and overlapping weighting, the PSWeight package in R was used.

PS stratification can be unstable when the number of strata is large or the data size is
small. In this example, stratification with five strata showed some signs of instability, with
the first stratum and the last stratum having a relatively large standard error; additionally,
it would be even worse in terms of having estimates that are very different from stratum to
stratum when the number of strata increases to 10.

The ATM risk difference obtained from the matched observations is the smallest
(0.049), proving to be a little different than most ATE and ATT estimates. This is because
ATM represent the matched observation pool, a subset of the whole population that most
ATE and ATT is derived from.

In general, it seems that the ATO with overlap weighting and its doubly robust version
have the smallest standard errors and, therefore, the smaller confidence intervals, as claimed
in Li et al. [17]. However, the performance of any method must be considered in terms of
the estimand and that estimand’s relevance to the motivating scientific question.

7. Discussions

In randomized control trials, it is reasonable to assume there are no systematic differ-
ences in covariates between treatment groups. Therefore, the causal effect of a treatment
can be directly estimated by comparing the observed outcome in the active treatment group
versus that in the control group. To evaluate the treatment effect from observational data,
additional effort must be made to remove the impact of confounding variables, which are
related to both the treatment and outcome.

For observational data, making causal inference needs to elect an appropriate estimand
to start. The choice of estimands relies on the research objectives. For example, if we want
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to make an inference about the effect on outcomes for all subjects, then the ATE should
be the preferred estimand. If the population of interest is among subjects who selected
treatment, then the ATT should be used. If one is interested in comparing causal effects
estimated from an observational study to that from a randomized trial, then ATO might be
more appropriate.

We reviewed a wide range of confounding adjustment methods. Each method has its own
pros and cons. Table 3 summarizes the advantages and disadvantages of different methods.

Table 3. Comparison of different confounding adjustment methods.

Method Advantage Disadvantage

Traditional regression
• Simplest and easy to fit
• Provides a prognostic model for outcome of

interest

• Model mis-specification decreases
precision in unbalanced design

• May be implausible with a large
number of covariates

• Treatment effect is assumed to be
the same for different levels of the
covariates

G-computation
• Treatment effect can be different for

different levels of the covariates
• Robust to model mis-specification

• Needs more time to compute
confidence intervals

PS Stratification
• Keeps all the data and divides into strata
• Gives estimates for all strata
• Explores interactions of treatment and PS

• Has bias when a small number of
strata are used

• Unstable when the number of strata
is large and/or the data size is small

PS Matching
• Simple to perform and interpret
• Often provides good balance among

matched pairs in most cases

• Loses data due to unmatching
• May not be precise
• Need to choose matching algorithm

PS Weighting

• Keeps all the data
• Often provides good balance in covariates
• Easy to implement and intuitive to

understand

• May be unstable with the presence
of extreme weights

• Needs to decide whether to take out
very large and small weights

Traditional Regression with PS
as a Covariate

• Simple to implement
• May not be necessary
• Removes less difference compared

with matching and weighting.

Doubly Robust Estimator • Unbiased if one of the treatment model and
response model is correct

• More difficult to implement
• Takes a longer time

Overlap Weighting

• Weights are bounded between 0 and 1
• Minimize the asymptotic variance
• Define a population of substantial clinical

relevance and policy interest
• Doubly robust estimator can be applied

• Not available in some software
languages except for PSWeight
package in R

Traditional regression models are among the easiest to implement due to many soft-
ware packages being available. However, these models may be less efficient in reducing
confounding bias and more difficult to interpret when there are many covariates. Specifi-
cally, the treatment effect is assumed to be the same for all levels of the covariates included
in a model [36]. Moreover, the conditional effect and marginal effect may no longer be in the
same direction due to non-collapsibility [38]. Model mis-specification may also impact pre-
cision in unbalanced designs with treatment-effect heterogeneity [37]. When g-computation
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is applied, treatment effects can be differentiated by covariates. G-computation is effective
in reducing confounding bias and balancing covariates. However, variance estimation
is more complex, relying on either bootstrapping or the empirical sandwich variance
estimator [72,73].

PS stratification has the advantage of keeping the whole data and exploring possible
interactions between the treatment variable and PS. It tends to work well with small to
moderate covariate imbalances [35]. If there are not many strata, residual confounding
within strata may cause bias. To mitigate this bias, we can increase the number of strata.
The more strata used, the closer the stratification will be to the matching method. However,
stratification may perform poorly when the data size is small by giving inconsistent results
across different strata, as shown in our example. To choose the proper number of strata,
we should consider both the need for confounding control and the need of having enough
events. Previous research has shown that five strata may reduce confounding bias by up to
90% [35].

PS-based matching is simple to use and often performs well in most cases. It provides
nice covariate balance among the matched subjects. However, it occasionally tends to
provide imprecise estimates as a result of the fact that some data without matches are
dropped. Matching can result in large variance in estimates if a great deal of data is taken
out. There are a number of matching techniques in the literature but little guidance to how
to select among them in practice; the primary advice seems to select the one with the best
balance [23]. Multivariate matching with the Mahalanobis distance or coarsened exact
matching [74] are competitive, if not preferable, to PS matching in their ability to reduce
imbalance and estimation bias.

PS weighting keeps all the data and often provides good balance among groups in
most case [35]. When a covariate imbalance is large, the PS will be close to either 0 or 1,
meaning that some subjects can have very large weights. It produces unbiased estimates but
can have large variances if many subjects have large weights. Trimming can be employed
in the case of many large weights. Yang and Ding (2018) [75] provided asymptotic theories
for trimming, pointing out that trimming may introduce extra arbitrariness to the process
while stabilizing PS weighting.

Treating PS as a covariate in a regression model is very convenient to achieve and is
efficient in balancing covariates. A disadvantage is that it requires that the regression is
correctly specified [71]. Researchers have also demonstrated that confounding adjustment
using PS removes less of the systematic differences if compared with other approaches,
such as the PS matching and weighting [71].

Doubly robust estimators, like AIPW and TMLE, offer clear advantages over g-
computation and PS methods [76,77]. First, doubly robust estimators are unbiased as
long as either the treatment model or outcome model is correctly specified. Second, doubly
robust estimators are more efficient than IPW when the outcome model is not grossly
mis-specified. Third, the variance estimator based on the influence curve has a closed-form.
Lastly, some doubly robust methods allow for valid use of machine learning to estimate the
PS and outcome models, unlike g-computation and PS methods [78,79].

Overlap weighting does not involve issues related to large weight problems, unlike
standard inverse probability weights, as overlap weights are bounded between 0 and 1.
Overlap weighting can obtain the exact mean balance of any covariates and minimize the
asymptotic variance, as shown in the example. The variance estimators of the OW estimator
of the marginal treatment effect have a closed-form, whereas the bootstrap or simulation
used to estimate the variances with non-linear estimators do not [37].

As an alternative to PS methods, covariate balancing can be achieved by multivariate
reweighting methods such as entropy balancing [80]. It can exactly match the first, second,
and possibly higher moments of specified covariates. These balance improvements can
potentially reduce model dependence for the subsequent estimation of treatment effects.

We have carried out a comprehensive review of common confounding adjusting
approaches, including outcome regression models, g-computation, PS methods, and doubly
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robust methods. Estimands and target population should be considered in determining
which methods produce the most valid results. Each method has its own advantages and
disadvantages. We conclude that there are considerable differences between estimands and
corresponding estimators; however, none of them have proven to be uniformly better.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14093662/s1, The SAS code which was used to replicate the
analyses is displayed in Supplementary File.
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