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Abstract: The method of cavitation is increasingly applied in water environmental protection. Based
on the numerical simulation method, a study on the structural parameters of the shear-type hy-
drodynamic cavitation generators for wastewater treatment is proceeded. The internal flow field
is described by employing the mixed multiphase flow model and the Zwart cavitation model. Ex-
periments were conducted by applying the wastewater from a dyeing factory as the medium. The
degradation rate of COD in water characterizes the cavitation performance of the hydrodynamic cav-
itation generator, and the rationality of the numerical simulation approach is validated. The findings
indicate that different structural parameters have a great influence on the cavitation performance. The
appropriate number of tooth rows creates a flow field with a greater vapor and velocity than the other
parameters. The number of teeth in a single row, the outer diameter of the hydrodynamic cavitation
generator and the tooth bevel angle also affect the cavitation performance to some extent, and there
is an optimal value. The study provides a reference for the applicability of a numerical simulation of
the flow field inside the hydrodynamic cavitation generator and the structural optimization of the
rotary hydrodynamic cavitation generator.

Keywords: shear hydrodynamic cavitation generator; numerical simulation; cavitation bubble
volume fraction; COD degradation

1. Introduction

Cavitation is a complex fluid dynamic phenomenon involving multi-phase variation,
turbulence, and compressibility [1,2]. At a certain temperature, when the local pressure
inside a fluid falls below the saturated vapor pressure at that temperature, the microbubbles
formed within the fluid are called cavitation bubbles [3]. The process from the inception
to the development and ultimately the explosion of these cavitation bubbles is known as
cavitation [4] in which an enormous amount of energy is generated and released, leading
to corrosion and rusting of machine surfaces. The rational utilization of the energy brought
about by the collapse of cavitation bubbles can be used in the field of organic matter
degradation, wastewater treatment, sterilization, and toxicity, etc. [5]. Moreover, since it is
a single physical movement inside the hydrodynamic cavitation generator, there will be no
secondary pollution without the addition of other chemical reagents, which contributes its
promising application.

Common modes of cavitation generation include ultrasonic cavitation and hydrody-
namic cavitation. Ultrasonic cavitation uses ultrasonic vibration to cause local pressure
fluctuations. When the ultrasonic energy is high enough to make the local pressure vibra-
tion drop below the saturated vapor pressure, cavitation will occur [6]. Since the ultrasonic
cavitation effect occurs only in the pressure fluctuation near the surface, the efficiency of
wastewater treatment in cavitation is low. The hydrodynamic cavitation creates a low-
pressure, high-flow velocity state on the pipe through which the liquid passes to form
cavitation [7]. The different shapes of the fluid domain will affect the velocity of the fluid,
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so the structure of the hydrodynamic cavitation generator will have a great impact on the
cavitation performance.

There are many types of hydrodynamic cavitation generators, such as venture-type [8],
orifice plate-type, vortex-type, rotary-type hydrodynamic cavitation generator, and so on.
Among them, venture-type and orifice plate-type hydrodynamic cavitation generators
have been widely studied due to their simple structure, and their basic principles are to
reduce the fluid pressure by applying a constriction in the path of the moving fluid. The
structural parameters of the Venturi tube were investigated using numerical simulation
techniques [9,10]. It was found that when the throat diameter was slowly increased from
10 mm to 16 mm with same structural parameters, the gas content ratio increased and then
decreased with the increase in the throat diameter. When the throat diameter reaches 14 mm,
the gas content reaches the maximum value. If the throat diameter is too small, cavitation
bubbles are not easily generated. If the throat diameter is too large, the pressure will be
lower, resulting in lower cavitation performance. The effects of back pressure, number
of holes, hole diameter, and aspect ratio of hole plates on cavitation were investigated in
a study conducted by Yu B et al. [11] and Babu M J K et al. [12] using a combination of
experimental and numerical simulation methods. The critical cavitation number is found
to increase with the increase in back pressure. The cavitation number is a dimensionless
number that describes the degree of cavitation. When the cavitation number is greater
than the critical cavitation, cavitation does not occur, and vice versa. Therefore, it could be
concluded that cavitation does not occur easily when the pressure increases.

The cavitation performance of the hole plate is influenced by parameters such as the
number of holes, hole diameter, and aspect ratio. Additionally, the cavitation performance
of multi-hole plates was found to exceed that of single-hole plates. Although the venturi
and orifice plate hydrodynamic cavitation generators can achieve cavitation relatively
easily, they are limited by parameters such as the opening rate and throat diameter ratio,
resulting in the disadvantages of a small flow and difficulty in enlarging the structure size.
Cavitation in a vortex hydrodynamic cavitation generator can be generated without moving
parts. Numerical simulations of the absolute pressure in a vortex cavitation generator were
performed by Wang Bao’e et al. [13]. The mass concentration of hydroxyl radicals generated
by the vortex cavitation generator was detected with the methylene blue method, revealing
that the inducer can create a negative pressure zone with low pressure in local areas where
significant cavitation effects can be observed. However, it is noted that this generator is
only applicable on a laboratory scale and is not suitable for practical application.

Composed of a stator and a rotor, the rotary hydrodynamic cavitation generator
utilizes the centrifugal force and shear force from relative motion against the wall to induce
cavitation. The rotor surface is designed with various types of grooves or protrusions
to create localized high-speed flow regions. The advantages of the rotary hydrodynamic
cavitation generator lie in its ability to induce cavitation continuously and efficiently,
thereby enhancing cavitation efficiency and output, which contributes to its applicability
for industrial production. Based on a high-precision compact difference scheme and the
N-S equations, numerical models for the rotary hydrodynamic cavitation generator were
established by Petkovšek et al. [14] and Badve P M et al. [15] to investigate the effects of
parameters such as angle, speed, and pressure on the cavitation performance. Experimental
visualization and numerical simulations [16,17] revealed that a tilt angle of 8◦ resulted in
higher cavitation intensity, while higher rotational speeds led to more stable flow, higher
number of vortices generated, and better cavitation effect. Designed by Yuan Huixin
et al. [18–20], a toothed rotary hydrodynamic cavitation generator was simulated for
its internal flow field using a hybrid multiphase flow model combined with the Zwart
cavitation model. It was found that the cavitation rate of the square tooth was higher than
that of the round tooth and the presence of the tooth side beveling angle improved the
cavitation effect. It was discovered that the cavitation rate of the square tooth was higher
than that of the round tooth, and the presence of tooth side angles enhanced the cavitation
effects. However, the impact of structural parameters on cavitation performance has not
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been thoroughly studied. Based on these findings, a multiphase flow model for numerical
simulations is established and the integrated experimental dye wastewater degradation
tests are conducted in this paper to investigate the effects of structural parameters such as
tooth row numbers, single tooth counts, generator outer diameter, and tooth face angle on
cavitation performance. The research target is to optimize generator structure, which holds
engineering significance for the application of rotary hydrodynamic cavitation generators
in wastewater treatment.

The main contributions of this paper can be summarized as follows: (1) A numerical
model of the shear hydrodynamic cavitation generator is established, and the applicability
of the mixed multiphase flow model and the Zwart model to the shear hydrodynamic
cavitation generator is verified by comparing the numerical simulation with the exper-
imental results. (2) The influence of different structural parameters on the cavitation
performance is investigated by numerical simulation. (3) The cavitation mechanism for
shear-induced cavitation bubble generation is obtained by analyzing the diagrams of
pressure and velocity clouds.

The paper is organized as follows: Section 2 establishes the structural model of the
shear hydrodynamic cavitation generator, determines the methodology and boundary
conditions of the numerical model, and verifies the accuracy of the numerical model
experimentally. Section 3 investigates the effect of structural parameters such as the number
of tooth rows, the number of teeth in a row, the outer diameter of the hydrodynamic
cavitation generator, and the angle of the tooth surface on the cavitation performance, and
Section 4 concludes.

2. Materials and Methods
2.1. Structure of Shear Hydrodynamic Cavitation Generator

The structure of the shear hydrodynamic cavitation generators is shown in Figure 1,
consisting of an inlet, rotated teeth, fixed teeth, and an outlet. The movable teeth are
equipped with uniformly distributed square teeth. As the movable teeth rotate, the fluid
velocity increases, creating a low-pressure zone between the movable and fixed teeth. If
the pressure is low enough, cavitation will occur. The initial study parameters are set as
follows: the inlet and outlet diameters of the fixed teeth are 30 mm, the outer diameter
of the fixed teeth is 200 mm, and the inner diameter of the movable teeth is 176 mm. The
number of tooth rows, teeth in a single row, and the outer diameter of the hydrodynamic
cavitation generator are selected as the structural parameters for the study [21–25].
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2.2. Numerical Models, Solution Methods and Boundary Conditions
2.2.1. Model Meshing

The mesh division of the fluid domain was performed using ICEM CFD v.2020r2 soft-
ware. The fluid domain is divided into four parts: inlet (red part), fixed tooth domain
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(yellow part), rotated tooth domain (yellow part), and outlet (purple part). The rotated
and fixed tooth surfaces are set as WALL. The fixed tooth region was connected to the inlet
and outlet through interfaces, while the interface between the moveable and fixed teeth
was established. Among them, the tetrahedral meshing method is applied for the simple
structure of inlet and outlet, while the body meshing method is used for the more complex
structure of movable and fixed teeth domain. Taking 3 rows of teeth as an example, the
generated fluid area mesh is shown in Figure 2.
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Figure 2. Schematic diagram of the hydrodynamic cavitation generator mesh model.

The mesh number independence validation method is as follows: To find the appro-
priate number of meshes, three models with different numbers of meshes were obtained by
changing the maximum mesh size of the fluid domain. The results are shown in Table 1.

Table 1. Mesh number independent verification.

Maximum Mesh Size
(mm) Meshes Cavitation Vesicle

Volume Fraction
Calculate Time

(Days)

2.2 875913 0.35 6.5

2.1 966335 0.36 7

2.0 1125457 0.36 10

From the results of Table 1, when the number of meshes increases from 880,000 to
970,000, the cavitation bubble volume fraction increases by 0.01 and the time increases by
0.5 days. When the number of grids increases from 970,000 to 1,130,000, the cavitation
bubble volume fraction remains unchanged, indicating that the number of grids no longer
affects the calculation accuracy, while the time is increased by 3 days. Therefore, from the
point of view of calculation efficiency, the hydrodynamic cavitation generator model with a
grid number 966335 was finally chosen.

2.2.2. Turbulence Model

Cavitation flow is a complex gas–liquid two-phase flow process that satisfies the law of
mass and momentum conservation. The Mixture model [26] is a simplified Eulerian model
that can be used both for two-phase fluids with velocity differences between phases and
for simulating vesicular flows. The simulated results match the experimental results. The
model is based on the finite volume method to solve the mass and momentum conservation
equations in the three-dimensional Cartesian coordinate system to couple the gas–liquid
two-phase flow. The continuity equation and momentum equation [27] are as follows.
However, when calculating the short-time cavitation flow, it must maintain the equilibrium
on locally very small spatial scales due to the strong coupling between the liquid and gas
phases, and Equation (6) can be satisfied.
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(1) Continuity equation:

∂

∂T
(ρm) +∇·

(
ρm

→
Vm

)
= 0 (1)

ρm = ∑ n
k=1αkρk (2)

→
Vm =

n
∑

k=1
αkρk

→
Vk

ρm
(3)

(2) Momentum equation:

∂

∂T

(
ρm

→
Vm

)
+∇·

(
ρm

→
Vm

→
Vm

)
= −∇p +∇·

[
µm

(
∇

→
Vm +∇

→
V

T

m

)]
+ρm

→
g +

→
F +∇·

(
∑ n

k=1αkρk
→
Vdr,k

→
Vdr,k

)
(4)

µm = ∑ n
k=1αkµk (5)

→
Vdr,k =

→
Vk −

→
Vm (6)

where t is the time, ρm is the mixed-phase density, ρk is the kth-phase density,
→
Vm is the

weighted mass average velocity, n is the number of phases, ∇p is the pressure gradient

acting on a unit volume of fluid,
→
Vk is the kth-phase velocity, µm is the viscosity of the

mixture,
→
g is the acceleration of gravity,

→
F is the volume force, µk is the kth-phase viscosity,

and αk is the kth-phase volume fraction.
→
Vdr,k is the drift velocity for phase k, and is defined

as the relative velocity between k phase velocity and the velocity of center of mass.
Turbulence is the main reason for transient cavitation [28]. In the shear hydrodynamic

cavitation generators, the high-speed rotation of the rotated teeth will cause a change in
the turbulent kinetic energy of the fluid inside the cavity. The Reynolds-averaged Navier–
Stokes [29] (RANS) method is chosen for solving turbulence models, where turbulent
motion is considered as a synthesis of time-averaged flow and instantaneous pulsating
flow. This computational approach encompasses the standard k-ε model, the RNG k-ε
model, and the realizable k-ε model.

The standard k-ε model is only suitable for simulating single-phase flow fields in a
fully turbulent state, not for simulating cavitation with gas–liquid interactions. Although
the RNG k-ε model considers gas–liquid two-phase flow, it cannot simulate the complete
turbulent process and thus does not applicable to the cavitation model in this study.

The fluid inside a shear hydrodynamic cavitation generator has rotational shear, high
turbulence, and complex pressure variations. The realizable k-ε model can predict the
moderate intensity of the cyclonic flow and is more accurate for the calculating rotational
flow, separation flow, and other cases [1]. Therefore, the turbulence model is chosen as
the realizable k-ε model. Since the realizable k-ε model has a high degree of agreement
with the cavitation model in this paper, and can accurately and completely simulate the
fluid flow process inside the rotating hydrodynamic cavitation generator, the realizable k-ε
model is selected in this paper. The control equations are as follows.

∂

∂T
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ +

µT
σk

)
∂k
∂xj

]
+ Gk + Gb − ρε − YM + Sk (7)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ +

µT
σk

)
∂ε

∂xj

]
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+ρC1Sε + ρC2
ε2

k +
√

vε
+ C1ε

ε

k
C3εGb + Sε (8)

C1 = max
[

0.43,
Sk

Sk + 5ε

]
(9)

µT = ρCµ
k2

ε
(10)

where Gk is the turbulent kinetic energy generated by the laminar velocity gradient, Gb is
the turbulent kinetic energy generated by buoyancy, YM is the fluctuation in compressible
turbulence generated by transition diffusion, C1ε, C2, and C3ε are constants of 1.44, 1.92,
and 0.09, respectively, σk and σε are 1 and 1.2, respectively, Sk and Sε are the user-defined
turbulence kinetic energy terms, and µT is the vortex viscosity.

2.2.3. Cavitation Models

In addition to turbulence closure, the cavitation model equations need to be added
to solve for the unknown covariates added due to the control equations in cavitation
numerical calculations. The Zwart–Gerber–Belamri cavitation model based on the vapor
phase volume fraction transport equation [30] is used, which controlling equations are
shown in Equation (11) where

.
m+ and

.
m− represent the vaporization rate and condensation

rate for mass exchange between the liquid and the vapor. The transport process of the
gas–liquid two-phase during cavitation is controlled by varying

.
m+ and

.
m− to capture the

phase change during cavitation.

∂αv

∂T
+

∂
(
αvuj

)
∂xj

=
.

m+ − .
m− (11)


.

m+
= Fvap

3αnuc(1−αv)ρv
R

√
2
3

pv−p
ρ1

, p ≤ pv
.

m−
= Fliquid

3αvρv
R

√
2
3

p−pv
ρ1

, p > pv
(12)

where αv is the vapor volume fraction, pv is the saturated water vapor pressure, 273.15 K
water saturated vapor pressure is 2.34 kPa, and p is the local fluid pressure. If p > pv, water
vapor condenses. If p ≤ pv, cavitation will occur. ρv is the vapor density, αnuc is the gas
nucleus volume fraction, which is taken as 0.0005, Fvap is the vaporization correction factor,
which is taken as 50, Fliquid is the condensation correction factor, which is taken as 0.01, and
R is the radius of the mononuclear cavitation bubble, which is taken as 10−6 m [31].

2.2.4. Boundary Conditions

The slip mesh divides the computational domain into two regions, rotation and
stationary, and uses the interface boundary surface, which is suitable for more complex
rotating flow. Then, combined with the flow state between the rotor and stator in the
hydrodynamic cavitation generator, the mesh motion model is chosen as the MRF. The
boundary conditions are set as follows: The inlet is set as a velocity inlet, while the outlet
is selected as a pressure outlet. The boundary condition of a no-slip wall is used. The
discrete formats of the pressure and momentum terms are staggered pressure (PRESTO)
and first-order windward format, respectively. The PISO algorithm is employed for the
coupling of the pressure–velocity field, where the first-order implicit scheme is used to
time advance. The fluid is a mixture of gas and liquid water, with a controllable actual flow
rate. The turbulence intensity is set to 5%, the rotor speed is stabilized at 1500 rpm, the
rotation period is 0.03–0.04 s, the step size is taken as 0.001 s, and the number of iteration
steps is 2000. The calculations are initialized so that the computational domain is filled
with a stationary fluid, by which two-phase flow calculations are performed. During the
calculation process, the cavitation bubble volume fractions on the surface of the rotated
and fixed teeth are monitored. The initial parameters were set according to Table 2.
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Table 2. Initial parameter settings.

Rotation
Speed

Hydrodynamic Cavitation
Generator Diameter

Single Row of
Teeth Height Pitch Number of Teeth

in a Row
Number of

Rows

1500 rpm 200 mm 10 mm 2 mm 27 2

The transient gas-phase cloud diagrams of the 2-row teeth rotary hydrodynamic
cavitation generator were analyzed in Fluent. The time points of 0.01 s, 0.10 s, 0.20 s, 0.50 s,
0.60 s, 0.70 s, and 0.80 s were selected as the analysis nodes.

In the gas phase contour plots at each time node as shown in Figure 3, cavitation occurs
on the trailing edge of the rotated tooth. With the numerical simulation time progressing,
the cavitation occurrence area on the trailing edge of the rotated tooth gradually expands
and stabilizes after 0.60 s. Therefore, the gas volume fraction on the trailing edge of the
rotated teeth is selected as the standard to measure the cavitation effect with the steady
state time set at 0.80 s.
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2.2.5. Validation of Numerical Model

Firstly, a numerical simulation is conducted on the influence of treatment volume
on the cavitation effect of the hydrodynamic cavitation generator. The impact pattern of
handling capacity on the aeration effect of the aerator is studied using numerical simulation.
By changing the handling capacity, the axial velocity of the fluid inside the aerator is
essentially altered. With the rotational speed held constant, handling capacities of 0.5 m3/h,
1.0 m3/h, 1.5 m3/h, and 2.0 m3/h are selected in the simulation process. With the inlet cross-
sectional diameter d = 30 mm, the inlet cross-sectional area is calculated to be 0.0007 m2,
resulting in inlet velocities of 0.2 m/s, 0.4 m/s, 0.6 m/s, and 0.8 m/s, respectively.

As shown in Figure 4, at a speed of 1500 rpm, the volume fraction of cavitation bubbles
decreases with the increase in treatment volume. It can be observed from Figure 5 that
increasing the treatment volume leads to an increase in the inlet velocity, resulting in an
increase in the axial velocity in the cavitation chamber and the radial velocity between teeth.
This decrease in the time for the fluid to stay in each shear layer per revolution causes some
fluid to reach the outlet without cavitation occurring in the cavitation chamber, thereby
affecting the formation of cavitation bubbles.

The rotational speed of the moving teeth varies while the initial parameters remain
unchanged. During the numerical simulation, it was found that the local pressure in the
hydrodynamic cavitation generator cannot be reduced below the saturated vapor pressure
of the liquid at speeds below 1200 rpm. Therefore, the hydrodynamic cavitation generator
hardly produces cavitation bubbles. When the rotational speed exceeds 2000 rpm, the
increase in the volume fraction of cavitation bubbles is not obvious. Therefore, the rotational
speeds of 1200 rpm, 1400 rpm, 1600 rpm, and 1800 rpm were chosen to compare the effect
of different rotational speeds on the volume fraction of cavitation bubbles. The results are
shown in Figure 6.
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As shown in Figure 6, the volume fraction of cavitation bubbles increases with the
increase in rotational speed at a treatment capacity of 1 m3/h. For Figure 7, the cavitation
bubbles in the hydrodynamic cavitation generator occur with the fluid under high-speed
rotation. Therefore, the higher the rotational speed, the higher the centrifugal force gener-
ated by the rotated teeth due to rotation. This results in a higher fluid flow rate inside the
hydrodynamic cavitation generator, which results in a higher volume fraction of cavitation
bubbles. Thus, the cavitation effect of the hydrodynamic cavitation generator increases
with increasing speed within a convinced range.
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Secondly, experiments are conducted to study the influence of treatment volume on the
COD degradation rate to verify the accuracy and applicability of the numerical simulation
results. A shear-type hydraulic cavitation performance test platform was constructed in
the laboratory, using the printing and dyeing wastewater as the experimental subject. The
cavitation performance of the cavitation device was reflected by measuring the difference in
COD concentration in the printing and dyeing wastewater before and after cavitation, with
the COD content of the samples determined using EPA-approved standard methods [32].
The experimental results were used to assess the applicability and accuracy of the numerical
simulation method.
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The experimental device is shown in Figure 8. The device is an open loop, consisting
of a water tank, a booster pump, a frequency converter, a flow meter and a shear hydrody-
namic cavitation generator. At the water reservoir, the tank supplies the booster pump with
enough water to ensure that both the booster pump casing and suction line are filled with
water before the pump is started. The booster pump and flow meter are used to pressurize
the wastewater and control the inlet velocity of the hydrodynamic cavitation generator. The
frequency converter is used to change the speed of the rotated teeth. The hydrodynamic
cavitation generator, consisting of rotated and fixed teeth, generates cavitation bubbles to
degrade the COD content of the wastewater. As shown in Figure 9, wastewater is stored
in a tank and pressurized from the bottom by a booster pump. It then flows through a
flowmeter into a hydrodynamic cavitation generator for treatment. After treatment, the
wastewater returns to the tank, forming an open loop. The rotational speed is controlled by
the variable frequency drive set at 1500 rpm.
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Before the experiment, the printing and dyeing wastewater was diluted based on the
COD liquor detection range. The initial COD content was measured using the COD liquor.
Simultaneously, the rotational speed of the shear hydrodynamic cavitation generator was
adjusted to 1500 rpm for pre-rotation to test equipment safety and venting. Subsequently,
the printing and dyeing wastewater was added to the tank for cavitation degradation of
COD in the water. Once the rotor stabilized, samples were taken at the sampling port to
measure the COD content in the wastewater after cavitation treatment, and the samples
were taken uniformly at a treatment time of 10 min. The comparison was made with the
COD content in the wastewater before cavitation to validate the pattern of COD degradation
effectiveness through cavitation and confirm the accuracy of numerical simulation. The
COD degradation rate is briefly given here:

Once the rotor stabilized, the samples were taken at the sampling port to measure the
COD content in the wastewater after cavitation treatment, and the samples were taken
uniformly at a treatment time of 10 min.
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η =
1 − δCOD

δCOD
(13)

As shown in Figure 10, with an increase in the treatment volume, the degradation
rate of COD in the printing and dyeing wastewater decreases, indicating a deterioration
in cavitation effectiveness. The increase in treatment volume actually accelerates the
fluid’s inlet velocity, especially the axial velocity of the fluid, leading to an increase in
the inter-tooth radial velocity. Consequently, the residence time of the fluid within the
cavity decreases, resulting in a decrease in cavitation effectiveness. During the collapse of
cavitation bubbles, there is inevitably energy wastage that is not completely utilized for
COD degradation. Additionally, the quality of wastewater, involving gas and impurity
content, also affects the efficiency of COD degradation. This is why the experimental
results exhibit a similar trend to the numerical simulation results, while with lower COD
degradation efficiency compared to the volume fraction of cavitation bubbles. Thus, the
accuracy of the numerical model and methodology is validated.
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3. Experiments and Results
3.1. Influence of Structural Parameters on Cavitation Performance
3.1.1. Number of Teeth Rows

The shear hydrodynamic cavitation generator with 1~8 rows of teeth rows were
selected to study the influence of the number of teeth rows on the cavitation performance
of the hydrodynamic cavitation generator. The results are shown in Figure 11.

The gas phase volume fraction in Figure 11 increases with the increase in the number
of tooth rows, reaching a point of no significant increase when it reaches eight rows of teeth.
Pressure is the decisive factor in the generation and collapse of cavitation bubbles. The
pressure contour plots of different tooth row numbers in Figure 12 indicate that the shear
hydrodynamic cavitation generator exhibits a relatively large low-pressure region. The
cross-shearing between the moving and stationary teeth leads to a change in the shearing
velocity between them, resulting in the occurrence of a low-pressure area between the
rotated and fixed teeth and creating a favorable environment for the generation of cavitation
bubbles. As the tooth rows increase, the fluid region between the teeth expands, rendering
a decrease in static pressure of the fluid and an enlargement of the negative pressure
region within the cavitation inducer. Consequently, the cavitation occurrence area expands,
thereby enhancing the cavitation performance of the inducer with an increasing number of
tooth rows. However, when the number of tooth rows reaches eight as shown in Figure 12,
there is a relatively long distance from the inlet to the outlet section, creating a low-pressure
field (highlighted in the red box in Figure 12) independent from the inlet velocity and
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outlet resistance. This stable low-pressure field provides favorable conditions for the stable
generation of cavitation bubbles. Therefore, the best cavitation effect is achieved when the
number of tooth rows reaches eight, without the need for further increasing the number of
tooth rows, while satisfying the requirements of cavitation.
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3.1.2. Number of Teeth in A Single Row

For a clearer comparison, while ensuring that the size of the teeth remains constant,
single gear teeth numbers of 5, 10, 15, 20, and 25 were selected to study their impact on the
cavitation performance of the hydrodynamic cavitation generator. As shown in Figure 13,
the cavitation performance of the hydrodynamic cavitation generator is optimal when the
single gear teeth number is 15. when the number of teeth exceeds 15 in the cavitation in-
ducer of the same size, the decrease in cavitation performance is attributed to the reduction
in fluid flow space between each tooth as the number of teeth increases. This results in a
decrease in the cavitation occurrence area renders a deterioration in cavitation effectiveness.
Conversely, when the number of teeth is less than 15, the continuous reduction in the
number of teeth causes a decrease in shear velocity between the tooth sides. As a result, the
low-pressure region cannot be generated, resulting in a decline in cavitation effectiveness.
The degree of cavitation varies greatly for the structure difference in the hydrodynamic
cavitation generator between the fluid domains. This change in cavitation is a very complex
fluid dynamic result.
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3.1.3. Outer Diameter of Hydrodynamic Cavitation Generator

With the tooth row number set at 3 and 10 teeth per row, the impact of the hydrody-
namic cavitation generator’s cylinder diameter on cavitation performance was investigated
by maintaining the size of each tooth unchanged and selecting the tooth outer diameters as
D100, D120, D140, D160, and D180.

As shown in Figures 14 and 15, the volume fraction of cavitation bubbles increases
with the increase in the outer diameter of the fixed gear. With the increase in the outer
diameter of the fixed gear, the centrifugal force acting on the hydrodynamic cavitation
generator increases [33], leading to an increase in the relative velocity between the rotated
and fixed gears. This increase in relative velocity results in a higher shear force, creating
more low-pressure zones and enhancing cavitation performance. It is indicated that cen-
trifugal force can induce the formation of more aeration bubbles. Furthermore, as the outer
diameter of the hydrodynamic cavitation generator increases, the circumferential speed
increases when the speed is constant, which means that the shear speed increases. Conse-
quently, a larger outer diameter of the hydrodynamic cavitation generator leads to better
cavitation effects. However, it is crucial to consider that the size of mechanical equipment
should not be expanded without limitations when considering energy consumption and
processing convenience.
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Figure 15. Variation in cavitation bubble volume fraction with time for different fixed tooth
outer diameter.

3.1.4. Tooth Bevel Angle

When the tooth bevel angle (as shown in Figure 1) is 75◦ or below, interference occurs
between the moveable and fixed teeth, preventing the occurrence of cavitation. Therefore,
80◦, 85◦, 90◦, 95◦, 100◦, and 105◦ are chosen as six different movable tooth inclination
angles to study the influence of different angles on the cavitation performance of the
hydrodynamic cavitation generator.

From Figures 16 and 17, it can be observed that as the tooth surface inclination angle
increases, the velocity between fixed teeth increases, and the velocity distribution becomes
more stable, leading to the generation of more cavitation bubbles. With the increasing angle,
the velocity on the outer side of the moveable teeth flow region increases, while the velocity
on the inner side decreases, creating a noticeable velocity difference. This enlargement
of the low-pressure region between moveable teeth creates favorable conditions for the
generation of cavitation bubbles.
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Figure 17. Velocity cloud for different tooth bevel angles.

The velocity cloud in Figure 18 reveals that, as the rotated teeth rotate, the shear
velocity within the fluid domain between the rotated and fixed teeth varies with different
degrees of overlap. When the rotated and fixed teeth are on the same axis, the shear velocity
is lower (indicated by a smaller red area in the cloud map). When the rotated and fixed
teeth are completely off the same axis, the shear velocity increases (indicated by a larger
red area in the cloud map). It can be inferred that the relative motion between the rotated
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and fixed teeth causes a variation in shear velocity, i.e., the greater the shear velocity, the
larger the volume fraction of cavitation bubbles. Generally, the generation of cavitation
bubbles is influenced by the shear velocity between the rotated and fixed teeth.
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4. Conclusions

By establishing a numerical model of the hydrodynamic cavitation generator and
numerically simulating its internal flow field, the pressure field, the velocity field and
the cavitation bubble volume fraction were analyzed. The effects of different structural
parameters on the cavitation performance were investigated in this study. The following
conclusions are drawn from this study:

1. A novel shear hydrodynamic cavitation generator is designed to solve the problem
of wastewater treatment. The moving and fixed teeth of the cavitation generator are
crossed, not pairs of teeth. The numerical model was established based on the mass
conservation equation and momentum conservation equation, and the Mixture model,
realizable k-ε turbulence model, and Zwart cavitation model were used to describe
the internal flow field. Experiments were conducted using wastewater from a printing
and dyeing plant as the medium, among which the degradation rate of COD in water
is taken to characterize the cavitation feature of the device. It was found that the
cavitation performance increased with the increase in rotational speed. The cavitation
performance decreases as the treatment volume increases. Thus, the applicability
and accuracy of the mixture multiphase flow and Zwart cavitation model for the
shear-type hydrodynamic cavitation generator were validated.

2. The laws governing the effect of different structural parameters on the cavitation
performance are compared. Different structural parameters have a significant impact
on the cavitation performance of the cavitation inducer with the number of teeth rows
exerting the most noticeable influence. As the number of tooth rows increases, the
volume fraction of cavitation bubbles rises. Once the number of tooth rows reaches
eight, a stable low-pressure field forms inside the cavity, resulting in a stable cavitation
performance. Conversely, an increase in the tooth number in a single row reduces the
flow space for fluid within the cavitation inducer, leading to a decrease in cavitation
performance. Furthermore, an increase in the outer diameter of the cavitation inducer
enhances its centrifugal force, causing an increase in circumferential velocity and
consequently increasing the shear velocity between teeth, thereby improving cavita-
tion performance. The presence of tooth tilt alters the location of cavitation bubble
generation between teeth, facilitating cavitation action on the fluid. Additionally, with
an increase in the tilt angle, the low-pressure area between teeth enlarges, leading to a
corresponding increase in cavitation performance.

3. The cavitation between the rotated teeth is mainly formed by the centrifugal force
field under extremely strong negative pressure. The cavitation between the fixed teeth
by the fluid caused by the high-speed rotation of the circumferential velocity increases,
bringing an increase in the shear velocity between the rotated and fixed teeth; the
static pressure decreases, resulting in a localized negative pressure between the teeth
and the formation of cavitation. Therefore, the size of the flow space of the fluid
in the hydrodynamic cavitation generator has a great impact on the hydrodynamic
cavitation generator effect as well as its shape.
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