
Citation: Liu, X.; Zhou, L.; Luo, Y.

Pruning Deep Neural Network

Models via Minimax Concave Penalty

Regression. Appl. Sci. 2024, 14, 3669.

https://doi.org/10.3390/app

14093669

Received: 1 March 2024

Revised: 22 April 2024

Accepted: 23 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Pruning Deep Neural Network Models via Minimax Concave
Penalty Regression
Xinggu Liu, Lin Zhou and Youxi Luo *

School of Science, Hubei University of Technology, Wuhan 430068, China; 2111131129@hbut.edu.cn (X.L.);
101911522@hbut.edu.cn (L.Z.)
* Correspondence: 20051038@hbut.edu.cn

Abstract: In this study, we propose a filter pruning method based on MCP (Minimax Concave
Penalty) regression. The convolutional process is conceptualized as a linear regression procedure,
and the regression coefficients serve as indicators to assess the redundancy of channels. In the
realm of feature selection, the efficacy of sparse penalized regression gradually outperforms that of
Lasso regression. Building upon this insight, MCP regression is introduced to screen convolutional
channels, coupled with the coordinate descent method, to effectuate model compression. In single-
layer pruning and global pruning analyses, the Top1 loss value associated with the MCP regression
compression method is consistently smaller than that of the Lasso regression compression method
across diverse models. Specifically, when the global pruning ratio is set to 0.3, the Top1 accuracy of the
MCP regression compression method, in comparison with that of the Lasso regression compression
method, exhibits improvements of 0.21% and 1.67% under the VGG19_Simple and VGG19 models,
respectively. Similarly, for ResNet34, at two distinct pruning ratios, the Top1 accuracy demonstrates
enhancements of 0.33% and 0.26%. Lastly, we compare and discuss the novel methods introduced in
this study, considering both time and space resource consumption.

Keywords: model compression; minimum and maximum concave penalties; Lasso regression;
MCP regression

1. Introduction

Deep learning stands as a pivotal research focus within the realm of machine learning,
playing a crucial role in domains such as data mining and natural language processing.
At the core of deep learning’s evolution are deep neural networks, encompassing di-
verse network layers designed for the extraction of target feature information and the
acceleration of computational processes [1]. Typically, the learning capacity of deep neu-
ral networks correlates positively with the depth of network layers, especially at higher
computational volumes. However, this advantage comes with accompanying challenges,
including elevated storage costs, increased computational demands, and heightened energy
consumption. These factors impose limitations on the advancement of deep neural net-
works, particularly in the context of real-time processing tasks and deployment on mobile
devices [2].

Primarily, deep neural networks encounter challenges related to storage space. Initial
investigations revealed a positive correlation between the number of model parameters
and the likelihood of convergence, leading to enhanced accuracy. For instance, the early
LeNet-5 comprised approximately 430K parameters [3], while the subsequent VGG-16
model boasted a significantly larger parameter count of 138 M [4]. The substantial expan-
sion of storage capacity in mobile devices poses a hindrance to the advancement of neural
network technology. Additionally, in terms of computational aspects, deep neural networks
present challenges of high computation complexity, coupled with excessive demand for
storage space. For instance, during the neural network learning process, rapid convolu-
tional operations on multi-dimensional matrices are imperative, involving a plethora of

Appl. Sci. 2024, 14, 3669. https://doi.org/10.3390/app14093669 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093669
https://doi.org/10.3390/app14093669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14093669
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093669?type=check_update&version=1

Appl. Sci. 2024, 14, 3669 2 of 26

matrix operations [5]. Furthermore, in the domain of energy consumption, deep neural
networks, characterized by multiple layers of interconnected neurons and variables, exhibit
considerable storage and power demands across diverse embedded applications. Notably,
the initial fully connected level of VGGNet encompasses 100 M, with a maximum mass of
140 M, contributing substantially to heightened energy consumption [6].

Confronted with the burgeoning storage requirements of deep neural networks, the
training of extensive networks necessitates a substantial volume of computations and
energy consumption. Moreover, given that the training of large networks is predominantly
executed on high-performance servers or clusters, the direct application of these procedures
to mobile devices becomes impractical. Consequently, research on techniques related
to the compression and acceleration of deep neural networks has emerged to address
these challenges. Recent studies, including references [7–10], have also reviewed model
compression methods in the last few years.

The complexity of a deep neural network model is determined by its parameters,
prompting researchers to prioritize a reduction in network parameters as a primary avenue
for compressing and optimizing the model. Geng and Niu [11] proposed a classification
of model compression methods, distinguishing between shallow compression and deep
compression. Shallow compression encompasses filter-level pruning and knowledge distil-
lation. Regarding the latter, Si and Qi [12] contend that knowledge distillation methods
treat the neural network holistically. These methods employ a learning approach to train
a smaller network guided by a larger network with comparable performance, indirectly
achieving the goal of compression.

Due to the simplicity of the network architecture and the limited significance of
the relationship between model performance and size in stochastic neural networks, Hu
and Gao [13] proposed a self-distillation pipeline tailored for such networks. Given the
complexity of deep neural network models, making predictions that are challenging to
comprehend and examine, Liu and Wang [14] employed knowledge distillation techniques
to distill deep neural networks into decision trees, pioneering the distillation of deep
neural networks into ordinary decision trees for multi-class datasets. In response to the
advancements in deep neural networks and knowledge distillation, Zhang et al. [15]
introduced a novel form of self-distillation distinct from traditional knowledge distillation.
This form involves the transfer of knowledge within the same model, specifically from
deep layers to shallow layers. Building on earlier research in knowledge distillation,
Ning et al. [16] summarized the challenges associated with this approach, including the
complexity of the training process, issues related to model alignment and hyperparameter
tuning, and limitations in practical scenarios.

Chang [17] contends that deep convolutional neural network pruning distinguishes it-
self among various network compression methods due to its flexible operation, pronounced
compression and acceleration effects, and minimal performance loss. This approach has
garnered significant attention and research. LeCun [18] evidenced this approach, garner-
ing significant attention and research, validating the method’s importance in assessing
the impact of parameters on the objective function. The fundamental concept involves
utilizing second-order derivatives to strike a balance between network complexity and test
errors, a principle referred to as the “Optimal Brain Damage (OBD) method”. Hassibi and
Stork [19] evidenced the Optimal Brain Surgeon (OBS) concept, which shares similarities
with the Optimal Brain Damage (OBD) method, validating the work’s significance in the
field. However, the authors demonstrate that OBS offers greater ease of implementation
for smaller networks, with computational challenges escalating as the network size in-
creases. In contemporary research, structured pruning has become a prevalent technique
for model compression. In the realm of layer pruning, Wu et al. [20] noted that distinct
layers exhibit varying pruning requirements. To address this, they proposed a differentially
evolved hierarchical weight pruning method. This method effectively compressed the
parameters of LeNet-300-100, LeNet-5, AlexNet, and VGG16, resulting in compression
ratios of 24×, 14×, 29×, and 12×, respectively. In contrast, Xu et al. [21] extended the

Appl. Sci. 2024, 14, 3669 3 of 26

layer pruning method by incorporating sparsity into the training process. They utilized the
original convolutional layers to transform them into fusible residual convolutional blocks,
thus amalgamating the benefits of short inference time and effective pruning. Addressing
filter pruning, Li et al. [22] introduced a channel pruning compression method to enhance
filter resilience and reduce the size of the neural network. They proposed a composite
channel pruning approach, utilizing improved L1 regularization training and a global filter
importance degree. Zhang et al. [23] introduced a pruning algorithm designed to address
the issue, wherein the deletion of less important filters often results in an imbalanced
filter paradigm distribution. This algorithm not only identifies and retains filters aligned
with the original paradigm distribution but also eliminates redundant filters. In a similar
vein, Geng and Niu [24] suggested an enhancement in the pruning direction. Specifically,
they proposed a backward layer-by-layer filter pruning approach, starting from the last
convolutional layer. This strategy proves effective in mitigating accuracy loss by preventing
the premature removal of shallow convolutional filters.

Chen and Wang [25] underscore the importance of regularization, employed to mit-
igate model overfitting and minimize generalization errors. They argue that, with the
increasing depth of neural networks, there is a corresponding expansion in model com-
plexity and untrained parameters. Therefore, the judicious use of regularization becomes
particularly crucial to forestall model overfitting. Alemu et al. [26] introduced a group Lasso
regularization term as an effective hidden layer regularization method for feedforward neu-
ral networks, serving as an efficient means to eliminate redundant or unnecessary neurons
within the feedforward neural network structure. In a parallel effort, Lin et al. [27] devised
both inter-group and intra-group unbiased structured sparse regularizers. These sparsity
constraints were selectively applied to address redundant neurons and the redundant
weights of the remaining neurons. Simultaneously, they formulated an unbiased sparse
regularized compression model, featuring a dual-strategy structure for neural networks
with dual-strategy regularization.

The introduction of regularization penalties applied to variables has led to the appli-
cation of various penalties in the field of variable selection. Ridge regression utilizes L2
regularization penalties to mitigate the impact of covariance between variables by identify-
ing redundant variables through Ridge traces. Tibshurani’s proposed Lasso (Least Absolute
Shrinkage and Selection Operation) regression, incorporating L1 regularization penalties,
automatically selects variables during regression coefficient estimation and compresses
the coefficients of redundant variables to zero. He [28] pioneered the application of Lasso
regression in model compression, successfully eliminating redundant channels. Wang and
Sun [29] employed the Lasso method to identify key factors influencing house prices in
China’s provinces. They identified a significant error in this method and proposed miti-
gating the bias in Lasso estimation by incorporating SCAD and MCP (Minimax Concave
Penalty). Farbahri et al. [30] investigated three regression methods on variables with the
greatest impact on fasting blood glucose, including the use of Lasso regression to select
variables, such as HbA1c, urea, age, BMI, genetics, and gender. Wu et al. [31] relied on
Lasso regression for channel selection, and they fused Lasso regression with Singular-Value
Decomposition (SVD) to expedite parameter compression.

In the context of channel selection, Lasso employs a constant penalty strength for
regression coefficients, whereas MCP applies differentiated penalties. MCP adheres to the
principle of imposing greater penalties on coefficients closer to zero and smaller penalties
on larger coefficients, enhancing the identification of redundant features. Lee and Kim [32]
contend that penalized regression optimization is more straightforward and cost-effective
compared with subset selection. Moreover, as the number of features increases, penalized
regression can be effectively controlled by one or a few tuning parameters, whereas subset
selection is hindered by combinatorial explosions in computation. Xu and Lei [33] intro-
duce sparsity to original variables and augment sparse regression into traditional principal
component analysis, retaining the merits of traditional principal component analysis while
improving model estimation accuracy due to sparsity. Lin et al. [34] propose a variable

Appl. Sci. 2024, 14, 3669 4 of 26

selection method for functional regression models applied to sparse functional-type data.
They performed functional principal component analysis on sparse functional-type in-
dependent variables based on conditional expectation, using the estimated orthogonal
eigenfunctions as basis functions for model expansion. Yoshida [35] incorporates linear
quantiles for high-dimensional data in regression and variable selection. To achieve vari-
able selection, a group Lasso-type sparse penalty is employed to estimate the nonzero
coefficient function at the quantile level. Shin et al. [36] advocate using Lasso and group
Lasso penalty functions simultaneously at the node and predictor variable levels in a sparse
neural network regression method based on a single hidden layer architecture and sparse
induced penalties. Additionally, statistical studies [37–39] demonstrate that sparse penal-
ized regression outperforms Lasso regression in feature selection. Building on this, MCP
regression is introduced into the model compression process to customize the network
model by filtering the output feature map channels.

2. Methodological Models
2.1. Common Layers in Convolutional Neural Networks
2.1.1. Fully Connected Layer

The fully connected layer consists of multiple neurons interconnected according to
specific rules. Figure 1 illustrates the computational flow of a single neuron on the left and
the network constituted by the fully connected layer on the right.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 26

traditional principal component analysis, retaining the merits of traditional principal com-
ponent analysis while improving model estimation accuracy due to sparsity. Lin et al. [34]
propose a variable selection method for functional regression models applied to sparse
functional-type data. They performed functional principal component analysis on sparse
functional-type independent variables based on conditional expectation, using the esti-
mated orthogonal eigenfunctions as basis functions for model expansion. Yoshida [35] in-
corporates linear quantiles for high-dimensional data in regression and variable selection.
To achieve variable selection, a group Lasso-type sparse penalty is employed to estimate
the nonzero coefficient function at the quantile level. Shin et al. [36] advocate using Lasso
and group Lasso penalty functions simultaneously at the node and predictor variable lev-
els in a sparse neural network regression method based on a single hidden layer architec-
ture and sparse induced penalties. Additionally, statistical studies [37–39] demonstrate
that sparse penalized regression outperforms Lasso regression in feature selection. Build-
ing on this, MCP regression is introduced into the model compression process to custom-
ize the network model by filtering the output feature map channels.

2. Methodological Models
2.1. Common Layers in Convolutional Neural Networks
2.1.1. Fully Connected Layer

The fully connected layer consists of multiple neurons interconnected according to
specific rules. Figure 1 illustrates the computational flow of a single neuron on the left and
the network constituted by the fully connected layer on the right.

Figure 1. Computational flow of a single neuron and fully connected network.

The leftmost layer is called the input layer, responsible for receiving input data; the
rightmost layer is called the output layer, from which the neural network’s output data
can be obtained. The layers between the input and output layers are called hidden layers.
There are no connections between neurons in the same layer. Each neuron in the Nth layer
is connected to all neurons in the (N-1)th layer, where the output of the neurons in the (N-
1)th layer serves as the input for the neurons in the Nth layer. Each connection has a weight.

2.1.2. Convolutional Layer
The convolutional layer is primarily used for feature extraction. The weights of the

convolutional kernels are learnable, and their characteristic of ”parameter sharing” sig-
nificantly reduces the network parameters, ensuring network sparsity. During computa-
tion, a k k matrix, also known as a convolutional kernel, is provided. The size of this
matrix, also referred to as the receptive field, matches the depth of the input layer. Con-
volutional kernels of various depths form a filter with dimensions k k c  . To maintain
the dimensional consistency after convolution operations, zero-padding, denoted as P,
can be applied around the input matrix. During convolution, the kernel moves across the
input matrix with a stride, denoted as S. Figure 2 is the schematic of the convolution op-
eration when P = 1 & S = 2.

Figure 1. Computational flow of a single neuron and fully connected network.

The leftmost layer is called the input layer, responsible for receiving input data; the
rightmost layer is called the output layer, from which the neural network’s output data
can be obtained. The layers between the input and output layers are called hidden layers.
There are no connections between neurons in the same layer. Each neuron in the Nth layer
is connected to all neurons in the (N-1)th layer, where the output of the neurons in the
(N-1)th layer serves as the input for the neurons in the Nth layer. Each connection has
a weight.

2.1.2. Convolutional Layer

The convolutional layer is primarily used for feature extraction. The weights of the
convolutional kernels are learnable, and their characteristic of ”parameter sharing” signifi-
cantly reduces the network parameters, ensuring network sparsity. During computation,
a k× k matrix, also known as a convolutional kernel, is provided. The size of this matrix,
also referred to as the receptive field, matches the depth of the input layer. Convolutional
kernels of various depths form a filter with dimensions k× k× c. To maintain the dimen-
sional consistency after convolution operations, zero-padding, denoted as P, can be applied
around the input matrix. During convolution, the kernel moves across the input matrix
with a stride, denoted as S. Figure 2 is the schematic of the convolution operation when
P = 1 & S = 2.

Appl. Sci. 2024, 14, 3669 5 of 26
Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 26

Figure 2. Schematic of convolution operation with P = 1 and S = 2.

The formula for calculating the output features after the convolution operation is

- +2
+1

W F P

S
 (1)

where W is the dimension of the input features; F represents the size of the convolu-
tional kernel; and P and S denote the values for padding and stride, respectively. To
visually demonstrate the effect of the convolutional layer, a 256 × 256-pixel image with
three channels of a panda was randomly selected for the convolution operation, with a
kernel size of 3 × 3 and six filters. The overall convolution effect and the effect of a single
filter are shown in Figures 3 and 4, respectively.

Figure 3. Convolution effect diagram.

Figure 2. Schematic of convolution operation with P = 1 and S = 2.

The formula for calculating the output features after the convolution operation is

W − F+2P
S

+1 (1)

where W is the dimension of the input features; F represents the size of the convolutional
kernel; and P and S denote the values for padding and stride, respectively. To visually
demonstrate the effect of the convolutional layer, a 256 × 256-pixel image with three
channels of a panda was randomly selected for the convolution operation, with a kernel
size of 3 × 3 and six filters. The overall convolution effect and the effect of a single filter are
shown in Figures 3 and 4, respectively.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 26

Figure 2. Schematic of convolution operation with P = 1 and S = 2.

The formula for calculating the output features after the convolution operation is

- +2
+1

W F P

S
 (1)

where W is the dimension of the input features; F represents the size of the convolu-
tional kernel; and P and S denote the values for padding and stride, respectively. To
visually demonstrate the effect of the convolutional layer, a 256 × 256-pixel image with
three channels of a panda was randomly selected for the convolution operation, with a
kernel size of 3 × 3 and six filters. The overall convolution effect and the effect of a single
filter are shown in Figures 3 and 4, respectively.

Figure 3. Convolution effect diagram. Figure 3. Convolution effect diagram.

Figure 3 shows the comparative effects between the original image and the convolved
image, with P = 0 and S = 1, resulting in output image dimensions of 252 × 252 and a
channel count of six. In the convolution process, individual filters highlight different aspects
of the image. Figure 4 demonstrates the convolution effect of a single filter, revealing that
the output images from each filter are distinct. The collective outputs of all filters constitute
the final output of the convolution layer.

Appl. Sci. 2024, 14, 3669 6 of 26
Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 26

Figure 4. Effect diagram of a single filter.

Figure 3 shows the comparative effects between the original image and the convolved
image, with P = 0 and S = 1, resulting in output image dimensions of 252 × 252 and a
channel count of six. In the convolution process, individual filters highlight different as-
pects of the image. Figure 4 demonstrates the convolution effect of a single filter, revealing
that the output images from each filter are distinct. The collective outputs of all filters
constitute the final output of the convolution layer.

2.2. MCP Regression and Solution
The standard linear regression model is as follows:

= + + , 1, 2,...,i j ij i
j

y x i N    (2)

In the equation above,  and  represent the model’s intercept and coefficients,
respectively, while N denotes the total number of samples. Here, iy is the response

variable of the thi sample, and ijx is the thj predictor variable of the thi sample. In
contrast to the least squares estimation (LSE) of the model, Lasso estimation incorporates
L1 regularization into the loss function to strike a balance between model fitting and model
complexity. The functional form of traditional Lasso regression is expressed as follows:

2

1

ˆˆ(,) argmin{ () }
N

i j ij j
i j j

y x     


      (3)

The regularization parameter,  , is employed to control model complexity, reduc-
ing the model’s parameters by penalizing the sum of the absolute values of the coefficients,
thereby encouraging a preference for model simplicity. Through the application of L1 reg-
ularization, the coefficients are reduced toward zero, leading to the elimination of redun-
dant features. The Lasso penalty function, being convex and inducing biased estimation,
mitigates the overall prediction error by reducing the variance in the prediction model.
However, it is susceptible to the drawback of excessively compressing the coefficients. In
pursuit of further minimizing the total prediction error, Fan and Li [40] introduced the
SCAD penalty. This penalty not only compresses very small regression coefficients to zero
but also provides an approximately unbiased estimation. Zhang [41] evidenced the Mini-
max Concave Penalty (MCP) as another notable penalty, validating its significance in the
field. It differentiates penalties on regression coefficients, preserving the advantages of the

Figure 4. Effect diagram of a single filter.

2.2. MCP Regression and Solution

The standard linear regression model is as follows:

yi = α + ∑
j

β jxij + εi, i = 1, 2, . . . , N (2)

In the equation above, α and β represent the model’s intercept and coefficients, respec-
tively, while N denotes the total number of samples. Here, yi is the response variable of
the ith sample, and xij is the jth predictor variable of the ith sample. In contrast to the least
squares estimation (LSE) of the model, Lasso estimation incorporates L1 regularization
into the loss function to strike a balance between model fitting and model complexity. The
functional form of traditional Lasso regression is expressed as follows:

(α̂, β̂) = argmin{
N

∑
i = 1

(yi − α−∑
j

β jxij)
2}+ λ∑

j

∣∣β j
∣∣ (3)

The regularization parameter, λ, is employed to control model complexity, reducing
the model’s parameters by penalizing the sum of the absolute values of the coefficients,
thereby encouraging a preference for model simplicity. Through the application of L1
regularization, the coefficients are reduced toward zero, leading to the elimination of redun-
dant features. The Lasso penalty function, being convex and inducing biased estimation,
mitigates the overall prediction error by reducing the variance in the prediction model.
However, it is susceptible to the drawback of excessively compressing the coefficients. In
pursuit of further minimizing the total prediction error, Fan and Li [40] introduced the
SCAD penalty. This penalty not only compresses very small regression coefficients to
zero but also provides an approximately unbiased estimation. Zhang [41] evidenced the
Minimax Concave Penalty (MCP) as another notable penalty, validating its significance in
the field. It differentiates penalties on regression coefficients, preserving the advantages
of the SCAD penalty while yielding more precise estimates. The functional form of MCP
regression is expressed as follows:

(α̂, β̂) = argmin{
N

∑
i = 1

(yi − α−∑
j

β jxij)
2}+ ∑

j
MCP(β j) (4)

Appl. Sci. 2024, 14, 3669 7 of 26

The variable MCP(
∣∣β j

∣∣) is characterized by the following functional form:

MCP(β j) =

{
λ
∣∣β j

∣∣− β2
j /2α

∣∣β j
∣∣ ≤ αλ

αλ2/2
∣∣β j

∣∣ > αλ
(5)

In the given equation, λ serves as the regularization parameter, employed to fine-tune
the strength of the penalty, while α functions as the adjustment parameter, regulating the
extent of the penalty. The penalty strength can be expressed as follows:

Pλ(|βi|)′ =
{

λ− |βi|/α |βi| ≤ αλ
0 |βi| > αλ

(6)

In the above equation, Pλ(|βi|) denotes the penalty function. When |β| ≤ αλ, the
MCP penalty diminishes as the absolute value of the parameter increases. At |β| = 0,
the penalty reaches its maximum, λ, and when |βi| = αλ, the penalty becomes zero. As
the regression coefficients continue to increase, the penalty remains unchanged at zero. In
contrast, Lasso imposes a constant penalty on regression coefficients, while MCP applies
variable penalties. Consequently, MCP yields more accurate coefficient fittings. When
|βi| ≥ αλ, MCP’s penalty strength is also zero, and its parameters are estimated similarly
to least squares estimation. Figure 5 shows the difference between MCP and Lasso.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 26

SCAD penalty while yielding more precise estimates. The functional form of MCP regres-
sion is expressed as follows:

2

1

ˆˆ(,) arg min{ () } ()
N

i j ij j
i j j

y x MCP    


      (4)

The variable ()jMCP  is characterized by the following functional form:

2

2

/ 2
()

/ 2

j j j

j

j

MCP
     


  

   


 (5)

In the given equation,  serves as the regularization parameter, employed to fine-
tune the strength of the penalty, while  functions as the adjustment parameter, regu-
lating the extent of the penalty. The penalty strength can be expressed as follows:

'
/

()
0

i i

i

i

P
    


 

   


 (6)

In the above equation, ()iP  denotes the penalty function. When   , the

MCP penalty diminishes as the absolute value of the parameter increases. At =0 , the
penalty reaches its maximum,  , and when =i  , the penalty becomes zero. As the
regression coefficients continue to increase, the penalty remains unchanged at zero. In
contrast, Lasso imposes a constant penalty on regression coefficients, while MCP applies
variable penalties. Consequently, MCP yields more accurate coefficient fiĴings. When

i  , MCP’s penalty strength is also zero, and its parameters are estimated similarly
to least squares estimation. Figure 5 shows the difference between MCP and Lasso.

Figure 5. MCP and Lasso comparison diagram.

Common optimization algorithms, like gradient descent, are primarily designed for
convex functions. However, the MCP penalty, being a sparse function, precludes the use
of conventional gradient optimization algorithms. The coordinate descent algorithm is as
follows:

For a differentiable convex function ()J  , where  is n-dimensional, the goal of
optimization is to iteratively decrease the loss function along the n coordinate axes (in the
vector directions) of  . When convergence is reached for each coordinate, (1,2,3...)i i n  ,
the loss function is minimized, and the corresponding  is the solution. The computa-
tional steps are as follows:
1. Randomly assign an initial value to the vector  , denoted as (0) .
2. In the k-th round of iteration, compute each ()k

i from ()
1
k to k

n in sequence.

Figure 5. MCP and Lasso comparison diagram.

Common optimization algorithms, like gradient descent, are primarily designed for
convex functions. However, the MCP penalty, being a sparse function, precludes the use
of conventional gradient optimization algorithms. The coordinate descent algorithm is
as follows:

For a differentiable convex function J(θ), where θ is n-dimensional, the goal of opti-
mization is to iteratively decrease the loss function along the n coordinate axes (in the vector
directions) of θ. When convergence is reached for each coordinate, θi(i = 1, 2, 3 . . . n), the
loss function is minimized, and the corresponding θ is the solution. The computational
steps are as follows:

1. Randomly assign an initial value to the vector θ, denoted as θ(0).

2. In the k-th round of iteration, compute each θ
(k)
i from θ

(k)
1 to θk

n in sequence.

θ
(k)
i = argmin

θi

J(θ(k)1 , θ
(k)
2 , . . . , θ

(k)
i−1, θi, θ

(k−1)
i+1 , . . . , θ

(k−1)
n) (7)

3. Examine the variations in θ(k) and θ(k−1) in each dimension. If the change in all
dimensions is less than a threshold, then θ(k) is the final result; if not, proceed back to
step 2 and carry on to the (k + 1)-th round of iteration.

The coordinate descent algorithm is a non-gradient optimization algorithm that cycli-
cally uses different coordinate directions for iteration. One cycle of one-dimensional search

Appl. Sci. 2024, 14, 3669 8 of 26

iteration is equivalent to one iteration of gradient descent. It solves local optimization by
fixing the other variables and optimizing along one direction at a time. Specifically, in
the iterative solving process for p-dimensional features, {β1, β2, . . . β j, . . . βp}, the other
variables are held constant at their most recently updated values. Consequently, MCP
regression can be viewed as optimized through a univariate solution scheme.

In the context of simple linear regression, the least squares solution employing the
unpunished function is represented by z = n−1x′y, where x denotes the normalized x,
resulting in x′x = n. In MCP regression,

β̂ = fMCP(z, λ, α) =

{
S(z,α)
1−1/α |z| ≤ αλ

z |z| > αλ
(8)

The variable S(z, α) represents the univariate solution derived from Lasso regression
and is expressed as

S(z, α) =


z− λ z > λ
0 |z| ≤ λ
z + λ z < −λ

(9)

From the aforementioned equation, the solutions of MCP regression and Lasso re-
gression coincide when α→ ∞ . The univariate solution of MCP is attained through the
coordinate descent algorithm, aiming to minimize the coordinates of the objective function.
The symbol −j is introduced to denote the remaining portion of column j after removing
its elements, and the partial residual of xj is represented by r−j = y− X−jβ−j, where
β−j denotes the most recently updated value of β. The MCP methodology is rooted in
the coordinate descent algorithm; thus, the regression update step of MCP, based on the
coordinate descent algorithm, can be expressed as

(1) Calculate zj

zj = n−1x′jr−j = n−1x′jr + β
(m)
j (10)

(2) Update β

β
(m+1)
j ← fMCP(zj, λ, α) (11)

(3) Update r

r ← r− (β
(m+1)
j − β

(m)
j)xj (12)

2.3. Pruning Process

Figure 6 shows the specific pruning process. As illustrated below, channel pruning of
a single convolutional layer is implemented to reduce the width of feature map B whilst
maintaining the output quality of feature map C. Specifically, once channels in feature
map B have been pruned, the corresponding filter channels—denoted by the dashed lines
in W—can be eliminated. Similarly, the filters that generate these channels, indicated by
the dashed lines from feature maps A to B, are also removable. The channel pruning
process comprises two main steps: The first is channel selection, where the Maximal
Channel Pruning (MCP) regression method is employed to discard redundant channels,
retaining only those that are representative. The second step is the reconstruction of
the output, achieved through linear regression to restore or reconstruct the output of
the remaining channels, thereby ensuring that the network performance is unaffected by
pruning. Through this process, although the width of feature map B is diminished, the
output of feature map C is consistently preserved. The use of identical colors for blocks
A and C represents the corresponding layers before and after compression, consistently
maintaining the final output dimensions.

Appl. Sci. 2024, 14, 3669 9 of 26

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 26

Figure 6 shows the specific pruning process. As illustrated below, channel pruning
of a single convolutional layer is implemented to reduce the width of feature map B whilst
maintaining the output quality of feature map C. Specifically, once channels in feature
map B have been pruned, the corresponding filter channels—denoted by the dashed lines
in W—can be eliminated. Similarly, the filters that generate these channels, indicated by
the dashed lines from feature maps A to B, are also removable. The channel pruning pro-
cess comprises two main steps: The first is channel selection, where the Maximal Channel
Pruning (MCP) regression method is employed to discard redundant channels, retaining
only those that are representative. The second step is the reconstruction of the output,
achieved through linear regression to restore or reconstruct the output of the remaining
channels, thereby ensuring that the network performance is unaffected by pruning.
Through this process, although the width of feature map B is diminished, the output of
feature map C is consistently preserved. The use of identical colors for blocks A and C
represents the corresponding layers before and after compression, consistently maintain-
ing the final output dimensions.

Figure 6. Schematic diagram of the pruning process.

2.4. Preliminary Investigation of Convolutional Layer Parameters
Figure 7 is a scaĴer plot of the parameter distribution in the convolutional layers of

the VGG19 network trained on the CIFAR100 dataset. For the VGG19 network with con-
volutional layers with 64, 128, 256, and 512 filters and for Layer1, Layer2, Layer3, and
Layer4 in ResNet34, the quantiles are set at 0.99, 0.999, 0.9999, and 0.9999, respectively.

Figure 7. VGG19 convolutional layer parameter distribution diagram. Blue represents weight val-
ues close to 0, red represents weight values a liĴle further away from 0.

Figure 6. Schematic diagram of the pruning process.

2.4. Preliminary Investigation of Convolutional Layer Parameters

Figure 7 is a scatter plot of the parameter distribution in the convolutional layers
of the VGG19 network trained on the CIFAR100 dataset. For the VGG19 network with
convolutional layers with 64, 128, 256, and 512 filters and for Layer1, Layer2, Layer3, and
Layer4 in ResNet34, the quantiles are set at 0.99, 0.999, 0.9999, and 0.9999, respectively.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 26

Figure 6 shows the specific pruning process. As illustrated below, channel pruning
of a single convolutional layer is implemented to reduce the width of feature map B whilst
maintaining the output quality of feature map C. Specifically, once channels in feature
map B have been pruned, the corresponding filter channels—denoted by the dashed lines
in W—can be eliminated. Similarly, the filters that generate these channels, indicated by
the dashed lines from feature maps A to B, are also removable. The channel pruning pro-
cess comprises two main steps: The first is channel selection, where the Maximal Channel
Pruning (MCP) regression method is employed to discard redundant channels, retaining
only those that are representative. The second step is the reconstruction of the output,
achieved through linear regression to restore or reconstruct the output of the remaining
channels, thereby ensuring that the network performance is unaffected by pruning.
Through this process, although the width of feature map B is diminished, the output of
feature map C is consistently preserved. The use of identical colors for blocks A and C
represents the corresponding layers before and after compression, consistently maintain-
ing the final output dimensions.

Figure 6. Schematic diagram of the pruning process.

2.4. Preliminary Investigation of Convolutional Layer Parameters
Figure 7 is a scaĴer plot of the parameter distribution in the convolutional layers of

the VGG19 network trained on the CIFAR100 dataset. For the VGG19 network with con-
volutional layers with 64, 128, 256, and 512 filters and for Layer1, Layer2, Layer3, and
Layer4 in ResNet34, the quantiles are set at 0.99, 0.999, 0.9999, and 0.9999, respectively.

Figure 7. VGG19 convolutional layer parameter distribution diagram. Blue represents weight val-
ues close to 0, red represents weight values a liĴle further away from 0.
Figure 7. VGG19 convolutional layer parameter distribution diagram. Blue represents weight values
close to 0, red represents weight values a little further away from 0.

Figure 7 reveals that the distribution of parameters is mostly concentrated near zero, as
indicated by the blue area, yet there are many points that are far from the center, represented
by the red area. Using the L1-Norm method to measure the importance of filters may not
be accurate. In the field of statistics, the Minimax Concave Penalty (MCP) introduces
differentiated penalties for coefficients. When the absolute value of parameters exceeds
a threshold, all parameters are replaced with a fixed value, and when the absolute value
is below the threshold, different degrees of penalty are applied based on their magnitude.
Zheng (2019) [42] noted that in the presence of tail errors or outliers, sparse penalties can
lead to more accurate and robust models. Sun (2021) [43] discussed the selection problem
when variables have outliers and applied the MCP penalty to logistic regression models,
using a weighted method to mitigate the impact of outliers. Building on these findings, this
study incorporates the MCP function into filter pruning to address the issue of ”outliers”
in parameters. For parameters whose absolute values are above the threshold, they are
considered equally important, and for those below the threshold, different degrees of
compression are applied according to their magnitude, ensuring that larger parameters

Appl. Sci. 2024, 14, 3669 10 of 26

remain more significant while reducing the influence of “outliers” on filter importance. The
expression for the MCP function is

MCP(β j) =

{
λ
∣∣β j

∣∣− β2
j /2α

∣∣β j
∣∣ ≤ αλ

αλ2/2
∣∣β j

∣∣ > αλ
(13)

In the above formula, λ is the regularization parameter, used to adjust the intensity of
the penalty; α is the tuning parameter, which controls the penalty range. To intuitively de-
scribe the effect of the MCP function, 100,000 weight parameters were randomly generated,
with values in a range of [−1, 1]. Figure 8 depicts the results of the weight parameters after
MCP processing under different α and λ values.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 26

Figure 7 reveals that the distribution of parameters is mostly concentrated near zero,
as indicated by the blue area, yet there are many points that are far from the center, rep-
resented by the red area. Using the L1-Norm method to measure the importance of filters
may not be accurate. In the field of statistics, the Minimax Concave Penalty (MCP) intro-
duces differentiated penalties for coefficients. When the absolute value of parameters ex-
ceeds a threshold, all parameters are replaced with a fixed value, and when the absolute
value is below the threshold, different degrees of penalty are applied based on their mag-
nitude. Zheng (2019) [42] noted that in the presence of tail errors or outliers, sparse pen-
alties can lead to more accurate and robust models. Sun (2021) [43] discussed the selection
problem when variables have outliers and applied the MCP penalty to logistic regression
models, using a weighted method to mitigate the impact of outliers. Building on these
findings, this study incorporates the MCP function into filter pruning to address the issue
of ”outliers” in parameters. For parameters whose absolute values are above the thresh-
old, they are considered equally important, and for those below the threshold, different
degrees of compression are applied according to their magnitude, ensuring that larger
parameters remain more significant while reducing the influence of “outliers” on filter
importance. The expression for the MCP function is

2

2

/ 2
()

/ 2

j j j

j

j

MCP
     


  

   


 (13)

In the above formula,  is the regularization parameter, used to adjust the intensity
of the penalty;  is the tuning parameter, which controls the penalty range. To intuitively
describe the effect of the MCP function, 100,000 weight parameters were randomly gener-
ated, with values in a range of [−1, 1]. Figure 8 depicts the results of the weight parameters
after MCP processing under different  and  values.

Figure 8. Effect diagram of  and  parameter values. Figure 8. Effect diagram of α and λ parameter values.

When λ is fixed and α is gradually increased, observing each row in the above figure,
as α increases, the range of the MCP function’s effect becomes larger, meaning the opening
of the graph widens. Conversely, when α is fixed and λ is gradually increased, observing
each column in the figure, as λ increases, the penalty on values near zero becomes more
severe, compressing values near zero to zero, resulting in a wider opening in the graph.

2.4.1. Description of Data Generation

In this study, the pruning of the convolutional layer is approached from both input
and output perspectives. For each convolutional layer earmarked for pruning, it is essential
to preserve both the input and output of the data. He [27] evidenced a methodology
that considers the scale of the training data, adopting 2000 images as samples for model
compression, validating the approach’s significance in the field. To achieve this, each
image’s data are fed into the trained network, and the intermediate output of the model
is retained for sampling. When pruning the feature map of a layer with c channels, a
matrix, X, of size N × c × kh × kω is sampled from the input feature map of the layer.
Correspondingly, a matrix, Y, of size N × n is generated from the output features, where N

Appl. Sci. 2024, 14, 3669 11 of 26

signifies the number of samples; n represents the number of output channels; and kh and
kω denote the convolution sizes. For the sake of representation convenience, the bias term
is not considered. The optimization function during pruning is

argmin
β,W

1
2N

(Y−
c

∑
i = 1

βiXiWT
i)

2 +
c

∑
j = 1

MCP(β j) (14)

In the given equation, Xi represents the matrix of the i-th channel of X after data
transformation, with dimensions of N × khkω . Similarly, Wi denotes the i-th channel of the
data transformation of the weight earmarked for pruning, having dimensions of n× khkω .
In this context, X and Y denote the intermediate inputs generated by the selected pruning
samples through the trained network. Specifically, X signifies the input of the current
convolutional layer; Y represents the output of the current convolutional layer; and W
stands for the parameter of the convolutional layer, already trained at the current layer.

2.4.2. Channel Selection

Equation (12) is expressed as follows, where βi signifies the coefficient of the i-th
channel. The value of βi determines whether the i-th channel is retained or not. When the
value is 0, it indicates that this channel is not crucial for the output, and consequently, it is
subject to pruning. Conversely, when the value is not 0, it signifies that this channel holds
importance for the output and should not be cropped. In other words, the assessment of
channel importance is contingent on the value of β. During this scenario, the parameter W
in the model can be considered fixed, resulting in the formulation of Equation (9) in the
subsequent manner:

β(λ, ρ) = argmin
β

1
2N

(Y−
c

∑
i = 1

βiZi)
2 +

c

∑
j = 1

MCP(β j) (15)

The equation Zi = XiWT
i holds, with the dimensionality defined as N × n.

2.4.3. Reconstruction of Outputs

Upon completion of channel selection, the coefficients, β, associated with each channel
are considered to be known. The parameters, W, within the model can then be reconstructed
by minimizing the mean square error. The optimization objective function is formulated
as follows:

argmin
W̃

(Y− X̃W̃T)
2

(16)

where X̃ = [β1X1, β2X2, . . . , βiXi, . . . , βcXc], with dimensions of N × ckhkω; W̃ is the ma-
trix of the transformed dimensions of the original parameters of the model with dimensions
of n× ckhkω; and W̃ = [W1, W2, . . . , Wi, . . . , Wc], with dimensions n× ckhkω. The new
model parameters, W, can be reduced after solving for W̃.

2.4.4. Parameter Selection

Throughout the training process, it is recommended to set parameter α to 3 [39]. As for
parameter λ, an initial value of λ = 1× 10−4 is employed. The value of λ is incrementally
increased until the count of remaining channels post-model pruning becomes lower than the
initially specified number of channels to be retained. Subsequently, λ is determined through
dichotomization until the remaining channels after pruning fall within the predefined range.
Figure 9 illustrates a flowchart for parameter selection.

Appl. Sci. 2024, 14, 3669 12 of 26

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 26

reconstructed by minimizing the mean square error. The optimization objective function
is formulated as follows:

2argmin()T

W
Y XW


  (16)

where 1 1 2 2[, ,..., ,...,]i i c cX X X X X    , with dimensions of hN ck k ; W is the matrix of the
transformed dimensions of the original parameters of the model with dimensions of

hn ck k ; and 1 2[, ,..., ,...,]i cW W W W W , with dimensions hn ck k . The new model parame-

ters, W , can be reduced after solving for W .

2.4.4. Parameter Selection
Throughout the training process, it is recommended to set parameter  to 3 [39]. As

for parameter  , an initial value of 41 10   is employed. The value of  is incremen-
tally increased until the count of remaining channels post-model pruning becomes lower
than the initially specified number of channels to be retained. Subsequently,  is deter-
mined through dichotomization until the remaining channels after pruning fall within the
predefined range. Figure 9 illustrates a flowchart for parameter selection.

Figure 9. Parameter selection flowchart.

Algorithm 1 presents the pseudocode for parameter selection, where  and  rep-
resent the MCP parameters. The specified tolerance, , indicating the permissible number

Figure 9. Parameter selection flowchart.

Algorithm 1 presents the pseudocode for parameter selection, where α and λ represent
the MCP parameters. The specified tolerance, τ, indicating the permissible number of chan-
nels within specific interval ranges post-model pruning, is set at 0.02 in our experiments.
For instance, when configuring a pruning ratio of 0.1, the actual channel pruning ratio is
considered to reach the threshold of 0.1 within a range of 0.098 to 0.12.

Appl. Sci. 2024, 14, 3669 13 of 26

Algorithm 1. Pseudocode for parameter selection. (# indicates an annotation on this line of pseudocode)

Inputs: Pruning ratio, MCP parameters α, λ = 1× 10−4, tolerance τ, current channel number c
Output: Reserved channels

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 26

of channels within specific interval ranges post-model pruning, is set at 0.02 in our exper-
iments. For instance, when configuring a pruning ratio of 0.1, the actual channel pruning
ratio is considered to reach the threshold of 0.1 within a range of 0.098 to 0.12.

Algorithm 1. Pseudocode for parameter selection. (# indicates an annotation on this line of pseudocode)

Inputs: Pruning ratio, MCP parameters  , 41 10   , tolerance , current channel number c
Output: Reserved channels

1 Set initial parameter left = 0, right = 
2 Calculate the number of channels after pruning c_new = c×ratio
3 Repeat:
4 Update the value of right right = right×2
5 Solve using coordinate descent algorithm keep_num, keep_channels = solver( ,right)
6 Until keep_num < newc # Until the number of channels retained is less than the number of channels left for pruning

7 Repeat:
8 Calculate the median as the value of  ,  = (left + right) / 2
9 Use the coordinate descent algorithm to solve for keep_num, keep_channels = slover( , )

10 if keep_num > (1)newc   then # Determine if the number of reserved channels is

greater than the maximum value of the set range.

11 left = 
12 else if keep_num < newc then # Determine if the number of reserved channels is greater than the min-

imum of the set range.

13 right = 
14 End if
15 Until newc < keep_num < (1)newc   # Until the number of retained channels is within the set range

3. Comparison Experiment
Ablation experiments were conducted on three networks, VGG19_Simple, VGG19,

and ResNet34, using two datasets, CIFAR10 and CIFAR100. The VGG19_Simple model
was employed, where the three fully connected layers in the original VGG19 model were
reduced to two layers. The parameters of the original 4096 hidden layer neurons were
adjusted to 512, significantly reducing the fully connected layer parameters. The VGG19
model, initially designed for the ImageNet dataset with 1000 categories, was adapted in
our experiments to classify 100 categories. The training epoch for all models was set to
300. As ResNet34 was initially designed for the ImageNet dataset, its original input di-
mensions were 224 × 224. In the experiment using CIFAR100 with input dimensions of 32
× 32, adjustments were made to the first convolutional layer’s kernel size from 7 × 7 to 3 ×
3. The learning rate for retraining was uniformly set at 0.001, with 40 epochs for the VGG
model and 20 epochs for the ResNet34 model. The Top1 accuracy after MCP-L1 and L1-
Norm pruning represents the average value of three repetitions.

He [28] demonstrated that the laĴer layers of the VGG model contain comparatively
less information. Considering that the dimensions of the model’s input data are already
reduced significantly by preceding pooling layers, and the computational requirements
for these layers are notably lower than those of earlier convolutional layers, pruning the
last few layers has a limited impact on overall computation reduction. Consequently, in
the ablation experiments involving the VGG19_Simple and VGG19 models, the number
of channels in the last four convolutional layers remains unchanged; in other words, no
pruning is applied to these final four layers. Unlike employing distinct pruning ratios for

3. Comparison Experiment

Ablation experiments were conducted on three networks, VGG19_Simple, VGG19,
and ResNet34, using two datasets, CIFAR10 and CIFAR100. The VGG19_Simple model
was employed, where the three fully connected layers in the original VGG19 model were
reduced to two layers. The parameters of the original 4096 hidden layer neurons were
adjusted to 512, significantly reducing the fully connected layer parameters. The VGG19
model, initially designed for the ImageNet dataset with 1000 categories, was adapted in
our experiments to classify 100 categories. The training epoch for all models was set to 300.
As ResNet34 was initially designed for the ImageNet dataset, its original input dimensions
were 224 × 224. In the experiment using CIFAR100 with input dimensions of 32 × 32,
adjustments were made to the first convolutional layer’s kernel size from 7× 7 to 3× 3. The
learning rate for retraining was uniformly set at 0.001, with 40 epochs for the VGG model
and 20 epochs for the ResNet34 model. The Top1 accuracy after MCP-L1 and L1-Norm
pruning represents the average value of three repetitions.

He [28] demonstrated that the latter layers of the VGG model contain comparatively
less information. Considering that the dimensions of the model’s input data are already
reduced significantly by preceding pooling layers, and the computational requirements
for these layers are notably lower than those of earlier convolutional layers, pruning the
last few layers has a limited impact on overall computation reduction. Consequently, in
the ablation experiments involving the VGG19_Simple and VGG19 models, the number
of channels in the last four convolutional layers remains unchanged; in other words, no
pruning is applied to these final four layers. Unlike employing distinct pruning ratios for
varying filter quantities, our approach uses global ratios across all parameter-clipped layers,
ensuring consistent ratios for all layers subjected to pruning.

Appl. Sci. 2024, 14, 3669 14 of 26

3.1. Comparative Experiments with the VGG19_Simple Model

The experiments in this section involve the VGG19_Simple model, a variant of the
original VGG19 model. In this modification, the three layers of full connectivity in VGG19
are consolidated into two layers, and the parameters of the initial 4096 hidden layer
neurons are adjusted to 512. Following training on the CIFAR10 dataset, the achieved Top1
accuracy for the model is 92.7%. The corresponding floating-point computations amount
to 3.99 × 108, with a total of 2.03 × 107 covariates.

3.1.1. Single-Layer Pruning Analysis

The reduction in Top1 accuracy for various layers was individually analyzed under
three distinct methods: MCP-L1, Lasso regression, and MCP regression. This analysis was
conducted based on different pruning ratios.

Figure 10 illustrates the impact of individual pruning on the 3rd to 11th convolutional
layers in the VGG19_Simple model. The vertical axis represents the decrease in Top1
accuracy, where smaller values indicate superior performance. The horizontal axis denotes
the specified pruning ratio, with 0.1 indicating a 10% reduction in the current channel.
Observing the figure, minimal differences in Top1 accuracy reduction are noted among the
three methods when the pruning ratio is small (i.e., 0.1). However, as the pruning ratio
increases, all three curves exhibit an upward trend. Notably, the MCP-L1 curve exhibits
the steepest ascent, followed by the Lasso regression curve, while the MCP regression
curve demonstrates a more gradual increase. In instances of single-layer pruning, the MCP
regression method excels in the selection of representative channels during pruning and in
effectively reconstructing the output.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 26

varying filter quantities, our approach uses global ratios across all parameter-clipped lay-
ers, ensuring consistent ratios for all layers subjected to pruning.

3.1. Comparative Experiments with the VGG19_Simple Model
The experiments in this section involve the VGG19_Simple model, a variant of the

original VGG19 model. In this modification, the three layers of full connectivity in VGG19
are consolidated into two layers, and the parameters of the initial 4096 hidden layer neu-
rons are adjusted to 512. Following training on the CIFAR10 dataset, the achieved Top1
accuracy for the model is 92.7%. The corresponding floating-point computations amount
to 3.99 × 108, with a total of 2.03 × 107 covariates.

3.1.1. Single-Layer Pruning Analysis
The reduction in Top1 accuracy for various layers was individually analyzed under

three distinct methods: MCP-L1, Lasso regression, and MCP regression. This analysis was
conducted based on different pruning ratios.

Figure 10 illustrates the impact of individual pruning on the 3rd to 11th convolutional
layers in the VGG19_Simple model. The vertical axis represents the decrease in Top1 ac-
curacy, where smaller values indicate superior performance. The horizontal axis denotes
the specified pruning ratio, with 0.1 indicating a 10% reduction in the current channel.
Observing the figure, minimal differences in Top1 accuracy reduction are noted among
the three methods when the pruning ratio is small (i.e., 0.1). However, as the pruning ratio
increases, all three curves exhibit an upward trend. Notably, the MCP-L1 curve exhibits
the steepest ascent, followed by the Lasso regression curve, while the MCP regression
curve demonstrates a more gradual increase. In instances of single-layer pruning, the
MCP regression method excels in the selection of representative channels during pruning
and in effectively reconstructing the output.

Figure 10. VGG19_Simple single-layer pruning diagram.

3.1.2. Global Pruning Analysis
For the VGG19_Simple model, we compared the Top1 accuracy of the model after

pruning using three distinct compression methods, MCP-L1, Lasso regression, and MCP

Figure 10. VGG19_Simple single-layer pruning diagram.

3.1.2. Global Pruning Analysis

For the VGG19_Simple model, we compared the Top1 accuracy of the model after
pruning using three distinct compression methods, MCP-L1, Lasso regression, and MCP
regression, across various pruning ratios. The pruned model underwent retraining at a
pruning ratio of 0.3, with a training epoch of 40 and a learning rate of 0.001.

The results presented in Table 1 and Figure 11 illustrate distinct behaviors among three
pruning methods: MCP-L1, Lasso regression, and MCP regression. MCP-L1 solely engages

Appl. Sci. 2024, 14, 3669 15 of 26

in channel pruning without output reconstruction. As the pruning ratio escalates, the
model’s effectiveness diminishes significantly. When the pruning ratio reaches 0.5, the Top1
accuracy on CIFAR10 drops to a mere 11.61%, akin to random classification, rendering the
model nearly ineffective. Lasso regression, coupled with output reconstruction, manages to
maintain a relatively high accuracy rate. However, as the pruning ratio increases, its Top1
accuracy experiences a more rapid decline. In contrast, MCP regression, encompassing
channel pruning along with output reconstruction, exhibits superior performance compared
with the other two methods. A closer inspection of the local zoomed-in graph in Figure 3
underscores that, as the pruning proportion rises, the performance gap between Lasso
regression and MCP regression widens progressively.

Table 1. Global pruning comparison diagram of VGG19_Simple.

0.1 0.2 0.3 0.4 0.5 Retrain (0.3)

MCP-L1 83.49 54.33 37.88 20.4 10.61 91.43
Lasso Regression 91.19 89.27 87.93 86.81 82.97 91.74
MCP Regression 91.7 91.37 90.55 90.13 88.62 91.95

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 26

regression, across various pruning ratios. The pruned model underwent retraining at a
pruning ratio of 0.3, with a training epoch of 40 and a learning rate of 0.001.

The results presented in Table 1 and Figure 11 illustrate distinct behaviors among
three pruning methods: MCP-L1, Lasso regression, and MCP regression. MCP-L1 solely
engages in channel pruning without output reconstruction. As the pruning ratio escalates,
the model’s effectiveness diminishes significantly. When the pruning ratio reaches 0.5, the
Top1 accuracy on CIFAR10 drops to a mere 11.61%, akin to random classification, render-
ing the model nearly ineffective. Lasso regression, coupled with output reconstruction,
manages to maintain a relatively high accuracy rate. However, as the pruning ratio in-
creases, its Top1 accuracy experiences a more rapid decline. In contrast, MCP regression,
encompassing channel pruning along with output reconstruction, exhibits superior per-
formance compared with the other two methods. A closer inspection of the local zoomed-
in graph in Figure 3 underscores that, as the pruning proportion rises, the performance
gap between Lasso regression and MCP regression widens progressively.

Figure 11. VGG19_Simple global pruning comparison chart.

Table 1. Global pruning comparison diagram of VGG19_Simple.

 0.1 0.2 0.3 0.4 0.5 Retrain (0.3)
MCP-L1 83.49 54.33 37.88 20.4 10.61 91.43

Lasso Regression 91.19 89.27 87.93 86.81 82.97 91.74
MCP Regression 91.7 91.37 90.55 90.13 88.62 91.95

The insights derived from Table 2 reveal the substantial advantages of the MCP re-
gression method in model pruning. When the pruning ratio is set to 0.1, the model demon-
strates a commendable reduction of 15% in floating-point computation, accompanied by
an 8% decline in the number of parameters. Remarkably, the Top1 accuracy of the pruned
MCP regression model experiences only a marginal 1% decrease compared with the orig-
inal model. Upon seĴing a pruning ratio of 0.4, the Top1 accuracy registers a modest de-
cline of 2.5%, while the reduction in floating-point computation surpasses 50%. Corre-
spondingly, the number of parameters decreases by over 30%, leading to an overall
memory usage that is merely 70% of the original model. These results underscore the ef-
ficiency of the MCP regression method, as it achieves a balance between computational
efficiency and model accuracy. In Table 2, with a pruning ratio of 0.3 and subsequent re-
training, the MCP regression model showcases performance closer to the original model
compared with other methods.

Figure 11. VGG19_Simple global pruning comparison chart.

The insights derived from Table 2 reveal the substantial advantages of the MCP
regression method in model pruning. When the pruning ratio is set to 0.1, the model
demonstrates a commendable reduction of 15% in floating-point computation, accompanied
by an 8% decline in the number of parameters. Remarkably, the Top1 accuracy of the pruned
MCP regression model experiences only a marginal 1% decrease compared with the original
model. Upon setting a pruning ratio of 0.4, the Top1 accuracy registers a modest decline of
2.5%, while the reduction in floating-point computation surpasses 50%. Correspondingly,
the number of parameters decreases by over 30%, leading to an overall memory usage
that is merely 70% of the original model. These results underscore the efficiency of the
MCP regression method, as it achieves a balance between computational efficiency and
model accuracy. In Table 2, with a pruning ratio of 0.3 and subsequent retraining, the
MCP regression model showcases performance closer to the original model compared with
other methods.

Appl. Sci. 2024, 14, 3669 16 of 26

Table 2. Parameter counts and floating-point calculations of VGG19_Simple model with different
pruning ratios.

Ratio Flop Flop Ratio Param Param Ratio

0.1 3.37 × 108 15.52% 1.86 × 107 8.23%
0.2 2.78 × 108 30.25% 1.70 × 107 16.39%
0.3 2.25 × 108 43.75% 1.55 × 107 23.76%
0.4 1.80 × 108 54.94% 1.42 × 107 30.02%
0.5 1.39 × 108 64.99% 1.30 × 107 35.88%

3.2. Comparative Experiments with the VGG19 Model

In contrast to the ablation experiment conducted on VGG19_Simple, modifications
were made in the ablation experiment involving VGG19 to mitigate the impact of the fully
connected layer on the pruning process. Specifically, the neurons in the last fully connected
layer of the model were adjusted to 512, and the hidden layer with the largest parameter
was downsized. This adjustment ensures that the majority of the model’s parameters
and information are concentrated within the convolutional layer. An additional analysis
was performed on the original VGG19 model concerning the pruning process. Given
that the training dataset is CIFAR100, and the final classification number is 100, the Top1
accuracy of the model, after training on the CIFAR100 dataset, is 71.69%. The floating-point
computation amounts to 4.18 × 108, and the number of parameters is 3.93 × 107.

3.2.1. Single-Layer Pruning Analysis

Similar to Figure 10, Figure 12 depicts the impact of individually pruning layers 3 to
11 of the convolutional layers in the VGG19 model trained using the CIFAR100 dataset.
The vertical axis represents the decrease in Top1 accuracy, with smaller values indicating
better performance. The horizontal axis denotes the specified pruning ratio, where 0.1
corresponds to pruning 10% of the current channel.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 26

Table 2. Parameter counts and floating-point calculations of VGG19_Simple model with different
pruning ratios.

Ratio Flop Flop ratio Param Param Ratio
0.1 3.37 × 108 15.52% 1.86 × 107 8.23%
0.2 2.78 × 108 30.25% 1.70 × 107 16.39%
0.3 2.25 × 108 43.75% 1.55 × 107 23.76%
0.4 1.80 × 108 54.94% 1.42 × 107 30.02%
0.5 1.39 × 108 64.99% 1.30 × 107 35.88%

3.2. Comparative Experiments with the VGG19 Model
In contrast to the ablation experiment conducted on VGG19_Simple, modifications

were made in the ablation experiment involving VGG19 to mitigate the impact of the fully
connected layer on the pruning process. Specifically, the neurons in the last fully con-
nected layer of the model were adjusted to 512, and the hidden layer with the largest pa-
rameter was downsized. This adjustment ensures that the majority of the model’s param-
eters and information are concentrated within the convolutional layer. An additional anal-
ysis was performed on the original VGG19 model concerning the pruning process. Given
that the training dataset is CIFAR100, and the final classification number is 100, the Top1
accuracy of the model, after training on the CIFAR100 dataset, is 71.69%. The floating-
point computation amounts to 4.18 × 108, and the number of parameters is 3.93 × 107.

3.2.1. Single-Layer Pruning Analysis
Similar to Figure 10, Figure 12 depicts the impact of individually pruning layers 3 to

11 of the convolutional layers in the VGG19 model trained using the CIFAR100 dataset.
The vertical axis represents the decrease in Top1 accuracy, with smaller values indicating
beĴer performance. The horizontal axis denotes the specified pruning ratio, where 0.1 cor-
responds to pruning 10% of the current channel.

Figure 12. VGG19 single-layer pruning diagram. Subfigures(a–i) represent the results of pruning
layers 3 to 11 respectively.
Figure 12. VGG19 single-layer pruning diagram. Subfigures(a–i) represent the results of pruning
layers 3 to 11 respectively.

Appl. Sci. 2024, 14, 3669 17 of 26

Redundancy exists in the VGG19 model trained on the CIFAR100 dataset, and pruning
a certain percentage of channels leads to improved Top1 accuracy compared with the
original network. In Figure 12a, when the pruning ratio is set to 0.15, 0.2, and 0.25, the MCP
regression method enhances the Top1 accuracy by 0.02%, 0.11%, and 0.04%, respectively,
upon pruning the model. In Figure 12b, at a pruning ratio of 0.1, both MCP regression
and Lasso regression improve the accuracy by 0.13% and 0.08%, respectively. Figure 12i
exhibits the most prominent redundancy phenomenon. At a pruning ratio of 0.1, when
using MCP-L1 to directly crop the model, the accuracy improves by 0.15%. At this point,
the MCP regression and Lasso regression methods are less effective than MCP-L1, although
they also enhance the model’s performance after pruning.

In its entirety, the direct pruning of the model using the MCP-L1 method significantly
diminishes the model’s performance, with a Top1 accuracy reduction exceeding 10% in
shallower convolutional layers at a pruning ratio of 0.4. In contrast, MCP regression and
Lasso regression involve an output reconstruction process, resulting in a more moderate
degradation of the model’s performance compared with the MCP-L1 method. Notably, the
MCP regression method outperforms Lasso regression in most cases, particularly in the
middle layer of the network. At this layer, with fewer redundant parameters and more
informative channels, channel selection becomes crucial. Consequently, the performance
loss of the model after MCP regression is considerably smaller than that observed with the
Lasso regression in Figure 12e–g.

3.2.2. Global Pruning Analysis

The Top1 accuracy after global model pruning was evaluated for the VGG19 model
using three methods: MCP-L1, Lasso regression, and MCP regression. The model was
retrained with a pruning ratio of 0.3, an epoch of 20, and a learning rate of 0.001.

As evident from Table 3 and Figure 13, the VGG19 model trained on CIFAR100 exhibits
less parameter redundancy than VGG19_Simple trained on CIFAR10. Consequently, the
decreases in Top1 accuracy are more pronounced when pruning the model.

Table 3. Table of VGG19 global pruning results.

0.1 0.2 0.3 0.4 0.5 Retrain (0.3)

MCP-L1 51.15 22.08 7.57 2.28 1.13 67.49
Lasso Regression 67.08 60.41 51.34 20.13 11.69 67.97
MCP Regression 70.06 66.11 59.31 45.92 27.21 69.64

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 26

Redundancy exists in the VGG19 model trained on the CIFAR100 dataset, and prun-
ing a certain percentage of channels leads to improved Top1 accuracy compared with the
original network. In Figure 12a, when the pruning ratio is set to 0.15, 0.2, and 0.25, the
MCP regression method enhances the Top1 accuracy by 0.02%, 0.11%, and 0.04%, respec-
tively, upon pruning the model. In Figure 12b, at a pruning ratio of 0.1, both MCP regres-
sion and Lasso regression improve the accuracy by 0.13% and 0.08%, respectively. Figure
12i exhibits the most prominent redundancy phenomenon. At a pruning ratio of 0.1, when
using MCP-L1 to directly crop the model, the accuracy improves by 0.15%. At this point,
the MCP regression and Lasso regression methods are less effective than MCP-L1, alt-
hough they also enhance the model’s performance after pruning.

In its entirety, the direct pruning of the model using the MCP-L1 method significantly
diminishes the model’s performance, with a Top1 accuracy reduction exceeding 10% in
shallower convolutional layers at a pruning ratio of 0.4. In contrast, MCP regression and
Lasso regression involve an output reconstruction process, resulting in a more moderate
degradation of the model’s performance compared with the MCP-L1 method. Notably,
the MCP regression method outperforms Lasso regression in most cases, particularly in
the middle layer of the network. At this layer, with fewer redundant parameters and more
informative channels, channel selection becomes crucial. Consequently, the performance
loss of the model after MCP regression is considerably smaller than that observed with
the Lasso regression in Figure 12e–g.

3.2.2. Global Pruning Analysis
The Top1 accuracy after global model pruning was evaluated for the VGG19 model

using three methods: MCP-L1, Lasso regression, and MCP regression. The model was re-
trained with a pruning ratio of 0.3, an epoch of 20, and a learning rate of 0.001.

As evident from Table 3 and Figure 13, the VGG19 model trained on CIFAR100 ex-
hibits less parameter redundancy than VGG19_Simple trained on CIFAR10. Conse-
quently, the decreases in Top1 accuracy are more pronounced when pruning the model.

Table 3. Table of VGG19 global pruning results.

 0.1 0.2 0.3 0.4 0.5 Retrain (0.3)
MCP-L1 51.15 22.08 7.57 2.28 1.13 67.49

Lasso Regression 67.08 60.41 51.34 20.13 11.69 67.97
MCP Regression 70.06 66.11 59.31 45.92 27.21 69.64

Figure 13. Comparison of the global pruning of VGG19. Figure 13. Comparison of the global pruning of VGG19.

Appl. Sci. 2024, 14, 3669 18 of 26

When the model undergoes pruning using the MCP-L1 method, the Top1 accuracy
experiences a significant drop, ranging from 20.54% to 51.15%, at a pruning ratio of 0.1.
Upon reaching a pruning ratio of 0.5, the Top1 accuracy plummets to approximately
1%, rendering the model ineffective for a 100-category classification, akin to random
classification. In the case of Lasso regression and MCP regression, although the decline
in model performance is not as rapid as with the MCP-L1 method, the predictive effect
diminishes notably with increasing pruning ratios. Specifically, at a pruning ratio of 0.5, the
Top1 accuracies for the Lasso-regression- and MCP-regression-cropped models are 11.69%
and 27.21%, representing 60% and 44.48% decreases, respectively.

Overall, the MCP regression method outperforms Lasso regression both after pruning
the model and following fine-tuning. Specifically, at a pruning ratio of 0.3, the Top1
accuracies after pruning are 59.31% and 51.34% for MCP regression and Lasso regression,
respectively. Subsequent retraining results in Top1 accuracies of 69.64% and 67.94%, with
MCP regression exhibiting superior performance in both scenarios.

Table 4 displays the parametric quantities and floating-point computations of the
VGG19 model with different pruning ratios. In the VGG19 model, a significant number of
parameters are attributed to the fully connected layer, whereas a considerable portion of
floating-point computations are concentrated in the convolutional layer. In this subsection’s
experiments, pruning predominantly targets the convolutional channels, excluding the fully
connected layer. Consequently, the reduction in the number of parameters after pruning is
not pronounced, but the decline in floating-point computations is more substantial. For
a pruning ratio of 0.5, the parameter count decreases by approximately 18%, while the
floating-point computation volume drops by over 60%, resulting in a computation volume
of less than half of the original model. With a pruning ratio of 0.3, the model’s Top1 accuracy
is restored to 69.64% after only 40 retrains, representing a 2.05% reduction compared with
the original model, accompanied by a reduction of about 42% in computation volume.

Table 4. Parametric quantities and floating-point computations of VGG19 model with different
pruning ratios.

Ratio Flop Flop Ratio Param Param Ratio

0.1 3.51 × 108 15.86% 3.75 × 107 4.58%
0.2 2.93 × 108 29.82% 3.59 × 107 8.74%
0.3 2.41 × 108 42.32% 3.44 × 107 12.44%
0.4 1.96 × 108 53.20% 3.31 × 107 15.76%
0.5 1.57 × 108 62.32% 3.20 × 107 18.63%

3.3. Comparative Experiments with ResNet34 Models

ResNet34, characterized by its multipath structure with residual elements, is designed
for high efficiency and accuracy, making network tailoring more challenging. Similar to
the VGG model, the floating-point computation of ResNet34 progressively decreases with
each residual block as the depth increases, owing to pooling layers and a convolutional
step size of two. In this section, inspired by ablation experiments on the VGG19_Simple
and VGG19 models, we selectively crop the shallower layers of ResNet34—specifically,
the convolutional layers in Layer1, Layer2, and Layer3, as detailed in the structure of
ResNet34 in Tables 2 and 3. Layer4’s computation amount decreases significantly due
to its small output data, making it less significant for pruning compared with previous
convolutional layers. The Top1 accuracy of the model trained on CIFAR100 data is 78.53%,
with a floating-point computation of 1.16 × 109 and 2.13 × 107 parameters.

3.3.1. Single-Layer Pruning Analysis

During single-layer pruning, strategy A excludes the pruning of residual branches,
while strategy B involves pruning shortcuts and the Conv2 structure of Basic Block to
maintain dimensionality consistency. In the single-layer pruning analysis, analysis was
exclusively conducted to prune strategy A.

Appl. Sci. 2024, 14, 3669 19 of 26

Figure 14 illustrates the single-layer pruning analysis for the first three Basic Blocks
in Layer1 and Layer2 of the ResNet34 model. When applying single-layer pruning to
the model in Layer1, the Top1 accuracy exhibits varying degrees of decrease. Notably,
Basic Block1 experiences a less pronounced decrease, with MCP-L1 showing only a 0.4%
reduction at a pruning ratio of 0.4. In contrast, Basic Block2 and Basic Block3 show more
significant reductions of approximately 5% and 6% with the MCP-L1 method. Both the
Lasso regression and MCP regression methods exhibit less-substantial decreases under
single-layer pruning, with MCP regression demonstrating a slight superiority over Lasso
regression methods.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 26

maintain dimensionality consistency. In the single-layer pruning analysis, analysis was
exclusively conducted to prune strategy A.

Figure 14 illustrates the single-layer pruning analysis for the first three Basic Blocks
in Layer1 and Layer2 of the ResNet34 model. When applying single-layer pruning to the
model in Layer1, the Top1 accuracy exhibits varying degrees of decrease. Notably, Basic
Block1 experiences a less pronounced decrease, with MCP-L1 showing only a 0.4% reduc-
tion at a pruning ratio of 0.4. In contrast, Basic Block2 and Basic Block3 show more signif-
icant reductions of approximately 5% and 6% with the MCP-L1 method. Both the Lasso
regression and MCP regression methods exhibit less-substantial decreases under single-
layer pruning, with MCP regression demonstrating a slight superiority over Lasso regres-
sion methods.

Figure 14. Schematic of ResNet34 single-layer pruning under strategy A.

In Layer2, none of the three methods exhibit a loss in Top1 accuracy at a given prun-
ing ratio. This suggests redundancy in the ResNet34 model under CIFAR100 training, and
pruning a single layer does not impact its performance. The Top1 accuracy also remains
constant when pruning deeper Basic Blocks.

3.3.2. Global Pruning Analysis
Table 5 and Figure 15 elucidate the repercussions of the three pruning methodologies

subsequent to the global pruning of ResNet34, executed under two distinct pruning strate-
gies. The left panels delineate the Top1 accuracy of the pruned model, while the right panels
elucidate the magnitude of reduction in Top1 accuracy relative to that of the original model.

Table 5. Plot of global pruning results for ResNet34.

 0.1 0.2 0.3 0.4 0.5 Retrain (0.3)

Pruning Strat-
egy A

MCP-L1 77.99 75.57 71.50 58.89 37.47 76.94
Lasso Regression 78.41 77.21 75.30 69.20 57.92 77.34
MCP Regression 78.48 78.10 77.11 74.03 60.26 77.67

MCP-L1 70.54 50.44 33.52 16.44 9.23 77.16

Figure 14. Schematic of ResNet34 single-layer pruning under strategy A.

In Layer2, none of the three methods exhibit a loss in Top1 accuracy at a given pruning
ratio. This suggests redundancy in the ResNet34 model under CIFAR100 training, and
pruning a single layer does not impact its performance. The Top1 accuracy also remains
constant when pruning deeper Basic Blocks.

3.3.2. Global Pruning Analysis

Table 5 and Figure 15 elucidate the repercussions of the three pruning methodologies
subsequent to the global pruning of ResNet34, executed under two distinct pruning strategies.
The left panels delineate the Top1 accuracy of the pruned model, while the right panels
elucidate the magnitude of reduction in Top1 accuracy relative to that of the original model.

Table 5. Plot of global pruning results for ResNet34.

0.1 0.2 0.3 0.4 0.5 Retrain (0.3)

Pruning
Strategy A

MCP-L1 77.99 75.57 71.50 58.89 37.47 76.94
Lasso Regression 78.41 77.21 75.30 69.20 57.92 77.34
MCP Regression 78.48 78.10 77.11 74.03 60.26 77.67

Pruning
Strategy B

MCP-L1 70.54 50.44 33.52 16.44 9.23 77.16
Lasso Regression 76.10 66.43 51.38 41.61 35.85 77.58
MCP Regression 77.60 70.61 58.42 47.32 40.21 77.84

Appl. Sci. 2024, 14, 3669 20 of 26

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 26

Pruning Strat-
egy B

Lasso Regression 76.10 66.43 51.38 41.61 35.85 77.58
MCP Regression 77.60 70.61 58.42 47.32 40.21 77.84

Figure 15. Global pruning effect of ResNet34.

In strategy A, shortcut pruning is omiĴed, and the pruning process solely considers
the number of channels in Conv1. With a pruning ratio of 0.1, the model’s performance
only experiences a marginal decline across all three methods. However, as the pruning
ratio escalates, there is a continuous deterioration in the model’s performance. Initially,
the Top1 accuracy exhibits a gradual decrease; specifically, with a pruning ratio ranging
from 0.1 to 0.3, the Top1 accuracies decrease by 6.49%, 1.2%, and 1.37% for the MCP-L1,
Lasso regression, and MCP regression methods, respectively. Subsequently, from 0.3 to
0.5, the Top1 accuracies decrease by 34.03%, 17.38%, and 16.85%, respectively, for the three
methods. As the pruning ratio increases, the model’s redundancy becomes insufficient to
counterbalance the impact of channel pruning, resulting in a rapid performance decline.
Among the three methods, Lasso regression and MCP exhibit smoother decline curves
due to a more extensive output reconstruction process than MCP-L1. Notably, the MCP
curve demonstrates the smoothest decline in Top1 accuracy.

In strategy B, incorporating shortcut pruning necessitates the simultaneous pruning
of Conv2 in each Basic Block to maintain consistent output dimensions. Consequently,
under identical pruning ratios, more information is pruned compared with strategy A.
The graph illustrates a rapid decline in the model’s Top1 accuracy with increasing prun-
ing ratios, forming an almost linear trend. Notably, the model’s Top1 accuracy experi-
ences a swift, near-linear descent as the pruning ratio rises. This phenomenon can be at-
tributed to the need to preserve information flow through the residual structure to prevent
gradient vanishing. Consequently, the information loss in residual pruning surpasses that
in the normal convolutional layer within the Basic Block. With a pruning ratio of 0.5, the
Top1 accuracy of the model pruned using the MCP-L1 method plummets to below 10%,
rendering the model nearly ineffective.

Under two distinct pruning strategies, the three pruning methods exhibited varying
degrees of model performance degradation following the pruning of the ResNet34 model.
Regardless of the strategy employed, the MCP regression method consistently outper-
formed the other two methods in pruning, suggesting its superior ability to select pruning
channels compared with Lasso regression.

Figure 15. Global pruning effect of ResNet34.

In strategy A, shortcut pruning is omitted, and the pruning process solely considers
the number of channels in Conv1. With a pruning ratio of 0.1, the model’s performance
only experiences a marginal decline across all three methods. However, as the pruning
ratio escalates, there is a continuous deterioration in the model’s performance. Initially,
the Top1 accuracy exhibits a gradual decrease; specifically, with a pruning ratio ranging
from 0.1 to 0.3, the Top1 accuracies decrease by 6.49%, 1.2%, and 1.37% for the MCP-L1,
Lasso regression, and MCP regression methods, respectively. Subsequently, from 0.3 to
0.5, the Top1 accuracies decrease by 34.03%, 17.38%, and 16.85%, respectively, for the three
methods. As the pruning ratio increases, the model’s redundancy becomes insufficient to
counterbalance the impact of channel pruning, resulting in a rapid performance decline.
Among the three methods, Lasso regression and MCP exhibit smoother decline curves due
to a more extensive output reconstruction process than MCP-L1. Notably, the MCP curve
demonstrates the smoothest decline in Top1 accuracy.

In strategy B, incorporating shortcut pruning necessitates the simultaneous pruning
of Conv2 in each Basic Block to maintain consistent output dimensions. Consequently,
under identical pruning ratios, more information is pruned compared with strategy A. The
graph illustrates a rapid decline in the model’s Top1 accuracy with increasing pruning
ratios, forming an almost linear trend. Notably, the model’s Top1 accuracy experiences a
swift, near-linear descent as the pruning ratio rises. This phenomenon can be attributed to
the need to preserve information flow through the residual structure to prevent gradient
vanishing. Consequently, the information loss in residual pruning surpasses that in the
normal convolutional layer within the Basic Block. With a pruning ratio of 0.5, the Top1
accuracy of the model pruned using the MCP-L1 method plummets to below 10%, rendering
the model nearly ineffective.

Under two distinct pruning strategies, the three pruning methods exhibited varying
degrees of model performance degradation following the pruning of the ResNet34 model.
Regardless of the strategy employed, the MCP regression method consistently outper-
formed the other two methods in pruning, suggesting its superior ability to select pruning
channels compared with Lasso regression.

The data in Table 6 reveal insights into floating-point computations and parameter
counts after pruning. The decrease in parameters is not pronounced under the two pruning
strategies since channel pruning is limited to the convolutional layer. However, a substantial
reduction in floating-point computations can be observed. At a pruning ratio of 0.1, the
parameter reduction is approximately 3% to 4% for both strategies, while floating-point

Appl. Sci. 2024, 14, 3669 21 of 26

computation experiences a reduction exceeding 30%, nearly tenfold that of the parameter
reduction. In strategy A, at a pruning ratio of 0.4, parameter reduction is merely 15%, but
the corresponding reduction in floating-point computation exceeds 51%, less than half of
the original model’s computation. For strategy B, with a pruning ratio of 0.5, floating-point
computation is halved, while the parameter count shows a reduction of about 20%.

Table 6. Parameter count and floating-point computation of ResNet34 model with different pruning ratios.

Ratio Flop Flop Ratio Param Param Ratio

Prune
Strategy A

0.1 1.07 × 109 33.46% 2.05 × 107 3.56%
0.2 9.77 × 108 39.31% 1.97 × 107 7.42%
0.3 8.81 × 108 45.27% 1.89 × 107 11.17%
0.4 7.87 × 108 51.11% 1.81 × 107 15.04%

0.5 6.89 × 108 57.19% 1.73 × 107 18.92%

Prune
Strategy B

0.1 1.09 × 109 32.18% 2.04 × 107 4.06%
0.2 1.02 × 109 36.76% 1.95 × 107 8.44%
0.3 9.46 × 109 41.23% 1.86 × 107 12.68%
0.4 8.73 × 108 45.80% 1.77 × 107 17.06%
0.5 7.99 × 108 50.37% 1.67 × 107 21.43%

Strategy B not only prunes Conv2 in the Basic Block but also involves pruning the
residual structure, resulting in a greater reduction in its parameter count compared with
strategy A with the same pruning ratio. Nevertheless, the primary purpose of the residual
structure is information conveyance and mitigating gradient vanishing effects, leading to
a less pronounced decrease in floating-point computation when the residual structure is
pruned. Under identical pruning ratios, although strategy B exhibits a larger parameter
reduction, the decrease in floating-point computation is smaller than that of strategy A.
Additionally, the floating-point computation in strategy A is less than that of strategy B.

4. Comparison of Scenarios Applicable to the MCP Regression and MCP-L1 Methods

Within the context of the VGG19 model, the comparison assesses distinctions between
MCP-L1 and MCP regression based on time consumption and space occupation, with the
pruning parameter set to 0.3.

4.1. Time Dimension

Efficiency in model pruning is a crucial area of interest. This subsection evaluates
the pruning efficiency of the two methods based on their time consumption during the
pruning of convolutional layers. For comparative purposes, Table 7 presents data on the
time needed to crop a single convolutional kernel layer. This measurement excludes data
preparation and other time-consuming factors, with the unit standardized in seconds (s).

Table 7. Comparison of time consumption of the two methods.

Layer MCP-L1 MCP
Regression Layer MCP-L1 MCP

Regression

Conv_1 0.029 ---- Conv_9 0.705 25.276
Conv_2 0.077 2.315 Conv_10 0.813 43.445
Conv_3 0.068 2.674 Conv_11 0.798 88.056
Conv_4 0.189 2.220 Conv_12 0.767 135.252
Conv_5 0.256 5.096 Conv_13 0.726 435.779
Conv_6 0.495 8.199 Conv_14 0.714 246.687
Conv_7 0.496 6.750 Conv_15 0.670 274.217
Conv_8 0.493 9.415 Conv_16 0.779 270.149

Appl. Sci. 2024, 14, 3669 22 of 26

Within the MCP regression method, convolutional layer filters are pruned considering
both inputs and outputs. Consequently, for the initial layer of the model, which receives
raw data as inputs, pruning is unsuitable. Therefore, there are no available data on the time
consumption of the MCP regression compression method under Conv_1.

When considering time consumption, the VGG19 model’s increasing depth correlates
with an extended duration for MCP regression pruning. This elongation can be attributed
to rising dimensions, requiring fitting through the coordinate descent method, thus in-
creasing the fitting time for a single layer. Dichotomous parameter selection during fitting
necessitates continuous adjustments to maintain the retained channel count within the
pruning range, amplifying the number of iterations. The time required is more pronounced
with larger sample sizes. In contrast, the MCP-L1 method performs fewer operations when
pruning a single convolutional layer, resulting in relatively minor time consumption. Even
in deeper layers of the convolutional structure, its time consumption remains below 1 s.

4.2. The Space Dimension

Concerns regarding resource consumption arise during model pruning. This subsec-
tion gauges the necessary memory resources by evaluating the volume of data processed
during the pruning of convolutional layers for both methods. For comparative analysis,
the data in Table 8 represent the dimensions of data that require processing when pruning
a single convolutional kernel layer.

Table 8. Table of dimensions of data cropped by the two methods.

Layer MCP-L1 MCP
Regression Layer MCP-L1 MCP

Regression

Conv_1 (3,64,3,3) ---- Conv_9 (256,512,3,3) (1376256,256)
Conv_2 (64,64,3,3) (172032,64) Conv_10 (512,512,3,3) (1376256,512)
Conv_3 (64,128,3,3) (344064,64) Conv_11 (512,512,3,3) (1376256,512)
Conv_4 (128,128,3,3) (344064,128) Conv_12 (512,512,3,3) (1376256,512)
Conv_5 (128,256,3,3) (688128,128) Conv_13 (512,512,3,3) (1376256,512)
Conv_6 (256,256,3,3) (688128,256) Conv_14 (512,512,3,3) (1376256,512)
Conv_7 (256,256,3,3) (688128,256) Conv_15 (512,512,3,3) (1376256,512)
Conv_8 (256,256,3,3) (688128,256) Conv_16 (512,512,3,3) (1376256,512)

The outcomes presented in Table 8 reveal that, within the MCP regression method,
regression fitting is applied to the current output feature channel. The channel is censored
based on whether the coefficient is zero or not to facilitate the pruning of the corresponding
filter. Consequently, the data in this method need to be transformed into a two-dimensional
format. In contrast, MCP-L1 directly prunes the filter in terms of parameters, utilizing it
directly within the filter’s four-dimensional data structure.

When considering the spatial dimension, the MCP regression method faces an es-
calating challenge as the VGG19 model deepens. The pruning of a single convolutional
layer involves an increasing number of samples and higher data dimensions. The solution
process incorporates matrix operations, leading to significant memory occupancy during
pruning. With the growing number of selected samples for pruning, the dimensionality
of the data becomes more demanding on hardware resources. In contrast, MCP-L1 solely
prunes in the original parameters, resulting in a modest change in the data processing
volume and smaller memory occupancy for the model.

The data delineated in Tables 7 and 8 unequivocally demonstrate the augmented
time and memory requirements of the MCP regression method compared with the MCP-
L1 method, particularly when processing deeper network structures. As evidenced in
Table 7, the MCP regression approach exhibits a notable increase in the time needed for
single-layer pruning as the model depth intensifies. This is especially pronounced in
deeper convolutional layers, where the time consumption for MCP regression substantially
exceeds that of the MCP-L1 method. For instance, at the Conv_16 layer, the time required

Appl. Sci. 2024, 14, 3669 23 of 26

by MCP regression amounts to 270.149 s, in stark contrast to the mere 0.779 s necessitated
by the MCP-L1 method. This significant difference primarily stems from the necessity
of more complex fitting computations via the coordinate descent method at each layer
within the MCP regression framework. Regarding spatial resource consumption, the data
from Table 8 indicate that the MCP regression method entails transforming the data into a
two-dimensional format for each layer processed, resulting in increased memory usage.
Notably, at the Conv_16 layer, the data dimension handled by the MCP regression method
reaches 1,376,256,512, far surpassing the 51,251,233 managed by the MCP-L1 method.
This illustrates that the memory requirements for filter pruning in MCP regression are
significantly higher than those for the MCP-L1 method.

To address these computational overheads, we propose several strategies: Firstly, en-
hancing the efficiency of the coordinate descent algorithm or employing parallel processing
techniques could reduce the time required for single-layer pruning. Secondly, for memory
consumption, the exploration of data compression techniques or the adoption of more
effective memory management strategies during the pruning process is recommended.
Additionally, future work could investigate the substitution of MCP with other sparse
penalty functions like ElasticNet or SCAD, potentially improving computational efficiency
while maintaining model accuracy.

5. Discussion

With the widespread adoption of high-performance GPUs in the field of deep learning,
both large and deep models have surpassed human limits across various domains. The
extensive use of billions, or even trillions, of parameters along with computationally
intensive operations confines these models to operation solely within laboratories and
data centers. The fundamental requirements for real-time online devices handling deep
neural networks include high precision and low latency. Consequently, compressing and
accelerating models have become crucial areas of research in academia and industry. The
focus remains on how to downsize these large models to facilitate deployment on mobile
devices, attracting significant attention.

He [28] was the pioneer in employing Lasso regression for model compression, re-
moving redundant channels through this technique. In channel selection, Lasso applies
a constant penalty strength to the regression coefficients. However, Lee and Kim [32]
argued that optimizing penalized regression is simpler and more cost-effective than subset
selection. Additionally, Xu and Lei [33] introduced sparsity to the original variables and
incorporated sparse regression based on traditional principal component analysis. This not
only retained the advantages of traditional principal component analysis but also enhanced
model estimation accuracy due to its sparsity. Lin et al. [34] proposed a variable selection
method for the functional regression model in the case of sparse functional-type data. They
performed functional principal component analysis on sparse functional-type independent
variables based on conditional expectation. The estimated orthogonal eigenfunctions were
then used as basis functions to expand the model. In contrast to He, [28] evidences the
application of MCP regression for channel selection, deviating from the use of Lasso regres-
sion. This modification, introducing the MCP regularization function, validates the work’s
significance in this field. We also adhere to the use of maximum squares regression.

The global pruning analysis, encompassing the single-layer pruning of the model,
demonstrated the superior performance of MCP regression over Lasso regression. Compar-
ative experiments were conducted on two datasets, CIFAR10 and CIFAR100, involving three
networks: VGG19_Simple, VGG19, and ResNet34. Specifically, for VGG19_Simple trained
on the CIFAR10 dataset, the Top1 accuracy of the MCP regression method after pruning
improved by an average of 2.3% compared with that of the Lasso regression method. Due
to the smaller dataset and increased model redundancy, the accuracy of the model remained
higher after pruning. For the VGG19 model trained on the CIFAR100 dataset, where model
redundancy is relatively low, channel selection becomes crucial. Here, the Top1 accuracy of
the model after MCP regression increased by an average of 10% compared with that of the

Appl. Sci. 2024, 14, 3669 24 of 26

Lasso method, and the accuracy of Top1 after retraining improved by 0.67% at a pruning
ratio of 0.3. For the ResNet34 model trained on the CIFAR100 dataset, with less model
redundancy than VGG19, the Top1 accuracies of the MCP method improved by an average
of 1.98% and 4.56% compared with that of the Lasso method after Lasso method pruning
under two different strategies. In summary, all three ablation experiments consistently
demonstrated the superiority of MCP regression for channel selection followed by output
reconstruction over Lasso regression for channel selection followed by reconstruction.

In the experimental section, it is evident that the MCP regression method yields a
higher accuracy for the pruned model in comparison with MCP-L1. Additionally, the
accuracy of the fine-tuned model approaches that of the original model. However, the
computational time consumption and memory usage of the MCP regression method signif-
icantly surpass those of MCP-L1. Consequently, each method has its own set of advantages
and disadvantages. When dealing with more complex problems, larger models, and an
increased training data volume, it is preferable to utilize the MCP-L1 method for model
pruning. Opting for the MCP regression method in such cases poses challenges. Given
the particularly large volume of training data in the original model, maintaining effective
pruning requires a correspondingly substantial selection of data during the pruning process.
Consequently, the time consumption for model pruning becomes extensive, necessitating
significant storage capacity in the hardware or clusters for implementation. In scenarios
where the problem to be solved is relatively straightforward, and the model is not ex-
cessively large, employing MCP regression for model pruning is more advantageous. In
contrast to MCP-L1, MCP regression pruning encompasses an output reconstruction phase,
leading to higher accuracy. Particularly for models exhibiting substantial redundancy, there
might be no necessity for retraining after direct pruning.

This study explores the application of the sparse penalty function MCP in tailoring
convolutional neural networks. However, due to our limitations in capacity and time
constraints, some envisioned ideas remain unrealized. There are still aspects to investigate
in future work, including the following: (1) This study exclusively delves into the sparse
penalty function MCP. However, other outstanding regression methods in the field of
statistics, such as ElasticNet and SCAD, can also be applied to channel selection. (2) This
study maintains a fixed pruning ratio to determine the number of channels for removal. The
challenge lies in providing an optimal channel count directly through model perception or
parameter selection. This approach ensures that the cropped model eliminates redundant
parameters without sacrificing information, thereby obviating the necessity for retraining
to fine-tune the model.

6. Conclusions

Model compression and acceleration have been the focal points of research in academia
and industry. The endeavor to shrink large models for deployment on mobile devices has
garnered significant attention. Simultaneously, considering the convolution process as a
linear regression process and utilizing regression coefficients to discern channel redundancy
are prominent avenues in current structured pruning. In the realm of statistics, Lasso
regression serves as a common feature selection method. However, with the ascent of sparse
penalty function research, regression based on the sparse penalty function is gradually
eclipsing Lasso regression in the field of feature selection.

Building upon this foundation, we incorporate MCP regression into convolutional
channel screening, coupled with coordinate descent, to facilitate the removal of redundant
channels. For the remaining channels, we engage in reconstruction through the original
least squares method. Comparative experiments are conducted on two datasets, CIFAR10
and CIFAR100, and three networks, VGG19_Simple, VGG19, and ResNet34. Notably, for
VGG19_Simple trained on the CIFAR10 dataset, the MCP regression method demonstrates
a 2.3% improvement in Top1 accuracy, on average, compared with the Lasso regression
method. Despite the smaller dataset and greater model redundancy, the accuracy of the
model remains higher after pruning. Conversely, in the VGG19 model trained on the

Appl. Sci. 2024, 14, 3669 25 of 26

CIFAR100 dataset, where model redundancy is comparatively small, channel selection
becomes more critical. At this juncture, the Top1 accuracy of the model after MCP regression
increases by an average of 10% compared with that of the Lasso method, and the accuracy
of Top1 after retraining increases by 0.67% with a pruning ratio of 0.3. For the ResNet34
model trained on the CIFAR100 dataset, with less model redundancy than VGG19, the
MCP method outperforms the Lasso method, with average improvements in Top1 accuracy
of 1.98% and 4.56% after Lasso method pruning under two different strategies. In summary,
all three ablation experiments underscore the superiority of the MCP regression method
for channel selection followed by output reconstruction over Lasso regression. Thus, we
conclude that MCP regression supersedes Lasso regression in achieving enhanced pruning.

Author Contributions: Methodology, L.Z.; Data curation, L.Z.; Writing—original draft, X.L.;
Writing—review & editing, X.L.; Visualization, X.L.; Supervision, Y.L.; Project administration, Y.L.;
Funding acquisition, Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Social Science Fund of China grant number 17BJY210,
by National Natural Science Foundation of China (11701161) and by Key Humanities and Social
Science Fund of Hubei Provincial Department of Education (20D043).

Data Availability Statement: Public-ly available datasets were analyzed in this study. This data can
be found here: [https://www.cs.toronto.edu/~kriz/cifar.html, accessed on 22 April 2024].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Y.L. Model Compression of Deep Neural Networks. Master’s Thesis, University of Electronic Science and Technology of

China, Chengdu, China, 2022; pp. 1–6. [CrossRef]
2. Xu, J.H. Research on Model Compression and Acceleration of Deep Neural Networks Based on Model Pruning. Master’s Thesis,

Southeast University, Nanjing, China, 2020; pp. 1–7. [CrossRef]
3. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
4. Zhang, K.Z.; Li, Y.W.; Liu, B.; Li, J.; Xie, H.; Zhang, Z.Y. Research on hyperparameter tuning strategies based on VGG16 network.

Sci. Innov. 2021, 22, 10–13.
5. Chen, W.J. Design and Implementation of a High-Speed and High-Precision Matrix Inverter. Master’s Thesis, Hefei University of

Technology, Hefei, China, 2021.
6. Mehbodniya, A.; Kumar, R.; Bedi, P.; Mohanty, S.N.; Tripathi, R.; Geetha, A. VLSI implementation using fully connected neural

networks for energy consumption over neurons. Sustain. Energy Technol. Assess. 2022, 52, 102058. [CrossRef]
7. Li, Z.; Li, H.Y.; Meng, L. Model compression for deep neural networks: A survey. Computers 2023, 12, 60. [CrossRef]
8. Deng, L.; Li, G.Q.; Han, S.; Shi, L.; Xie, Y. Model compression and hardware acceleration for neural networks: A comprehensive

survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]
9. Zhou, Y.; Xia, L.; Zhao, J.Q.; Yao, R.; Liu, B. Efficient convolutional neural networks and network compression methods for object

detection: A survey. Multimed. Tools Appl. 2024, 83, 10167–10209. [CrossRef]
10. Rokh, B.; Azarpeyvand, A.; Khanteymoori, A. A comprehensive survey on model quantization for deep neural networks in

image classification. ACM Trans. Intell. Syst. Technol. 2023, 14, 1–50. [CrossRef]
11. Geng, L.L.; Niu, B.N. A comprehensive review on model compression of deep neural networks. Comput. Sci. Explor. 2020, 14,

1441–1455.
12. Si, Z.F.; Qi, H.G. A comprehensive review on knowledge distillation methods and applications. J. Chin. Soc. Image Graph. 2023, 28,

2817–2832.
13. Hu, M.H.; Gao, R.B.; Suganthan, P.N. Self-Distillation for Randomized Neural Networks. In IEEE Transactions on Neural Networks

and Learning Systems; IEEE: New York, NY, USA, 2023.
14. Liu, X.; Wang, X.G.; Matwin, S. Improving the interpretability of deep neural networks with knowledge distillation. In Proceedings

of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; IEEE: New
York, NY, USA, 2018; pp. 905–912.

15. Zhang, L.F.; Bao, C.L.; Ma, K.S. Self-distillation: Towards efficient and compact neural networks. IEEE Trans. Pattern Anal. Mach.
Intell. 2022, 44, 4388–4403. [CrossRef]

16. Ning, X.; Zhao, W.Y.; Zong, Y.X.; Zhang, Y.G.; Chen, H.; Zhou, Q.; Ma, J.X. A comprehensive review on joint optimization methods
for neural network compression. J. Intell. Syst. 2024, 1–21. [CrossRef]

17. Chang, J.F. Research on Channel Pruning Methods for Deep Convolutional Neural Networks. Ph.D. Dissertation, Hefei University
of Technology, Hefei, China, 2022.

https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.27005/d.cnki.gdzku.2022.001176
https://doi.org/10.27014/d.cnki.gdnau.2020.000708
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.seta.2022.102058
https://doi.org/10.3390/computers12030060
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1007/s11042-023-15608-2
https://doi.org/10.1145/3623402
https://doi.org/10.1109/TPAMI.2021.3067100
https://doi.org/10.11992/tis.202306042

Appl. Sci. 2024, 14, 3669 26 of 26

18. LeCun, Y.; Denker, J.; Solla, S. Optimal brain damage. In Proceedings of the Advances in Neural Information Processing Systems,
San Francisco, CA, USA, 2 June 1990; pp. 598–605.

19. Hassibi, B.; Stork, D.G. Second order derivatives for network pruning: Optimal brain surgeon. In Proceedings of the Advances in
Neural Information Processing Systems, Denver, CO, USA, 29 November–2 December 1993; pp. 164–171.

20. Wu, T.; Li, X.Y.; Zhou, D.Y.; Li, N.; Shi, J. Differential evolution based layer-wise weight pruning for compressing deep neural
networks. Sensors 2021, 21, 880. [CrossRef] [PubMed]

21. Xu, P.T.; Cao, J.; Sun, W.Y.; Li, P.; Wang, Y.; Zhang, X. Layer Pruning Method of Deep Neural Network Models Based on Mergeable
Residual Convolutional Blocks. J. Peking Univ. (Nat. Sci. Ed.) 2022, 58, 801–807.

22. Li, R.Q.; Zhu, L.; Liu, Y.Y. Filter elastic deep neural network channel pruning compression method. Comput. Eng. Appl. 2022, 32,
136–141.

23. Zhang, J.Y.; Kou, J.Q.; Liu, N.Z. Neural network pruning algorithm based on filter distribution fitting. Comput. Technol. Dev. 2022,
32, 136–141.

24. Geng, L.L.; Niu, B.N. Pruning convolutional neural networks via filter similarity analysis. Mach. Learn. 2022, 111, 3161–3180.
[CrossRef]

25. Chen, K.; Wang, A.Z. A review on regularization methods of convolutional neural networks. Comput. Appl. Res. 2024, 1–11.
[CrossRef]

26. Alemu, H.Z.; Wu, W.; Zhao, J.H. Feedforward neural networks with a hidden layer regularization method. Symmetry 2018, 10,
525. [CrossRef]

27. Lin, Z.J.; Wang, J.K.; Xie, J.M.; Li, Z.; Xie, S. Dual-Strategy Structured Neural Network Compression with Unbiased Sparse
Regularization. Inf. Control 2023, 52, 313–325.

28. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.

29. Wang, L.; Sun, J.B. Application of Lasso Regression Method in Feature Variable Selection. J. Jilin Eng. Norm. Univ. 2021, 37,
109–112.

30. Farbahari, A.; Dehesh, T.; Gozashti, M.H. The Usage of Lasso, Ridge, and Linear Regression to Explore the Most Influential
Metabolic Variables that Affect Fasting Blood Sugar in Type 2 Diabetes Patients. Rom. J. Diabetes Nutr. Metab. Dis. 2019, 26,
371–379. [CrossRef]

31. Wu, J.; Wu, H.N.; Liu, A.; Li, C.; Li, Q. A Deep Learning Model Compression Method Based on Lasso Regression and SVD Fusion.
Telecommun. Technol. 2019, 59, 495–500.

32. Lee, S.; Kim, S. Marginalized Lasso in Sparse Regression. J. Korean Stat. Soc. 2019, 48, 396–411. [CrossRef]
33. Xu, J.L.; Lei, X.Y. Research on Variable Selection Based on Sparse Regression. J. Qilu Univ. Technol. 2022, 36, 75–80.
34. Lin, S.F.; Yi, D.H.; Li, Y.; Li, J. Variable Selection and Empirical Analysis for Sparse Functional Regression Models. Math. Pract.

Underst. 2016, 46, 171–177.
35. Yoshida, T. Quantile Function Regression and Variable Selection for Sparse Models. Can. J. Stat. 2021, 49, 1196–1221. [CrossRef]
36. Shin, J.K.; Bak, K.Y.; Koo, J.Y. Sparse Neural Network Regression with Variable Selection. Comput. Intell. 2022, 38, 2075–2094.

[CrossRef]
37. Zhou, L.; Luo, Y.X. Dual MCP Penalty Quantile Regression for Mixed-Effect Models. J. Cent. China Norm. Univ. (Nat. Sci.) 2021,

55, 991–999.
38. Xue, X.Q.; Li, Y.; Liang, J.R. Functional Hypernetwork Analysis of the Human Brain and Depression Classification Based on

Group MCP and Composite MCP. Small Micro Comput. Syst. 2022, 43, 210–217.
39. Sun, H.W.; Yang, W.Y.; Wang, H.; Luo, W.H.; Hu, N.B.; Wang, T. Simulation Evaluation of Penalized Logistic Regression for

High-Dimensional Variable Selection. Chin. Health Stat. 2016, 33, 607–611.
40. Fan, J.; Li, R. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. J. Am. Stat. Assoc. 2001, 96,

1348–1360. [CrossRef]
41. Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [CrossRef]

[PubMed]
42. Zheng, W.H. Research on AdaBoost Ensemble Pruning Technique Based on MCP Penalty. Master’s Thesis, Jiangxi University of

Finance and Economics, Nanchang, China, 2019.
43. Sun, G.F.; Wang, M.Q. Robust Group Variable Selection in Logistic Regression Model. Stat. Decis. 2021, 37, 42–45.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s21030880
https://www.ncbi.nlm.nih.gov/pubmed/33525527
https://doi.org/10.1007/s10994-022-06193-w
https://doi.org/10.19734/j.issn.1001-3695.2023.06.0347
https://doi.org/10.3390/sym10100525
https://doi.org/10.2478/rjdnmd-2019-0040
https://doi.org/10.1016/j.jkss.2018.12.004
https://doi.org/10.1002/cjs.11616
https://doi.org/10.1111/coin.12557
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1214/09-AOS729
https://www.ncbi.nlm.nih.gov/pubmed/17244211

	Introduction
	Methodological Models
	Common Layers in Convolutional Neural Networks
	Fully Connected Layer
	Convolutional Layer

	MCP Regression and Solution
	Pruning Process
	Preliminary Investigation of Convolutional Layer Parameters
	Description of Data Generation
	Channel Selection
	Reconstruction of Outputs
	Parameter Selection

	Comparison Experiment
	Comparative Experiments with the VGG19_Simple Model
	Single-Layer Pruning Analysis
	Global Pruning Analysis

	Comparative Experiments with the VGG19 Model
	Single-Layer Pruning Analysis
	Global Pruning Analysis

	Comparative Experiments with ResNet34 Models
	Single-Layer Pruning Analysis
	Global Pruning Analysis

	Comparison of Scenarios Applicable to the MCP Regression and MCP-L1 Methods
	Time Dimension
	The Space Dimension

	Discussion
	Conclusions
	References

