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Abstract: Recently, the growing demand for meat has increased interest in precision livestock farming
(PLF), wherein monitoring livestock behavior is crucial for assessing animal health. We introduce a
novel cattle behavior detection model that leverages data from 2D RGB cameras. It primarily employs
you only look once (YOLO)v7-E6E, which is a real-time object detection framework renowned for its
efficiency across various applications. Notably, the proposed model enhances network performance
without incurring additional inference costs. We primarily focused on performance enhancement and
evaluation of the model by integrating AutoAugment and GridMask to augment the original dataset.
AutoAugment, a reinforcement learning algorithm, was employed to determine the most effective
data augmentation policy. Concurrently, we applied GridMask, a novel data augmentation technique
that systematically eliminates square regions in a grid pattern to improve model robustness. Our
results revealed that when trained on the original dataset, the model achieved a mean average precision
(mAP) of 88.2%, which increased by 2.9% after applying AutoAugment. The performance was further
improved by combining AutoAugment and GridMask, resulting in a notable 4.8% increase in the
mAP, thereby achieving a final mAP of 93.0%. This demonstrates the efficacy of these augmentation
strategies in improving cattle behavior detection for PLF.

Keywords: AutoAugment; cattle behavior; deep learning; GridMask; precision livestock farming;
object detection; YOLOv7-E6E

1. Introduction

The rapid increase in the global population has resulted in an increased demand
for beef [1]. Figure 1, published by the Organization for Economic Co-operation and
Development (OECD), shows beef consumption per capita by OECD countries during
2014–2021 [2], wherein it is evident that beef consumption has been increasing annually
owing to the rising demand.

Therefore, precision livestock farming (PLF) is actively being developed to ensure
effective and efficient livestock production [3]. PLF involves the development of monitoring
systems for various livestock characteristics, including health and welfare [4]. Analyzing
livestock behavior in PLF is crucial because it enables the assessment of the current con-
ditions of animals [5]. Detecting the behavior of livestock not only aids in the real-time
monitoring of animal health but also plays a crucial role in farm management. The ability to
detect changes in behavior can act as an early indicator of potential health issues, enabling
timely intervention and treatment. Additionally, it can assist in quickly identifying and ad-
dressing any stressors or discomforts experienced by the livestock. In particular, observing
behaviors such as drinking, eating, and lying down can help determine the health status of

Appl. Sci. 2024, 14, 3667. https://doi.org/10.3390/app14093667 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093667
https://doi.org/10.3390/app14093667
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2122-468X
https://doi.org/10.3390/app14093667
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093667?type=check_update&version=2


Appl. Sci. 2024, 14, 3667 2 of 13

livestock or diagnose diseases early [6,7]. However, monitoring livestock behavior requires
substantial human resources and labor. Furthermore, the direct observation of livestock is
unsustainable, as the observer’s attention inevitably decreases because of fatigue. Therefore,
recent studies have focused on methods that enable observing livestock behavior without
the need for continuous human monitoring.
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Pavlovic et al. [8] collected cow behavioral data through a neck-mounted three-axis ac-
celerometer sensor and a jaw-mounted pressure sensor. Based on these data, they classified
cow behaviors into three categories: ruminating, feeding, and others. Their classification
model employed a convolutional neural network architecture and achieved an F1 score of
0.82, which indicates the good overall accuracy of the model. Similarly, Williams et al. [9]
classified “defecation” and “urination” behaviors using an accelerometer attached to the
cows’ tails. They developed a classification model using the random forest algorithm,
which is an ensemble algorithm that makes predictions by learning from numerous de-
cision trees, and achieved sensitivity (recall) and precision scores of >86.7%. Methods that
analyze cattle behavior based on sensor data are effective and exhibit high performance
for livestock behavior classification. However, such sensor-based data collection methods
necessitate the direct attachment of sensors to livestock, which can cause stress in the ani-
mals. Additionally, these sensors are susceptible to damage and contamination; therefore,
farmers must periodically check them, which increases their workload [10,11].

In contrast to research based on sensor-based methods, some studies have determined
livestock behavior using data obtained from 3D cameras. Chen et al. [12] introduced an
algorithm that uses the Intel RealSense depth camera and a support vector machine to
detect aggressive behavior in pigs; the algorithm exhibited an accuracy of 97.5%. As noted
in previous studies, employing 3D camera data under suitable conditions can result in high
performance. However, 3D cameras are susceptible to direct sunlight, which hinders their
outdoor use. Additionally, their range is limited as they can only capture data effectively
within a specific range [13]. Moreover, 3D cameras have lower resolutions and cost more
than 2D RGB cameras, rendering their usage on livestock farms challenging [14].

Therefore, some studies have analyzed livestock behavior using 2D image data.
Zhang et al. [15] proposed an algorithm that detects the behaviors of sows using image
data and classifies them into “drinking”, “urination”, and “mounting” using the MobileNet
model; the algorithm exhibited a mean average precision (mAP) of 93.4%. Additionally,
Wang et al. [16] detected the estrous behavior of cows based on 2D image data using the
you only look once v5 (YOLOv5) model, which achieved a mAP of 94.3%. Such models
that detect livestock behavior based on 2D image data have shown good performances. A
significant advantage of these methods is that they enable analysis of various behaviors
noninvasively [17]. Moreover, 2D cameras have a wider field of view than 3D cameras and
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are relatively stable against direct sunlight, rendering them more suitable for applications
on livestock farms. Therefore, this study proposes a system that detects cattle behavior
using data collected with 2D RGB cameras. The proposed model was implemented using
YOLOv7-E6E, an object detection algorithm. Additionally, we employed data augmentation
techniques to mitigate the problem of insufficient data. By detecting cattle behavior in real
time, this proposed system can significantly assist livestock farmers.

2. Materials and Methods
2.1. Data Acquisition

The data used for training and validating the proposed cattle behavior detection
model were collected at the Gangwon State Livestock Research Institute, Hoengseong,
Gangwon State, South Korea. The farm comprised two cows and two calves. Three cameras
were installed to capture views from different angles and ensure diverse data collection.
Employing data captured from various angles can enhance the generalizability of a model
more than those captured from a single angle.

Camera A was installed above the feeding area at a 45◦ angle to capture the overall
view of the pen, whereas Camera B was installed on the upper part of the side and primarily
focused on the drinking area and calves’ room. Finally, Camera C was installed vertically
above the feeding area to capture cattle feeding behaviors. Figure 2 shows the overall
structure of the pen and examples of the images captured by each camera.
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This study employed network IP cameras (GB-CDX04, GASI) with a focal length in
the range of 4.1–16.4 mm and featuring an automatic infrared (IR) function that enables
image capture at night. The data captured with this camera were stored in the DAV video
format at an HD (1280 × 720 pixels) resolution at 30 fps. The dataset included videos
recorded over 264 h, in the period 1–11 December 2021, from different angles using these
three cameras.

2.2. Image Extraction

In this study, 792 h of video was converted into images for input into the YOLOv7-
E6E model. Image extraction was performed by analyzing the differences in histograms
among frames rather than using fixed intervals. Extracting images at regular intervals may
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result in repetitive capture of the same image when the cow is stationary or makes minimal
movements, and using such similar image data for deep learning model training can induce
overfitting. Moreover, the cattle might exhibit unique behaviors between the intervals of the
extracted frames, which will not be extracted. Therefore, this study employed an approach
that extracts images using the histogram sum differences between frames. Figure 3 shows
examples of images extracted using the proposed approach.
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The image extraction method used the following approach to determine frame differ-
ences: First, all frames were converted to grayscale, and the absolute gray-level sum of
all pixels in each frame was calculated. Subsequently, the first frame was determined as
the baseline frame, and the difference between its grayscale sum and that of the second
frame was computed. If this difference was <30,000, the sum of the differences between
the baseline frame and the third frame, which was the next frame, was calculated. This
process continued until a frame whose grayscale value differed from that of the baseline
frame by >30,000 was reached. Thereafter, it was extracted and set as the baseline frame,
and the aforementioned process was repeated for all video frames. Figure 4 shows the his-
tograms of the first and second images selected from Figure 3 and the differences between
their histograms.
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This study analyzed the differences in the gray-level sums to determine a threshold
value wherein the difference in the gray-level sums of a frame showing a particular behavior
and that showing a different behavior was 30,000. We set this as the threshold of the gray-
level sum difference for image extraction.

This method enabled extracting more frames depicting active rather than minimal
movement, such as during the rest period. Compared to extraction at constant frame
intervals, this approach prevents the accumulation of multiple similar images and effec-
tively extracts frames depicting unique behaviors. Using this method, 18,549 images were
extracted at the same resolution as the videos (1280 × 720 pixels) and stored in the BMP
format, which is a lossless and uncompressed image format.

2.3. Dataset Composition

To train the proposed object detection model, areas of the images showing specific
behaviors were labeled with bounding boxes and the cattle behaviors were categorized
into five classes: resting, communion, feeding, drinking, and eating. These five behavioral
classes were further categorized into two groups: independent and interacting. Indepen-
dent behavior included resting, drinking, and eating, which can be observed independently
in cows and calves. Interacting behavior comprised communion and feeding behaviors,
which involve interactions between cows and calves. Sample images depicting each be-
havior class are shown in Figure 5. The behaviors for each class were classified as follows:
Resting involved the cattle sitting with their bellies touching the ground. Communion
involved the cow’s mouth touching the calf’s body, or vice versa. Feeding involved the calf
placing its head on the cow’s teat and drinking milk. Drinking involved passing the entire
head over the fence toward the water trough and drinking water. Finally, eating involved
placing their heads in the feed trough.
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Among the five behavior classes, this study focused on the communion class. Because
cattle are social animals, the bond formation between cows and calves is crucial; cattle
that lack adequate bonding experience stress. Interactions between cows and calves can
strengthen this bond and potentially aid in calming calves [18]. Therefore, bonding behavior
is a vital indicator for analyzing cattle behavior.
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After labeling, the data were divided into training, validation, and test sets in a ratio of
6:2:2. However, in a deep learning model, employing multiple images from a single video
across different datasets can result in overfitting. Therefore, we ensured that the images
extracted from a video were included in only one dataset to avoid duplicates among the
training, validation, and test sets. Table 1 presents the dataset configurations and Table 2
lists the number of labels for each class.

Table 1. Dataset configurations.

Camera Train Validation Test Total

Camera A 3723 1235 1230 6188
Camera B 3711 1237 1236 6184
Camera C 3720 1234 1223 6177

Total 11,154 3706 3689 18,549

Table 2. Number of labels for each class.

Class Train Validation Test Total

Resting 10,567 4396 3218 18,181
Communion 1186 114 846 2146

Feeding 851 173 416 1440
Drinking 299 93 155 547

Eating 5764 2060 2797 10,591
Total 18,667 6836 7432 32,905

2.4. Data Augmentation

To ensure effective training of a deep learning model, high-quality data in large
quantities are essential. However, the collection and labeling of such large datasets require
significant time and labor. Therefore, this study used data augmentation techniques such
as AutoAugment and GridMask.

AutoAugment employs a reinforcement learning algorithm trained on a specific dataset
to determine the most effective augmentation policy [19]. There exist 16 types of image
augmentation methods: shearX (Y), translateX (Y), rotate, AutoContrast, invert, equalize,
solarize, posterize, contrast, color, brightness, sharpness, cutout, and sample pairing. Au-
toAugment produces 25 pairs of techniques by combining two techniques from this list. The
25 pairs of generated techniques are applied with varying probabilities and intensity levels to
introduce diverse modifications to the images, thereby enabling the model to become more
robust to variations. This study compared the performances of the augmentation policies
trained on the Cifar-10 and ImageNet datasets [20,21]. After data augmentation, the number
of training images was increased by 25×, from 11,154 to 278,850.

Data augmentation methods such as cutout, hide-and-seek, and GridMask based on
information removal encourage the object detection model to focus on learning from a
variety of features of the object rather than relying solely on specific characteristics [22–24].
This approach not only improves the model’s generalization performance but also enhances
its robustness in diverse environments.

Among the data augmentation methods based on information removal, GridMask
uniquely deletes rectangular areas uniformly and masks parts of the image to enhance
the diversity of the training data. As a result, the model becomes more robust to various
modifications and changes present within the dataset. Furthermore, integrating GridMask
introduces randomness and unpredictability into the training phase, serving as a preventive
measure against overfitting. It ensures the model remains effective when encountering
previously unseen data.
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In this study, GridMask was applied to 278,850 images that had been augmented
using AutoAugment. GridMask was implemented with a 50% probability, ensuring that
the augmentation process introduced a balanced mixture of obscured and unobscured
images. The combination of these two augmentation techniques increases the diversity of
the dataset and, consequently, the robustness and generalization performance of the object
detection model.

2.5. Object Detection Using YOLOv7-E6E

In this study, we used the YOLOv7-E6E model for real-time recognition and classifica-
tion of cattle behavior [25]. The YOLOv7-E6E model is an advanced iteration of the basic
YOLOv7 network, designed to enhance real-time object detection performance and reduce
inference costs. It employs several techniques, which are described as follows: First, the
model adopts the extended efficient layer aggregation network (E-ELAN), which addresses
the limitations of ELAN [26]. E-ELAN efficiently controls the gradient paths through the
expansion, shuffle, and merge cardinalities. This enhances the training capability of the
model even if many computation blocks are stacked.

Next, an auxiliary head generates fine and coarse labels based on the predictions of the
lead head. The fine and coarse labels are used to train the lead and auxiliary heads, respectively.
Through this bifurcated training approach, the model can achieve a balanced understanding
of both detailed and comprehensive features, leading to performance improvements.

Additionally, training the Aux head for coarse labels enhances the model’s recall
performance. It is particularly useful in behavior analysis, where detecting subtle and
diverse patterns of behavioral changes is crucial. Moreover, the YOLOv7-E6E model
demonstrates better speed and accuracy compared to other methods. Therefore, this study
deemed it suitable for real-time detection of cow behaviors. Figure 6 illustrates the structure
of the proposed YOLOv7-E6E model, and Figure 7 shows the flowchart of cow behavior
detection using the YOLOv7-E6E model.
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This study employed a system comprising an Intel i9-10920X CPU @3.50 GHz and
NVIDIA GeForce RTX 3090 GPU. The programming environment comprised Windows 10,
Python 3.9.12, CUDA 11.8, PyTorch 1.11.0, and Torchvision 0.12.0.
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2.6. Evaluation Metrics

This study used the precision, recall, and mAP evaluation metrics to evaluate the
proposed deep learning model. Precision is the ratio of correctly detected objects to the total
number of objects identified by a model. Recall is the ratio of correctly detected objects by
the model among the actual objects. Therefore, a high precision value indicates that the
model accurately identifies areas containing objects with minimal false detections, whereas
a high recall value indicates that the model rarely fails to detect the actual behavior of objects.
mAP, which is commonly used as a performance evaluation metric for object detection
models, is the mean of the average precision (AP) for each class based on an intersection
over a union threshold of 0.5. AP refers to the area under the precision–recall (P–R) curve,
which illustrates the change in precision values under varying recall levels.

Precision =
TP

TP + FP

Recall =
TP

TP + FN
AP = Area o f Precision − Recall Curve

mAP =
1
N

N

∑
i=1

APi

True positive (TP) refers to instances wherein the model correctly identifies an object
in an image, whereas false positive (FP) indicates the incorrect identification of an object
that is absent. Finally, false negative (FN) indicates that the model fails to detect an object.

3. Results and Discussion
3.1. Original Dataset Results

First, to compare and evaluate the methods used in this study, we analyzed the
performance of the model trained on the original dataset; the results are listed in Table 3.

The results for the original image dataset showed that the performance for the commu-
nion and feeding classes was relatively lower than that for other classes. This performance
degradation is attributed to the characteristics of these classes, as unlike the other classes,
these classes involve interactions between cows and calves. The significantly low recall rate
indicates that the model found it challenging to accurately detect the communion class,
which was crucial for this study.
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Table 3. Performance of cattle behavior detection for the original dataset.

Behavior Precision (%) Recall (%) mAP (%)

Resting 92.3 86.6 92.6
Communion 84.3 68.7 81.4

Feeding 82.2 67.8 73.7
Drinking 92.5 89.0 96.4

Eating 90.2 95.9 96.4
All 88.3 81.6 88.2

3.2. AutoAugment Dataset Results

As mentioned previously, communion is an important class for bond formation be-
tween cows and calves, which is essential for stress reduction among calves. Therefore,
AutoAugment with the Cifar-10 and ImageNet policies was applied to the original image
dataset to address the relatively low detection performance of the model for this class, and
its performance was re-evaluated; the results are listed in Table 4.

Table 4. Performance of the cattle behavior detection model for the dataset augmented using
AutoAugment with the Cifar-10 and ImageNet policies.

Augmentation
Policy Behavior Precision (%) Recall (%) mAP (%)

Cifar-10

Resting 93.3 91.7 95.0
Communion 87.6 81.6 87.0

Feeding 79.4 71.4 74.5
Drinking 95.0 99.4 98.9

Eating 87.5 96.1 97.0
All 88.6 88.0 90.5

ImageNet

Resting 94.0 88.4 93.5
Communion 83.7 79.9 87.2

Feeding 83.7 69.0 78.9
Drinking 96.8 96.6 98.8

Eating 88.2 96.4 97.0
All 89.3 86.1 91.1

The results show that the application of the Cifar-10 and ImageNet policies improved
the precision for each class by 0.3 and 1.0%, respectively, recall by 6.4 and 4.5%, respectively,
and mAP by 2.3 and 2.9%, respectively. These results indicate that the size of the original
image dataset was insufficient to effectively train the model on the object features. Thus,
training on the image data generated using these augmentation policies enhanced the
detection performance of the model.

Additionally, the ImageNet policy improved the performance more than the Cifar-10
policy. This is because the ImageNet policy is tuned for 1000 classes, which is more than
that of Cifar-10, and enabled training the object detection model on a more diverse and
robust training set.

3.3. GridMask Data Augmentation Results

The results in Section 3.2 indicate that the ImageNet policy enhances performance more
than the Cifar-10 policy. Therefore, GridMask was applied to the images augmented using
the ImageNet policy with a 50% probability. The detection performances for training the
model on data augmented using AutoAugment and GridMask are presented in Table 5.

Compared with the original dataset, the precision decreased by 0.5%, recall increased by
9.2%, and mAP improved by 4.8%, indicating that GridMask enhanced the generalization
performance of the detection model. Additionally, the model could recognize object features
using only partial information regarding the object. Consequently, its object detection
capability in various environments was improved. The integration of GridMask and
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AutoAugment enhanced the training dataset diversity, resulting in notable improvements
in the model performance. However, owing to a 6.4% decrease in the precision score for
the eating class, the precision for all classes dropped by 0.5%. The eating class labeled
behaviors such as cows putting their heads through the feeding fence or placing a calf’s
head inside the feed container. Therefore, the labels exhibited two distinct positions and
shapes. By applying AutoAugment and GridMask, parts of the feed container and fence
were obscured in the image transformations, preventing adequate model training on these
behaviors. Therefore, cattle that did not exhibit any specific behavior were incorrectly
detected as eating, which decreased the precision for the eating class.

Table 5. Performance of the cattle behavior detection model trained on data augmented using
AutoAugment and GridMask.

Behavior Precision (%) Recall (%) mAP (%)

Resting 92.4 93.8 95.0
Communion 82.1 86.7 90.1

Feeding 84.5 77.4 83.2
Drinking 96.2 98.8 98.9

Eating 83.8 97.5 97.7
All 87.8 90.8 93.0

Recall and mAP are important metrics for livestock farming. Zheng et al. [27] noted
that high recall and mAP scores help effectively detect cattle. Additionally, a high recall
score for livestock behavior detection minimizes the non-detection rate of behaviors related
to diseases or estrus. Thus, it is directly related to livestock health and ultimately affects the
productivity of agricultural farms and is a crucial evaluation metric. The proposed detection
model showed a 9.2% improvement in recall when it was trained on data augmented using
AutoAugment and GridMask compared to the original dataset. This improvement is
expected to provide valuable information, potentially leading to a substantial increase in
labor efficiency and reduced labor costs for farmers.

Figure 8 presents the detection results of the model with both AutoAugment and
GridMask applied. Upon reviewing the detection outcomes of the model integrating these
two augmentation techniques, it becomes evident that the synergy between AutoAugment
and GridMask significantly enhances the model’s capability to detect and classify cattle
behaviors accurately. The combined use of these techniques minimizes false detections and
strengthens the recognition of diverse behaviors across various environmental conditions,
resulting in clear and well-defined object detections. It not only demonstrates the efficiency
of the combined augmentation strategies but also highlights the potential of our proposed
model to reliably capture subtle cattle behaviors, offering a promising tool for applications
in precision livestock farming.

Pavlovic et al. [8] utilized tail-mounted accelerometers to classify cattle behavior,
achieving a sensitivity (recall) and precision of over 86.7%. Williams et al. [9] classified cattle
behavior using accelerometer necklaces, achieving an average F1 score of 0.82. However,
our study significantly differs from these approaches as we only used 2D RGB camera data
and did not attach invasive sensors to the cattle. This approach not only simplifies the data
collection process but also potentially reduces stress on the cattle. This study achieved a
93% mAP, demonstrating the efficiency of using 2D RGB camera-based observations for
high-accuracy cattle behavior detection.

This study proposed a cattle behavior detection model based on YOLOv7-E6E. Cattle
behavior data were collected using 2D RGB cameras, and the model performance was en-
hanced by training it on the original data augmented through AutoAugment. Additionally,
training on data augmented through GridMask decreased precision by 0.5% compared to
the original dataset but increased the recall and mAP by 9.2% and 4.8%, respectively.
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4. Conclusions

The livestock sector faces challenges due to a decreased labor force, increasing work-
loads, and heightened stress for farmers [28]. In response, this study proposes a cattle
behavior detection model utilizing 2D RGB cameras to automate and simplify monitoring
processes within livestock farms. In this study, we enhanced model performance by 9.2%
for recall and 4.8% for mAP using AutoAugment and GridMask compared to the original
datasets. This automation can reduce the workload on farmers by providing real-time
insights into cattle behavior and contributing to the early detection of health issues. It has
the potential to significantly cut veterinary costs and reduce losses from livestock health
problems. When estrus detection in cattle is considered, they exhibit increased activity,
decreased resting, and reduced feed intake, which facilitates estrus detection through
behavioral analysis [29]. Employing PLF technology can yield up to EUR 2729 in annual
economic benefits per farm over non-PLF methods [30]. Thus, this research could con-
tribute to sustainable livestock farming and profitability through reduced labor costs and
increased livestock production.

This study has a limitation in that the precision slightly decreased in the model trained
on data augmented using AutoAugment and GridMask compared to that trained on the
original data. Therefore, future studies should use images enhanced with AutoAugment
and GridMask after filtering. Additionally, labels for objects whose features have dis-
appeared or are heavily modified because of augmentation policies can be problematic.
Removing these labels using a model trained only on the original data might resolve the
performance decline. In addition, this study used data collected from a single farm with
the same recording equipment, which could have resulted in model bias toward this spe-
cific farm, and its performance might not be adequately validated using data from other
farms. To address these issues, we are installing different cameras, not limited to those
used in this study, in various barns to collect data. In reviewing various studies on cattle
behavior detection, Fuentes et al. [31] employed the YOLOv3 model to detect 15 classes
of cow behavior in 1920 × 1080 resolution images, achieving a mAP of 78.8%. Similarly,
Uchino and Ohwada [32] achieved a mAP of 91.5% utilizing the YOLOv5-L model for four
classes at a resolution of 3840 × 2160. Our study has shown similar or higher performance
despite utilizing lower resolutions. Thus, future experiments incorporating diverse angles,
barn environments, and resolutions could mitigate model bias and enhance the model’s
generalization performance.

In this study, our methodology utilized the sum of gray levels from the entire image.
Recognizing the potential for further refinement, we consider exploring a more targeted
approach for future research. Specifically, we aim to investigate the application of summing
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gray levels within designated regions of interest. This is particularly beneficial in scenarios
where vital information is compromised by background noise or other distractive elements.
Focusing on regions could alleviate such challenges, facilitating a more accurate feature
extraction of the target object. This strategy holds promise in domains where the signif-
icance of certain image areas is paramount. For example, in precision livestock farming
(PLF), zeroing in on segments of aerial images that capture active livestock could enhance
model detection accuracy. As we progress, our goal is to refine this approach for image
analysis and streamline its application, making it versatile enough for broader use across
various fields. This evolution will involve developing and meticulously tuning the method
to automate the process for enhanced efficiency and applicability.
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