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Abstract: Upon careful examination, numerous wind turbine collapses can be attributed to the failure
of the tower bolts. Nowadays, the Schmidt–Neuper algorithm is extensively accepted in wind turbine
tower bolt design. It is not advisable to utilize the finite-element method, notwithstanding the effect
of the flange gap. To quantitatively investigate the influence of flange gaps on bolt fatigue, a nonlinear
finite-element model of a flange segment incorporating bolt pretension and contact elements is herein
proposed. Three distinct types of flange gaps are defined intentionally. It is possible to determine the
nonlinear relationship between the wall load and bolt internal force. The fatigue damage of bolts
was thus computed using the obtained nonlinear curve. Comparing with the results with those of
Schmidt–Neuper method revealed the bolt fatigue damage is susceptible to a specified flange gap.

Keywords: wind turbine; flange gaps; bolt; finite element analysis; fatigue damage

1. Introduction

The bolted flange is the fundamental connecting form for cylinder structures in numer-
ous engineering disciplines, including nuclear energy, aerospace, and maritime engineering.
The triple complexity of material, geometric, and contact nonlinearity is the source of its
highly nonlinear behaviors. For instance, Liao et al. conducted a representative study in
which they integrated both Gurson–Tvergaard–Needleman and progressive damage mod-
els into the explanation of plastic and damage behavior of threaded bolts [1,2]. The
finite-element (FE) technique explored thread structural features. Until recently, the ma-
jority of bolt failure research relied on experimental tests [3–5] and FE simulations [6,7].
In contrast to the FE method, engineering algorithms such as DIN 188000-4: 1990-11 [8],
Eurocode 3 [9], and the GL 2010 standard [10] for steel shells buckling analysis; DIN 4133
for wind-induced transverse vibrations [11]; and VDI 2230 for bolts connection [12] prevail
in wind turbine design. The GL 2010 standard recommends the Petersen and Schmidt–
Neuper methods for ring flange connections. Due to its simplicity, efficacy, and success
in a range of wind turbines, the Schmidt–Neuper approach is now widely used in tower
connection design [10].

Meanwhile, mechanism research using the FE method continues to reveal the influence
of various parameters on bolt strength. Liu et al. introduced an improved 2D finite-
element model to forecast the distribution of bolt loads in composite multi-bolt single-
lap joints, effectively capturing secondary bending, a pivotal factor contributing to joint
failure [13]. Alonso-Martinez et al. [14] established an FE model of the flange subsystem in
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which the prestressing forces and contact between flanges are taken into account. In their
study, the effects of various variables on the tower structural responses were examined by
experiments. Ajaei and Soyoz [15] studied the influence of bolt preload on the occurrence
of fatigue damage to bolts under eccentric loads. They pointed out the strong correlation
between bolt preload and fatigue damage. Fu et al. [16] introduced the probability density to
compute the probability of fatigue, highlighting the influence of random vibration. Sharos
et al. finished the development and validation of a highly efficient and innovative user-
defined finite-element method for modeling composite bolted joints under various loading
rates, which was validated by experimental data [17]. Seidel et al. [18] found that the impact
of the geometrical imperfections on wind turbine tower bolt fatigue can be predicted by
the FE analysis model. Weijtjens et al. [19] discovered that the FE model is more consistent
with the observed load transfer coefficients in the offshore wind farm compared to the
values expected from the celebrated Schmidt–Neuper approximation. Cheng et al. [20]
supplied comprehensive knowledge for the practical implementation of offshore wind
turbine connections, and the effectiveness and precision of the FE models were confirmed by
comparison with the results of the conducted tests. Belardi et al. evaluated the applicability
of the composite bolted joint for modeling single-lap multi-column composite bolted
joints and compared the stiffness prediction and bolt-load distribution outcomes with
those obtained from a refined 3D model [21]. Tao et al. investigated the effects of yaw
optimization control on the fatigue life of tower bolts in offshore wind turbines [22]. Zheng
et al. devised a systematic approach for time–domain fatigue assessment of preloaded
blade root bolts for FOWTs. This approach took into account mean stress effects as well as
a range of design and installation factors that influence the bolt fatigue strength [23].

During the past decades, wind turbine tower collapse accidents have been frequently
reported worldwide [24–27]. Chou and Tu [26,28] conducted an in-depth investigation
of tower failure, along with the lessons learned from a post-disaster inspection. They
concluded that a considerable percentage of incidents might be related to bolt strength
deficiencies. Mahmanparst et al. delineated prevalent issues linked to flanges and bolted
connections while proposing potential resolutions [29]. For instance, seals should shield
bolted connections from seawater for the duration of usage. Furthermore, optimizing the
force dynamics of the hammer can mitigate peak stresses in the flange, diminish fatigue
stresses, and decrease noise emissions during piling operations. Further simplification can
be achieved by eschewing intricate sealing configurations and avoiding post-delivery ma-
chining of flanges provided by specialist suppliers.

Undoubtedly, catastrophic events need to be avoided through prudent design. Despite
broad recognition of the significance of the tower bolt fatigue life, to the authors’ best knowl-
edge, little research has been quantitatively conducted on the effect of various flange gaps
on bolt fatigue. To this end, a finite-element model of a flange segment incorporating
bolt pretension and contact elements is herein proposed. Three types of flange range are
defined artificially. Consequently, the effects of various flange gaps on bolt fatigue are
quantitatively revealed. A particular finding of note is that the bolt fatigue is sensitive to a
particular type of the flange gap.

The rest of this paper is structured as follows. Section 2 describes the procedure for
the Schmidt–Neuper approach and bolt fatigue analysis. Using the FE technique, Section 3
evaluates the effects of various flange gaps on bolt fatigue damage. Section 4 concludes
with a succinct summary.

2. Procedure for Bolt Fatigue Analysis Using Schmidt–Neuper Method

The example provided in this section introduces the Schmidt–Neuper algorithm.
Results from the calculation serve as the reference against which the finite-element model
is tested.
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2.1. Basic Procedure for Schmidt–Neuper Algorithm

The stresses in the bolt are estimated for ultimate and fatigue strength measurement
using a single segment of the entire flange, as depicted in Figure 1. The tension force
Z, equal to the sum of the shell’s stresses, is applied to the section. Resorting to this
simplified model, the critical step in bolt fatigue analysis is to establish the link between Z
and the bolt internal force FVS. As indicated in Figure 2, the pretension bolts and flange
segment system is modeled as a spring system [30]. Parallel springs representing the
washer and flange are in series with the spring, symbolizing the bolt.
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The bolt and washer’s elastic stiffness can be evaluated as follows:

Cs =
EAN

Ls
(1)

CD,2 =
Eπ

(
D2

w − d2
h
)

4Tw
(2)

where E signifies the steel’s elasticity modulus; AN denotes the nominal bolt surface, which
is calculable from the nominal bolt diameter; LS is the free bolt length, which excludes the
part of the bolt that passes through the nut; Dw and dh refer to the key head’s width bolt
and the diameter of the bolt hole, respectively; Tw is the washer thickness.
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The following formula can be applied to determine the stiffness of a flange with a
thickness Tf [31].

CD,1 =
πE
8Tf

[(
Dw +

2Tf
10

)2
− d2

h

]
(3)

The stiffness of the flange and washer can be described in the following manner:

CD =

(
1

CD,1
+

2
CD,2

)−1
(4)

The symbol C specifies the total stiffness as follows:

C = CS + CD (5)

Hence, the bolt and flange spring ratios are determined, respectively, as follows:

p = CS/C, q = CD/C (6)

We can define a constant named level ratio as follows [29]:

λ =
0.7a + b

0.7a
(7)

where a and b are the distances between the bolt center to the flange inner diameter and
the mid-surface of the thin wall of the tower, respectively, as illustrated in Figure 3. Here, d
is the flange inner diameter. PCD represents the pitch circle diameter, which is the diameter
corresponding to the center line of the bolt.
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Two additional constants are defined as follows:

ZI = (a − 0.5b)FV/(a + b), ZII = FV/λq (8)

where ZI and ZII are the maximum wall load limits I and II, respectively; FV represents the
preload bolt.
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To produce the nonlinear relationship between the bolt load FVS and tower wall load
Z, the following points on the curves are given by the Schmidt–Neuper algorithm:

FVS =



2FV + λZ
2FV − λZII
FV − pZI
FV
FV + pZI
λZII
λZ

Z < −ZII
Z = −ZII
Z = −ZI
Z = 0
Z = ZI
Z = ZII
ZII < Z

(9)

In Equation (9), the tower wall load Z can be evaluated by the external loads, and it
yields the following:

Z =
2M
RN

+
Fz

N
(10)

where M refers to the bending moment at the flange section; R is the outside radius of
the tower at the flange position; Fz is a total force in the z-direction, and N is the number
of bolts in the flange connection. The moment at flange M can be decomposed into Mx
and My. Both loads are assumed to be spatially fluctuating according to a sine or cosine
function. As a result, Equation (10) can be rewritten as follows:

Z =
2
(

Mx sin β − my cos β
)

RN
+

Fz

N
(11)

where β is the angle representing the bolt’s position, as demonstrated in Figure 4. The
coordinate system shown below directly follows one given in GL 2010 standard [10].
Figure 4 represents the cross-sectional coordinate system of the tower, where the circle
signifies the tower’s cross-section. The x-axis denotes the inflow wind direction, with the
y-axis perpendicular to the x-axis. When using the right-hand rule, the corresponding
z-direction points vertically upward along the tower. β represents the angle between any
cross-section of the tower and the positive x-axis. The intersection of the β-axis with the
circle indicates the position of the tower flange where the bolt is located.
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In the Schmidt–Neuper algorithm, it is assumed that the torsional stress from tighten-
ing the bolts does not influence on the bolt fatigue. Thus, the bolt stress only considers the
axial load, calculated in the following manner:

σ = FVS/AS (12)
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where As is the stress area of the bolt. For specific values of As, the reader should consult
the VDI 2230 standards [12].

2.2. S–N Curve for the Bolt

For tower bolted connections, the property classes 10.9 (according to ISO 898-1: 2009)
are utilized [10]. The yield and tensile limits for high-strength steel are 900 MPa and
1000 MPa, respectively. Figure 5 depicts the S–N curve for the tower bolt, which can be
separated into two sections by the division point 5 × 106. The following equation is applied
to describe the S–N curve [28]:

N = ND(∆σD/∆σ)m (13)

where the slope parameter can be given as m =

{
3
5

N < 5 × 106

N ≥ 5 × 106. The abscissa represents the

number of stress cycles, while the ordinate represents the stress range. Two parameters, ND
and ∆σD, respectively, denote the number of stress cycles and stress range corresponding
to the segments of the S–N curve. According to the GL 2010, the recommended commonly
used S–N curves include two forms: Eurcode3 and IIW. Both consist of two linear segments
with exponential slopes of 3 and 5, respectively, where the difference lies in the inflection
points corresponding to 5 × 106 and 1 × 107 cycles. As depicted in Figure 5, typical standard
design S–N curves indicate the specific fatigue strength of structures under 2 × 106 cycles
and define it as the detail category (DC). For example, an S–N curve with DC 36 represents
its fatigue strength, characterized by stress amplitude, at 2 × 106 cycles as 36 MPa. This
paper adopts Eurcode3 as the fundamental form of the bolt S–N curve, with a DC level
selected as 36 [28].
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The S–N curve is reduced by factor ks for bolts with a diameter of more than 30 mm [28].

ks = min
(

1, (30/dN)
0.25

)
(14)

where dN is the nominal diameter of the bolt in millimeters.

2.3. Palmgren–Miner’s Rule

The structural strength criteria can be established based on the cumulative damage
sum, denoted as D:

D = ∑
ψi

ψi
≤ 1 (15)
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where ψi and ψi represent the actual and allowable load cycles for class (i), respectively.
Here, ψi is associated with the stress range, which can be estimated using the S–N curve.

2.4. Fatigue Load

In this section, the lifetime fatigue load of a wind turbine tower is calculated using
the commercial wind turbine load simulation software Bladed 4.3TM, and the fatigue
condition design load cases (DLCs) 1.2, 3.1, 4.1, and 6.4 are specified according to GL 2010
standard [10,19]. Notably, the duration of each load simulation is ten minutes, and six
different random seeds are set for each wind condition to assure the stability of fatigue
damage evaluation. For instance, Figure 6 depicts a typical ten-minute fatigue load case,
including six time-varying loads corresponding to the flange’s center position.
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2.5. Methodology of Fatigue Analysis in the Time Domain

In estimating fatigue damage, the stress range and mean stress are the most crucial fac-
tors. In this investigation, the fatigue load and time-variant stress can be derived from the
time-varying loads and nonlinear relationship between external loads and bolt stress. The
Schmidt–Neuper approach excludes the influence of mean stress from tightening the bolts.
On the basis of the linear damage accumulation assumption, the fatigue damage accumu-
lated from each stress cycle can be computed using the S–N curve given in Section 2.2. For
the amount of cycles occurred over time, the rainflow cycle counting method is employed.
For a time-varying stress history, only the peaks and valleys are stored in the cycle counting.
Subsequently, the cycles are determined by checking every three successive points from the
beginning until a closed hysteresis loop is defined [32]. In one loop, the algebraic difference
between the maximum and minimum stress is defined as the stress range, i.e., ∆σ = σmax −
σmin. The counting continues until all the stress points are utilized. More details on this
rainflow cycle counting method can be found in the reference [32].

2.6. Reference Results

This section describes the fundamental characteristics of the steel tower housing a
2 MW wind turbine. In addition, the cumulative fatigue damage of bolts is evaluated using
the Schmidt–Neuper method. The tower is 72.37 m high and features a tubular design with
variable cross-section and wall thickness along its height. An interior flange connection
with 110 screws (M48) is investigated. The outer and inner diameters of the flange are 4.2 m
and 3.8 m, respectively. As shown in Figure 3, the pitch circle diameter (PCD) of the screws
is 3.98 m. The flange and tower wall thicknesses are 140 mm and 32 mm, respectively.
The main specifications are 900 MPa yield strength and 1470 mm2 stress area. The bolts are
pretensioned with a force of FV = 926.1 kN, and the stress under preload is 630 MPa, which
corresponds to 70% of their bearing capacity. The washer’s inner and outer diameters are
49.4 mm and 92.0 mm, respectively, and its thickness is 8 mm. Based on the aforementioned
parameters, Figure 7 depicts the nonlinear relationship between the wall tension Z and bolt
stress σ.
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After obtaining the nonlinear relationship depicted in Figure 7 and combining it with
the external time-variant loads Mx, My, and Fz, the time-variant bolt stress can be easily
derived using linear interpolation over the predetermined nonlinear curve. Sequentially,
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rainflow counting and fatigue damage accumulation are performed. For clarity, Figure 8
depicts the distribution of bolt damage accumulation over 20 years at 15◦ intervals.
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Figure 8. Distribution of bolt damage accumulation over 20 years.

In Figure 8, the angular coordinates indicate the position of the tower within the
horizontal section. The line connecting the 0◦ and 180◦ positions aligns with the direction
of incoming turbulent winds, with 0◦ representing the upstream direction and 180◦ rep-
resenting the downstream direction. The angles in Figure 8 represent the positions of the
bolts on the flange. As observed in Figure 8, the radar diagram of bolt fatigue damage
is asymmetrical. The extreme cumulative damage occurs near 0◦ or 180◦, implying that
the bolt fatigue is predominantly caused by the bending moment. To acquire even more
precise data, recalculation is performed by subdividing the region near 0◦, and the resultant
fatigue damage distribution is displayed in Figure 9.
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From Figure 9, maximum damage appears to occur at −3.27◦ (=−360◦/110) with a
cumulative damage value of 0.292. The maximum damage does not exceed 1. The current
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design satisfies the fatigue strength criteria, as deduced from miner’s rule [33]. Without
additional explanation, the following section evaluates the bolt at −3.27◦.

3. FE Analysis for the Flange Segment
3.1. FE Modeling

As stated in the GL2010 standard, “Calculations with the aid of the finite element
method that do not consider flange gaps, as well as other calculation methods leading to
comparable results, are not permissible [28]. Thus, it is worthwhile to explore the effect of
flange gaps on bolt fatigue quantitatively. However, the authors are aware that the reported
literature is rather limited. This section will consider the flange gaps mainly originating
from transportation, installation, and service. The flange gaps are artificially classified into
three categories. Flange gap type I appears at the inner edge of the flange, with an opening
height of hI. Assuming that only the upper flange gap opens, it extends along the flange
gap surface for a length of lI from the edge. Flange gap type II is opposite in direction to
flange gap type I, with an opening height of hII and an extension length of lII, as shown
specifically in Figure 10b. When the upper flange rotates along the circumferential direction
with the intersection of the upper and lower flanges on one side as the axis of rotation, it
can form a type III gap, as shown in Figure 10c, with an opening height of hIII.
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Figure 10. Three types of the flange gap: (a) type I; (b) type II; (c) type III.

Because the effect of the flange gaps on fatigue damage cannot be quantitatively eval-
uated in the Schmidt–Neuper algorithm, the FE analysis using the commercial software
ANSYS 19.2TM is performed. For one segment of the flange system, all components, includ-
ing the flange, washer, and nut head, are discretized using hexahedral elements as plotted
in Figure 11. Two nonlinear contact pairs are established between flange and washers,
while one contact pair exists between the flange surfaces. The bolts and the pretension are
simulated with beam elements and pretension elements. A group of umbrella-like rigid ele-
ments is adopted to imitate the connection of a bolt and nut head. In this study, geometric
nonlinearity is ignored for the sake of simplification, which is extremely beneficial in terms
of computing costs.
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Figure 11. Finite element of the flange system with an open gap.

Firstly, the preferred flange with no gaps is analyzed on the FE model and Schmidt–
Neuper algorithm, as drawn in Figure 12, aiming to compare the similarities and differences
between the two approaches. The displacement contours corresponding to the FE analysis
are illustrated in Figure 13.
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(b) Z = −400 kN; (c) Z = −200 kN; (d) Z = 0 kN; (e) Z = 200 kN; (f) Z = 400 kN; (g) Z = 600 kN.
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Compared to the Schmidt–Neuper algorithm, the FE-derived bolt internal force curve
is asymmetrical, as clearly demonstrated in Figure 12. Once the tower wall is pressed, the
bolt force fluctuation can be negligible. Under the same external load, the bolt force is
relatively minimal in the FE results. The universally adopted Schmidt–Neuper algorithm
embodies the engineering relevance of conservative design, as can be concluded.

It is noticeable that the maximum flange displacement is consistently greater under
positive tension compared to negative tension in Figure 13. At Z values of 400 kN and
600 kN, a fault line appears between the upper and lower flanges, indicating a clear
separation between them.

3.2. FE Analysis for the Flange Gap I

The influence of the flange gap I on bolt fatigue is also analyzed. Here, it is hypothe-
sized that the opening height hI = 1 mm remains constant while the tower wall is subject to
varying loads Z. The partial results reflecting the nonlinear relationship between Z and FVS
are given in Table 1 and plotted in Figure 14.

Table 1. Results of external load and internal force FVS for bolts (unit: kN).

Tower Wall Load Z FVS (lI = 80 mm) FVS (lI = 90 mm) FVS (lI = 100 mm)

−600 937.1 944.7 959.3
−400 935.0 941.9 953.4
−200 932.7 937.9 937.0

0 926.1 926.1 926.1
200 993.8 992.1 979.1
400 1087.9 1075.3 1036.9
600 1198.9 1174.9 1157.7
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Figure 14. The nonlinear relationship between Z and FVS for flange gap I.

As shown in Figure 14, when the flange is tensed, the bolt’s internal force decreases
with increasing lI. When the flange is compressed, the curve representing the variation in
bolt internal force stays flat due to the clearance compensating for deformation.

Secondly, the length along the flange gap lI is set as lI = 100 mm while changing hI.
The partial results by varying tower wall loads Z are included in Table 2 and demonstrated
in Figure 15.

As illustrated in Figure 15, a pattern similar to that seen in Figure 14 emerges when
the parameter lI is fixed. This is due to the fact that an increased opening height results in
greater gap at the bolt hole, exposing the flange to more adverse effects under tension; the
compensating effect under compression causes the bolt forces to increase continuously in
the opposite direction.
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Table 2. The bolt force FVS by varying the tower wall load Z (unit: kN).

Tower Wall Load Z FVS (hI = 0.5 mm) FVS (hI = 1.0 mm) FVS (hI = 2.0 mm)

−600 918.6 959.3 1022.3
−400 917.8 953.4 1014.0
−200 917.6 937.0 990.2

0 926.1 926.1 926.1
200 952.7 979.1 996.4
400 995.8 1036.9 1058.9
600 1153.2 1157.7 1153.3
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3.3. FE Analysis for the Flange Gap II

With the opening height of hII = 1 mm, the fluctuation of external tension Z and internal
force FVS with respect to various parameters lII is investigated. To facilitate comparison,
Figure 16 depicts the results derived from the Schmidt–Neuper algorithm and FE approach,
while Table 3 contains partial data.
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Table 3. The bolt force FVS by varying the tower wall load Z (unit: kN).

Tower Wall Load Z FVS (lII = 80 mm) FVS (lII = 90 mm) FVS (lII = 100 mm)

−600 962.8 947.6 942.4
−400 945.8 941.3 939.0
−200 908.7 924.0 933.7

0 926.1 926.1 926.1
200 963.6 982.3 1005.9
400 1001.5 1031.4 1069.4
600 1161.5 1172.4 1187.1

As expected, the bolt force FVS is linearly related to the parameter lII under the given
conditions, as illustrated in Figure 16. For gap type II, when hII is minimal, and the extension
length of gap does not surpass the position of the bolt hole, the bolt’s force exceeds the
Schmidt–Neuper curve in the high-pressure region. Moreover, under equivalent tension,
the bolt’s force escalates with the augmentation of lII.

3.4. FE Analysis for the Flange Gap III

Under such circumstances, partial numerical results by altering the parameter hIII are
listed in Table 4. For comparison purposes, all results obtained from the Schmidt–Neuper
algorithm and the FE method are plotted in Figure 17.

Table 4. The bolt force FVS by varying the tower wall load Z (unit: kN).

Tower Wall Load Z FVS (hIII = 2 mm) FVS (hIII = 6 mm)

−600 910.1 859.2
−400 914.6 881.4
−200 919.1 903.6

0 926.1 926.1
200 934.8 948.8
400 963.6 979.2
600 1160.4 1215.6
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As observed from Figure 17, even with a considerable external tension Z, the nonlinear
curves generated by the FE approach underestimate the bolt force FVS compared with
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those from the Schmidt–Neuper algorithm. It may be concluded that the bolt force is not
seriously affected by the type III flange.

It is noteworthy to mention that the numerical values of Fvs at the same Z are smaller
in comparison to type I and type II. This discrepancy indicates type I and II are more
sensitive to the gap forms. This is predominantly attributable to the lever effect caused by
bolt defects, resulting in larger deformations at the bolt location and generating significant
stress.

3.5. Comparisons of Cumulative Fatigue Damage Caused by Flange Gaps

This section quantifies the effect of various flange clearances on the cumulative fatigue
damage of bolts. The bolts around 0 and 180 degrees are predominantly subject to pressure
and tension; therefore, the latter are analyzed. The parameters of the three types of flange
gaps, their corresponding computing method, and cumulative fatigue are summarized in
Table 5 and plotted for clarity in Figure 18.

Table 5. The results of cumulative fatigue damages derived from various cases.

Method Description Parameter Cumulative Fatigue Damage

Schmidt–Neuper algorithm — 0.29
No gap using the FE approach — 5.61 × 10−6

Type I using the FE approach hI = 1 mm, lI = 90 mm 3.03
Type II using the FE approach hII = 1 mm, lII = 90 mm 2.07
Type III using the FE approach hIII = 6 mm 3.82 × 10−2
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Figure 18. The nonlinear relationship between Z and FVS and resultant cumulative fatigue damage
under given conditions.

Due to the high sensitivity of fatigue to the stress range, as in Equation (13), the relation-
ship between load cycles (N) and stress range (∆σ) follows a power law. As a consequence
of this sensitivity of fatigue damage to stress variations, the fatigue damage magnitude
varies considerably between gap types.

In summary, the following conclusions can be drawn from all results of this study:

(1) The FE-derived nonlinear curve representing the bolt force relative to the tower wall is
asymmetrical. The Schmidt–Neuper algorithm yields conservative structural design
results for engineering applications;

(2) The bolt fatigue damage is significantly affected by flange clearance of types I and II
but is insensitive to type III. Throughout the manufacturing, processing, and installa-
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tion of tower flanges, it is imperative to minimize the occurrence of type I and type II
structures.

4. Conclusions

To quantify the effects of various flange gaps on bolt fatigue, an FE model integrat-
ing pretension forces and contact nonlinearity is herein proposed. The model takes full
consideration of many nonlinear factors such as the contact between flanges, the contact
between flanges and gaskets, and the pretightening force of bolts. Three kinds of flange
gaps are manually defined, and the influence of gap opening height and gap extension
length on the internal force of bolts is investigated. In comparison, it can be concluded
that the widely adopted Schmidt–Neuper algorithm is appropriate for conservative design.
According to the FE results, the curves of external tension and internal force of the bolt
were inconsistent on both sides of tension and compression. The results indicate that
bolt fatigue damage is highly reliant on the type of flange gap. For the specified gap and
parameters, the corresponding fatigue damage can be even beyond that calculated from the
Schmidt–Neuper algorithm. In future work, the proposed FE approach will be extended to
include combinations of various types of gaps.
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