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Abstract: Against the backdrop of global warming and rising sea levels coupled with increasing
urbanization, flood risks for plain cities have intensified. This study takes Liaocheng City as its
research object and constructs a regional flood risk assessment model based on a combination of
subjective and objective multi-weight methods. The model sets weights according to different return
periods from three perspectives: the severity of disaster-causing factors, the exposure of disaster-prone
environments, and the vulnerability of disaster-bearing bodies. It also uses a subjective–objective
combination of weights for the severity of disaster-causing factors, adopts CRITIC-entropy weights
for the exposure of disaster-prone environments and vulnerability of disaster-bearing bodies, and
adopts AHP subjective weights for the criterion layer. Based on GIS spatial analysis technology, the
examination and zoning of flood disasters at a county scale were carried out. The results show that,
unlike the existing weighting methods and machine learning methods, this multi-weight combination
method can simultaneously avoid the subjectivity of the results and the uncertainty of parameters,
thus enabling more accurate decision-making results to be obtained. The spatial distribution of the
comprehensive risk is high in the central and western parts and relatively low in the south and
north, while the area characterized by very high risk is concentrated in Dongchangfu District and
Guanxian County. With the gradual increase in return periods, the overall spatial distribution of
medium-to-very-high-risk areas in risk zoning gradually shrinks, and the spatial distribution of
very-high-risk areas gradually moves south but maintains a stable distribution rule. Flood risk
assessment is an important basic process for disaster prevention and mitigation in plain cities, and
the results of this study can provide a reference for similar plain cities.

Keywords: flooding; return period; CRITIC-entropy weight method; GIS; risk assessment; Liaocheng
City

1. Introduction

Global warming is increasing the incidence of catastrophic weather and extreme
weather events [1–4]. Of these, flooding is one of the most destructive, widespread, and
frequent natural disasters [5–7]. Flooding has also become one of the most serious natural
disasters in plain cities in terms of loss of life, property, and frequency of occurrence [8]. At
the same time, the frequency and intensity of floods are expected to continue to increase
in the coming years as a result of sea-level rise and more frequent extreme precipitation
events [9–13]. Urban flood disasters have become an outstanding problem affecting urban
public safety and a significant factor restricting the country’s economic and social develop-
ment. With rapid urbanization, the form and mechanism of urban flooding in the plains
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are undergoing drastic changes, and the risk of urban flooding is showing a rising trend.
Flood risk assessment and zoning constitute an important part of the implementation of
risk management [14]; it is a complex, systematic project to analyze, assess, prevent, and
respond to urban flood risks. The results can provide a scientific basis for disaster relief and
mitigation, raising awareness of flood risk prevention among the public and helping flood
prevention and mitigation departments take effective measures to deal with floods [15].
Therefore, it is imperative to strengthen systematic research on urban flood risk assessment.

Flood risk has always been a key area of concern for the international community. At
present, many scholars at home and abroad have used a variety of methods to carry out
research on urban flooding and have achieved certain research results [16–23]. In terms
of assessment methods, the existing studies can be broadly classified into the following
types: First, a flood scenario simulation is carried out with a hydrological–hydraulic model.
For example, V. Anselmoa et al. used a two-dimensional hydrodynamic model to simulate
floods for risk assessment in flood-prone areas [24–26]. Ye et al. used Infoworks ICM
to establish a coupled hydrological–hydrodynamic model for flood simulation and risk
evaluation of the Baima River area in Fuzhou City, China [27]. Wu et al. carried out a flood
disaster risk assessment on Haidian Island with different rainfall intensity combinations
based on a PCSWMM model [28]. Second, high-resolution measurement technology is used
to collect data and carry out flood disaster risk assessment. For example, Wang et al. used
radio frequency technology (RF) for regional flood hazard risk assessment [13]. Islam et al.
assessed flood zones and flood risk in Bangladesh based on NOAA AVHRR data using
remote sensing technology (RS) and GIS systems [29]. Salandra et al. combined unmanned
aerial vehicles (UAVs) and structure from motion (SfM) photogrammetry technology to
collect and process high-resolution data as needed for flood disaster risk assessment [30];
Trepekli et al. used miniaturized light and detection ranging (LiDAR) scanners mounted
on unmanned aerial vehicles (UAVs) to generate a digital terrain model (DTMs) with ultra-
high-altitude resolution and simulate the flooded area through the hydrological screening
model (Arc-Malstrom), thus achieving the purpose of flood disaster risk assessment [31].
Thirdly, the indicator system is constructed by using the AHP method, the entropy weight-
ing method, the CRITIC weighting method, etc., for flood risk assessment. For example,
Liu et al. used the GIS and AHP methods for flood risk assessment in the Huaihe River
Basin and employed the formula of the “Plus” model to obtain a comprehensive risk eval-
uation map of flood disasters [32]. Bathrellos et al. quantitatively analyzed the drainage
network of a river, applied AHP in a GIS system, examined the effect of uncertainty in the
factor values on the results of the flood hazard evaluation, and produced a corresponding
urban flood hazard evaluation map [33]. Li et al. applied the entropy weight and gray
target evaluation model methods to construct a risk evaluation model of heavy rainfall
and flooding in southern Shaanxi and combined GIS spatial analysis technology to zone
the risk of heavy rainfall and flooding in southern Shaanxi [34]. Sun et al. proposed a
multi-criteria decision analysis (MCDA) model for urban flood risk evaluation, using the
fuzzy hierarchical analysis method (FAHP), the entropy weighting method (EWM), and
a subjective–objective combination of weighting methods to determine the weights, and
drew a map of the flood risk distribution in Beijing City [35]. Cheng et al. evaluated
the flood vulnerability of 76 cities in the Yellow River Basin from 2009 to 2018 using the
CRITIC-entropy weighting method and the fuzzy comprehensive evaluation method [36].
Jia et al. assigned weights to various flooding factors through the AHP-entropy weighting
method and analyzed and carried out a risk assessment of heavy rainfall and flooding in
Guangxi with the help of GIS technology [37]. Fourthly, random forests, neural networks,
and other machine learning methods are used to evaluate the risk of flood disasters. For
example, Bahram et al. considered the return period in spatial modeling using machine
learning (ML) models to determine flood hazard areas [38]. Asiri et al. used multi-criteria
decision-making for coastal flood risk assessment using a machine learning approach [39];
Wang et al. used a random forest model to calculate the contribution rate of each indicator,
optimized the indicator system based on the ranking results, and used the XGBoost model
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to assign weights to the optimized indicator system and assess the flood risk of Yichang
City [40].

However, existing studies have given insufficient consideration to the extent of flood-
ing caused by different factors when assigning weights to indicators, and the lack of
optimization of the indicator system has limited the objectivity of the assessment results.
The scenario simulation method based on hydrodynamic models cannot provide a compre-
hensive risk assessment of flooding due to the lack of potential surface and socio-economic
factors; remote-sensing-based techniques require high classification accuracy and data
matching [8]. Using a single-weighting method can easily lead to insufficient accuracy in
assessing urban flood risk characteristics. The optimal values of the indicators it determines
are somewhat subjective and uncertain. The modeling method of the machine learning
model requires a large number of parameters, and insufficient or incorrect parameters can
affect the accuracy of the data. The indicator system approach is the most widely used
because it can show the flood risk situation in macro-regions or larger-scale regions, and
the calculation method is relatively simple. In the indicator system method, the allocation
of indicator weights is a key step in determining the accuracy of risk assessment, and the
commonly used indicator assignment methods can be divided into two types: subjective
and objective assignment methods. The subjective assignment method represented by the
AHP method analyzes more from a qualitative perspective and relies too much on expert
knowledge, which limits the objectivity of the assessment results; the objective assignment
method represented by the entropy weight method is easily affected by the distribution of
the original data, and it is difficult to ensure the stability of the assessment results. This
study adopts the subjective–objective combination assignment method to assess the risk of
disaster-causing factors, the CRITIC-entropy weighting method to measure the exposure of
disaster-containing environments and the vulnerability of disaster-carrying bodies, and
the AHP subjective assignment method to examine the criterion layer. Additionally, the
subjective–objective combination of the assignment method means that subjective factors
can be combined with objective factors so as to arrive at a quicker and more accurate
decision-making result [41–43]. Compared with the scenario simulation method of the
hydrodynamic model, the subjective–objective combination assignment method has a
wide calculation range and can include surface and social factors. Compared with the
use of remote sensing technology to collect data for the assessment of flood disasters, the
subjective–objective combination assignment method does not need high-precision data
to complete the assessment of flood disaster risk. Compared with the single-assignment
method, the subjective–objective combination assignment method has fully taken into
account the role of experts’ experience and objective data to make the results more accu-
rate, and compared with the machine learning model, it does not need a large amount of
parameter support to complete the assessment quickly and accurately. Compared with the
single assignment method, the subjective–objective combination assignment method can
complete the assessment quickly and accurately without the support of a large number of
parameters. However, combined assignment methods still cannot completely avoid the
influence of the original data distribution, so there are potential limitations.

In view of this, this study takes Liaocheng City as the research object and constructs a
regional flood risk assessment model based on a combination of subjective and objective
multi-weight methods. The model sets weights according to different return periods from
three perspectives: the severity of disaster-causing factors, the exposure of disaster-prone
environments, and the vulnerability of disaster-bearing bodies. It also adopts subjective–
objective combination of weights for the severity of disaster-causing factors, adopts CRITIC-
entropy weights for the exposure of disaster-prone environments and vulnerability of
disaster-bearing bodies, adopts AHP subjective weights for the criterion layer, establishes
an evaluation index system of urban flood disaster risk, and evaluates the multi-year
flood disaster risk of the city using GIS spatial analysis technology. It combines this with
the process of urbanization, analyzes urban flood disaster risk at the county scale, and
employs zoning with the goal of providing relevant managers with important disaster risk
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information. This urban flood risk assessment model based on a combination of subjective
and objective multi-weight methods fully considers the role of expert experience and
objective data, makes up for the shortcomings brought by single weighting and machine
learning models, and can simultaneously avoid the subjectivity of results and uncertainty
of parameters, thus obtaining more accurate decision-making results and evaluating urban
flood disaster risks more scientifically. This study represents an important basic work for
disaster prevention and mitigation in plain cities. To date, the application of subjective and
objective assignment methods in flood disaster assessment is uncommon; therefore, it is
necessary to use this method to carry out research on flood disaster risk assessment, which
is of great significance for achieving improvements in urban flood disaster prevention,
risk level classification, and the promotion of economic development. Meanwhile, the
application of such innovative combination methods also provides ideas for urban flood
risk assessment in similar plain cities.

2. Materials and Methods

Considering the natural environment and socio-economic characteristics of Liaocheng
City, this study adopts GIS spatial analysis and the flood risk assessment model to analyze
and zone urban flood disasters at the county scale [8].

2.1. Source of Data

According to the evaluation index system, this study relies on yearbook information
and the Internet to collect data, which are divided into four categories: meteorological and
hydrological data, basic geographic data, remote sensing image data, and socio-economic
data [44]. See Table 1.

Table 1. Data sources in the study area.

Datatypes Metadata Sources

Meteorological and hydrological data

Daily precipitation in Liaocheng City
(1950–2020)

Haihe River Basin Hydrological
Yearbook, National Meteorological
Science Data Centre data (China
Terrestrial Climatological Data Daily
Value Dataset V3.0)

Flood disaster data Liaocheng City Water Conservancy
Journal (1991–2020)

Basic geographic data

District and county administrative
boundary data Ministry of National Natural Resources

Drainage map of Liaocheng City Provided by Liaocheng City Water
Resources Bureau

Remote sensing image data
Topographic elevation data (12.5 DEM) Geospatial Data Cloud

NDVI data NASA MOD13A3 Dataset

Socio-economic data Demographic characteristics, economic
statistics, municipal facility planning Liaocheng City Statistical Yearbook 2020

2.2. Indicator Selection

Based on the hydrological yearbook, national meteorological data, the statistical
yearbook, GIS extracted data, etc., for this study, we screened out 19 urban flood risk
evaluation indicators from three perspectives: disaster-causing factors, exposure to the
disaster-bearing environment, and vulnerability of the disaster-bearing body. Thus, we
constructed the Liaocheng City Flood Risk Assessment Indicator System. See Table 2.
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Table 2. Indicator system for flood risk assessment in Liaocheng City.

Target Layer
Criteria Layer Indicator Layer

Nature of Indicator
Indicator Indicator

Urban flood disaster risk

Severity of disaster-causing factors

Maximum 24 h rainfall (mm) Positive
Maximum 3-day rainfall (mm) Positive
Average annual precipitation in
moderate rainfall (mm) Positive

Average annual precipitation of
heavy rainfall (mm) Positive

Average annual precipitation of
storms (mm) Positive

Precipitation variability Positive
Flood frequency Positive

Exposure to disaster-prone
environment

River network density (km/km2) Positive
Average elevation (m) Negative
Average slope (%) Negative
Vegetation cover (%) Negative

Vulnerability of
disaster-bearing body

Population density (person/km2) Positive
Road density (km/km2) Positive
Economic density (billion CNY/km2) Negative
Primary industry GDP (billion
CNY/km2) Negative

Secondary industry GDP (billion
CNY/km2) Negative

Tertiary industry GDP (billion
CNY/km2) Negative

Rural population (10,000 people) Positive
Density of medical institutions
(institutions/km2) Negative

Disaster-causing factors refer to the various factors that may cause casualties, property
damage, social unrest, etc., in various environments. Heavy precipitation is one of the
main causes of flooding in Liaocheng City. Based on the day-by-day precipitation data
collected between 1950 and 2020, the P-III frequency curve was used to fit the line, and
the weights were set for each of the four return periods: 10 years, 50 years, 100 years,
and 200 years. Seven indicators, namely, maximum 24 h rainfall, maximum 3-day rainfall,
flood frequency, average annual precipitation, and precipitation variability of light rainfall,
moderate rainfall, and heavy rainfall, were selected as the causative factors.

A disaster-prone environment is a natural and human environment that nurtures
the occurrence of disasters, such as floods. The natural environment exposed to the
influence of disaster-causing factors has an indirect influence on the occurrence of internal
floods, and it is this environment that reflects the formation of waterlogging. Among
them, changes in the type of subsurface, river and lake systems, and topography are
the keys to the risk of an urban flood disaster and its degree. To determine the disaster-
prone environment of Liaocheng City, we mainly took into account the hydrological and
geomorphological environments as well as four indicators, namely, the river network
density, average elevation, average slope, and vegetation coverage.

A disaster-bearing body can be characterized by various disaster risk factors, such
as the population; people represent the main body affected and damaged by disasters.
These factors also include urban roads, agriculture, industry, and other aspects. For this
study, eight indicators, including population density, road density, and economic density,
were selected to identify disaster-bearing bodies according to the aspects of population,
urban roads, economy, agriculture, and healthcare. Among them, changes in population
density, road density, and rural population were positively related to the vulnerability of
disaster-bearing bodies, while changes in economic density, the average production value
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of primary, secondary, and tertiary industries, and the density of medical institutions were
inversely related to the vulnerability of disaster-bearing bodies.

2.3. Combination of Multi-Weight Methods

To address the problem of insufficient accuracy of urban flood risk characteristics
caused by a single assignment, the subjective–objective combination assignment method
was adopted for the risk of disaster-causing factors, the CRITIC-entropy weight objective
assignment method was adopted for the exposure of disaster-containing environments and
the vulnerability of disaster-bearing bodies, and the AHP subjective assignment method
was adopted for the criterion layer. This assignment makes up for the shortcomings
of single assignments, achieves unity and complementarity between the subjective and
objective assignments, and enables the risk of urban flooding to be evaluated in a more
scientific way.

Due to the different data sources and their dimensions and large range of values, it is
necessary to standardize the data between 0 and 1. The Grid Calculator in ARCGIS 10.0 is
used to standardize rainfall grid data, topographic standard deviation data, etc. Therefore,
prior to the assignment, the data matrix was constructed, and the data were normalized.
The specific calculation method is as follows:

(1) Construction of data matrix

By constructing m samples and n evaluation indicators, we obtained the original data
matrix (xij is the evaluation value of the ith item under the jth indicator):

X =
(
xij
)

m×n (1)

Among them, i = 1, 2, . . ., m; j = 1, 2, . . ., n.

(2) Numerical standardization

Individual evaluation factors were quantified without outlines to eliminate unit effects
between different variables. If the ith indicator factor value of the jth evaluation object
was as high as possible, i.e., when the jth indicator xj was a positive indicator, it was
transformed as follows:

rij =
xij − min

(
xij
)

max
(
xij
)
− min

(
xij
) (2)

If the ith indicator factor value of the jth evaluation object was as low as possible, i.e.,
when the jth indicator xj was a negative indicator, it was transformed as follows:

rij =
max

(
xij
)
− xij

max
(
xij
)
− min

(
xij
) (3)

where i = 1, 2, . . ., m; j = 1, 2, . . ., n, rij is the standardized value of the ith indicator in the
evaluation metrics, xij is the original value of the ith indicator in the evaluation metrics,
min(xij) is the minimum value of the ith indicator in the evaluation metrics, and max(xij)
is the maximum value of the ith indicator in the evaluation metrics.

2.3.1. Entropy Weighting Method to Determine Objective Weights

The concept of “entropy” was first proposed by Clausius, a German physicist, and
in 1948, Shannon integrated entropy with information theory and called it “information
entropy”. Using information entropy, entropy can be calculated, and the entropy law
was born as a result. The entropy weight method is a multi-indicator system of objective
assignment methods. The basic idea is to use the concept of information entropy to
measure the uncertainty of the indicators and determine their weights. In the entropy
weight method, the relationship between information entropy and weight is usually used
to calculate the weight.
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The greater the entropy of the indicator, the smaller the degree of change in the
indicator value. The less information available, the smaller the role and the lower the
weight of the comprehensive evaluation [45]. The smaller the entropy of the indicator,
the greater the degree of change in the indicator value. The more information available,
the greater the role and the higher the weight in the comprehensive evaluation. The
entropy value reaches its maximum when the indicator values of the selected indicators
are exactly the same, which means that the indicator does not contain valid information,
and deleting the indicator from the evaluation indicator system has no effect on the final
evaluation [46]. The use of the entropy weighting method to determine the weights can
maximize the elimination of the interference of subjective human factors, enabling more
objective indicator weights to be obtained. The specific calculation method is as follows:

(1) Determination of entropy value

The entropy value was calculated as follows:

ej = −k
m

∑
i=1

pij · ln pij (4)

where k = 1/ ln m, pij = rij/
m
∑

i=1
rij, i = 1, 2, . . ., m; j = 1, 2, . . ., n, m is the number of

indicators in each column; and rij is the standardized value of the ith indicator in the
evaluation metrics.

(2) Calculation of entropy weights based on entropy values

The information entropy redundancy of the jth indicator was calculated as follows:

dj = 1 − ej (5)

The weights of the indicators were calculated as follows:

wEj =
dj

n
∑

j=1
dj

(6)

where j = 1, 2, . . ., n, ej is the entropy value under the jth indicator.

2.3.2. CRITIC Weighting Method to Determine Objective Weights

The CRITIC weighting method is an objective weighting method proposed by Diak-
oulaki, which combines independence weight and information weight [47]. The CRITIC
weighting method is an objective weighting method that takes advantage of the variability
of and correlations between the data to determine the weights, mainly through the two
aspects of the comparative strength of and conflict between the indicators [48].

(1) The comparative strength of indicators was calculated.

In the CRITIC weighting method, a standard deviation analysis can be used to judge
and express the internal values of and data difference changes in each indicator. The greater
the difference value, the greater the change in the number and difference of the indicator,
and the more information can be reflected from it. The stronger the evaluation intensity of
the indicator itself, the more weight should be allocated to the indicator itself. The formula
is as follows:

sj =

√
1

m − 1

m

∑
i=1

(rij − rj)2 (7)

where rj is the mean value of the jth indicator after standardization and m is the number of
evaluation objects.

(2) Indicator conflictability was calculated.
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In the CRITIC weighting method, if the correlation coefficient is used to express
the information correlation between indicators, the information correlation with other
indicators is stronger. It can be explained that the smaller the information conflict between
the indicator and other indicators, the more the same amount of information will be
reflected and the more repetitive the evaluation content can be, which will weaken the
comprehensive evaluation intensity of the indicator to a certain extent. The distribution
of the comprehensive weight of the indicator should be reduced as much as possible. The
formula is as follows:

Rj =
p

∑
i=1

(
1 − cov(j, i)

sisj

)
(8)

where i = 1, 2, . . ., p, cov(j, i) is the covariance between the jth indicator and the ith indicator,
and p is the number of indicators.

(3) The integrated information was calculated.

Cj = SjRj (j = 1, 2, . . . , p) (9)

(4) A larger Cj means that the jth evaluation index has a greater impact on the whole
comprehensive evaluation index system and that more weight should be assigned
to it.

(5) CRITIC method indicator weights were determined.

wCj =
Cj

p
∑

j=1
Cj

(j = 1, 2, . . . , p) (10)

Through CRITIC-entropy weight combination assignment, the combined weight of
each secondary indicator was obtained as follows:

wj =
wCj × wEj

p
∑

j=1
wCj × wEj

(11)

2.3.3. Analytic Hierarchy Process to Determine Subjective Weights

The analytic hierarchy process (AHP) is a combination of qualitative and quantitative
methods for weighting analysis and decision-making, as proposed by Saaty [49]. The
AHP uses mathematical relationships to express human subjective judgment, reducing
the influence of subjective factors on the weights to a certain extent and, thus, making
the assessment results more scientific. This method is more suitable for decision-making
problems that have a target system with hierarchical interlocking evaluation indicators and
for which the target values are difficult to describe quantitatively. AHP is an effective risk
assessment method based on qualitative and quantitative analyses of multiple indicators
and has been widely used for flood risk assessment in recent years [39,50–52]. The specific
steps for determining the weights are as follows:

(1) Construct a hierarchical structure model

When choosing AHP for problem-solving, the problem is first stratified to create a
hierarchical structural model. The model is divided into three layers, namely the task layer,
the criterion layer, and the indicator layer. The task level represents the final problem to be
solved, the criterion level represents the factors to be considered, and the indicator level
represents the alternatives in decision-making. In the criterion level of the hierarchical
model, the factors at the same level are called target criteria, and the indicators at the
indicator level are governed by the influencing factors at the criterion level based on their
characteristics, while the lower-level criteria are governed by the criteria at the upper level,
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so this kind of tree-type progression is regarded as a multilayered structural analytical
model [53].

(2) Use 1~9 and its reciprocal scale method to construct an index judgment matrix

In order to improve the accuracy of the constructed matrix, relative scales were used to
compare the assessment factors two by two to minimize the difficulty of comparing factors
of different natures with each other. The judgment matrix R =

(
rij
)

n×n is defined using 1
to 9 and its reciprocal as the scale, and the method of constructing the judgment matrix is
shown in Table 3 below.

Table 3. Hierarchical analysis scales and their meanings.

Factor i over Factor j Quantized Value

Equally important 1
Slightly important 3
Highly important 5
Strongly important 7
Extremely important 9
Intermediate value of two adjacent judgments 2, 4, 6, 8

(3) Hierarchical ordering of items in a list

The eigenvector corresponding to the largest eigenroot of the judgment matrix, λmax, is
normalized and recorded as W. The elements of W are the ranking weights of the elements
of the same level with respect to the relative importance of a factor in the previous level, a
process known as hierarchical single ranking. The synthetic weights of the elements of each
level on the system goal are calculated, and the total ranking is performed to determine the
importance of each element of the lowest level in the recursive structure diagram in the
total goal.

(4) Consistency check

The consistency indicator CI is calculated using the following formula:

CI =
λmax − n

n − 1
(12)

where n is the dimension of the matrix.
If CI = 0, there is perfect consistency; if CI is close to 0, there is satisfactory consistency;

the larger CI is, the more serious the inconsistency is. To measure the magnitude of CR,
the random consistency index RI is introduced, as shown in Table 4 below.

Table 4. RI values of each scale.

Scale 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45

The consistency ratio is calculated by the following formula:

CR =
CI
RI

(13)

When CR < 0.1, the consistency of the judgment matrix is reasonable; however, it is
necessary to re-test the consistency.

Since this study discusses the impact of precipitation intensity on storm flooding levels
over different return periods, a total of six experts (the authors of this paper) were invited
to participate in the decision-making process when setting up the guideline layer indicators.
This involved setting up the weights according to the different return periods, taking
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into account the quantitative relationship between precipitation intensities under the four
scenarios of return periods and the degree of change between the indicators. Additionally,
tailored judgment matrices were constructed in a targeted manner to obtain the results of
the weight allocation of risk indicators under the different return periods. The results of
assigning weights to the hazard indicators under different scenarios are as follows: With
the change in the return period, the dominant precipitation intensity gradually increases,
which directly affects the frequency of floods, while the other indicators are hardly affected
by it. Therefore, the judgment matrix is constructed by focusing on the change in risk.

2.3.4. Evaluation Methodology

The flood risk of Liaocheng City, as studied here, is a comprehensive function of three
aspects, namely the severity of disaster-causing factors (H), the exposure of the disaster-
prone environment (E), and the vulnerability of the disaster-bearing body (V). The “H-E-V”
framework [10,54–56] is comprehensive and clear, yet operational, and is widely used by
scholars and research organizations [57].

The comprehensive flood risk assessment model for Liaocheng City can be calculated
using the following equation:

FDRI = XHWH + XEWE + XVWV (14)

X =
n

∑
j=1

wjrij (15)

where FDRI (flood disaster risk index) is a composite flood risk index; XH , XE, and
XV denote the values of the evaluation indexes for severity, exposure, and vulnerability,
respectively; WE, WH , and WV denote the respective weights; rij and wj are the standardized
value and corresponding weight of the ith indicator in the evaluation index, respectively;
and j is the number of indicators for each individual evaluation.

2.4. Overview of Study Area

Liaocheng City is located in the western part of Shandong Province, with a geographi-
cal location of 35◦47′ N~37◦02′ N, 115◦16′ E~116◦32′ E. It is situated in the yellow flood
plain of northwestern Shandong Province, with a gentle topography, high in the southwest
and low in the northeast. There is a ground slope drop of 1/6500~1/7500 and a ground
elevation of approximately 22.80~47.80 m, as shown in Figure 1.

Liaocheng City undergoes significant seasonal changes and has monsoon climate char-
acteristics, with a multi-year average precipitation of 555.9 mm. Of the annual precipitation,
60% is concentrated in the summer, when the city is prone to local flooding. The city’s
spatial and temporal distribution of precipitation is extremely uneven; from a temporal
point of view, precipitation is mainly concentrated in the flood season, in July and August.
From a spatial point of view, Dongchangfu District, Chiping District, and Gaotang County
receive more precipitation, while Yanggu County receives less.

Liaocheng City is one of the areas in Shandong Province that has suffered the most
frequent and heaviest floods in history. Its floods have the following characteristics: pe-
riodicity, continuity, suddenness, and seasonality. Generally, inter-annual summer and
autumn floods occur during the frequent-flood years and mega-flooding years, when there
is a concentration of heavy rainfall with summer and autumn flooding characteristics. In
recent years, Liaocheng City has been seriously affected by flooding. There have been
five major rain and flooding disasters since 1990 in 2010, 2013, 2015, 2016, and 2018. On
9–10 August 2010, there was moderate to heavy rainfall in Liaocheng City, with an average
precipitation of 145.4 mm in the city, causing serious urban flooding and waterlogging of
farmland due to the high intensity of precipitation. In July–August 2013, heavy rainfall
and torrential rains hit Liaocheng’s territory, causing serious waterlogging in cities and
farmland. A total of seven counties, except Xin County, were affected. In July–August
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2015, Liaocheng was hit by heavy rainfall and storms, and crops were severely affected.
In mid-July 2016, under the influence of heavy rainfall over a large area in the Wei and
Zhanghe River basins upstream of the Zhangwei River, the flooding of the Zhangwei River
in Liaocheng was severe, resulting in the flooding of a large number of trees and crops on
the river beaches. In 2018, heavy rainfall resulted in more severe waterlogging on urban
roads and some agricultural land, as well as damage to some bridges and ditches. During
2010–2018, heavy rainfall and flooding disasters caused 9,614,800 mu of crops to be affected,
17,221 damaged and collapsed houses, and a population of 3,496,000 people to be affected,
resulting in a direct economic loss of CNY 511.1 million [58].
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3. Results and Analysis
3.1. Empowerment Results

Through the combination of subjective and objective weighting, the weights of the
indicators under different return periods in Liaocheng City were calculated and are shown
in Tables 5–8.

Table 5. Weight in return periods of 10 years for flood risk assessment in Liaocheng City.

Target Layer

Criteria Layer Indicator Layer
Nature
IndicatorIndicator Weights Indicator

Weights

Entropy Weight CRITIC AHP Combination

Urban flood
disaster risk

Severity of
disaster-causing
factors

0.4934

Maximum 24 h
rainfall (mm) 0.1044 0.1226 0.2100 0.1439 Positive

Maximum 3-day
rainfall (mm) 0.0954 0.1392 0.2339 0.1662 Positive

Average annual
precipitation in
moderate rainfall (mm)

0.2276 0.1644 0.0899 0.1800 Positive

Average annual
precipitation of heavy
rainfall (mm)

0.1882 0.1729 0.0998 0.1738 Positive

Average annual
precipitation of
storms (mm)

0.1348 0.1510 0.1622 0.1767 Positive

Precipitation variability 0.1508 0.1368 0.0737 0.0814 Positive
Flood frequency 0.0988 0.1130 0.1305 0.0779 Positive
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Table 5. Cont.

Target Layer

Criteria Layer Indicator Layer
Nature
IndicatorIndicator Weights Indicator

Weights

Entropy Weight CRITIC AHP Combination

Exposure to
disaster-
pregnant
environment

0.3108

Entropy Weight CRITIC Combination

River network density
(km/km2)

0.1693 0.1925 0.1218 Positive

Average elevation (m) 0.2359 0.2154 0.1899 Negative
Average slope (%) 0.2214 0.2432 0.2013 Negative
Vegetation cover (%) 0.3734 0.3489 0.4869 Negative

Vulnerability of
disaster-bearing
body

0.1958

Population density
(person/km2)

0.2164 0.1471 0.2477 Positive

Road density
(km/km2)

0.1445 0.1300 0.1462 Positive

Economic density
(billion yuan/km2)

0.0740 0.0985 0.0567 Negative

Primary industry GDP
(billion yuan/km2)

0.1108 0.1906 0.1643 Negative

Secondary industry
GDP (billion
yuan/km2)

0.1703 0.1037 0.1374 Negative

Tertiary industry GDP
(billion yuan/km2)

0.0677 0.1113 0.0587 Negative

Rural population
(10,000 people) 0.1449 0.1178 0.1328 Positive

Density of medical
institutions
(institutions/km2)

0.0714 0.1011 0.0562 Negative

Table 6. Weight in return periods of 50 years for flood risk assessment in Liaocheng City.

Target Layer

Criteria Layer Indicator Layer
Nature
IndicatorIndicator Weights Indicator

Weights

Entropy Weight CRITIC AHP Combination

Urban flood
disaster risk

Severity of
disaster-causing
factors

0.5396

Maximum 24 h
rainfall (mm) 0.1058 0.1240 0.2050 0.1452 Positive

Maximum 3-day
rainfall (mm) 0.0955 0.1391 0.2518 0.1805 Positive

Average annual
precipitation in
moderate rainfall (mm)

0.2272 0.1640 0.0854 0.1716 Positive

Average annual
precipitation of heavy
rainfall (mm)

0.1878 0.1722 0.0875 0.1526 Positive

Average annual
precipitation of
storms (mm)

0.1345 0.1508 0.1170 0.1281 Positive

Precipitation variability 0.1505 0.1370 0.1363 0.1516 Positive
Flood frequency 0.0986 0.1130 0.1170 0.0704 Positive

Exposure to
disaster-
pregnant
environment

0.2970

Entropy Weight CRITIC Combination

River network density
(km/km2)

0.1693 0.1925 0.1218 Positive

Average elevation (m) 0.2359 0.2154 0.1899 Negative
Average slope (%) 0.2214 0.2432 0.2013 Negative
Vegetation cover (%) 0.3734 0.3489 0.4869 Negative
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Table 6. Cont.

Target Layer

Criteria Layer Indicator Layer
Nature
IndicatorIndicator Weights Indicator

Weights

Entropy Weight CRITIC AHP Combination

Vulnerability of
disaster-bearing
body

0.1634

Population density
(person/km2)

0.2164 0.1471 0.2477 Positive

Road density
(km/km2)

0.1445 0.1300 0.1462 Positive

Economic density
(billion yuan/km2)

0.0740 0.0985 0.0567 Negative

Primary industry GDP
(billion yuan/km2)

0.1108 0.1906 0.1643 Negative

Secondary industry
GDP (billion
yuan/km2)

0.1703 0.1037 0.1374 Negative

Tertiary industry GDP
(billion yuan/km2)

0.0677 0.1113 0.0587 Negative

Rural population
(10,000 people) 0.1449 0.1178 0.1328 Positive

Density of medical
institutions
(institutions/km2)

0.0714 0.1011 0.0562 Negative

Table 7. Weight in return periods of 100 years for flood risk assessment in Liaocheng City.

Target Layer

Criteria Layer Indicator Layer
Nature
IndicatorIndicator Weights Indicator

Weights

Entropy Weight CRITIC AHP Combination

Urban flood
disaster risk

Severity of
disaster-causing
factors

0.6250

Maximum 24 h
rainfall (mm) 0.1063 0.1244 0.2163 0.1567 Positive

Maximum 3-day
rainfall (mm) 0.0955 0.1390 0.2652 0.1929 Positive

Average annual
precipitation in
moderate rainfall (mm)

0.2271 0.1639 0.0780 0.1591 Positive

Average annual
precipitation of heavy
rainfall (mm)

0.1877 0.1720 0.0867 0.1534 Positive

Average annual
precipitation of
storms (mm)

0.1345 0.1507 0.1037 0.1152 Positive

Precipitation variability 0.1504 0.1370 0.1350 0.1525 Positive
Flood frequency 0.0985 0.1130 0.1151 0.0703 Positive

Exposure to
disaster-
pregnant
environment

0.2385

Entropy Weight CRITIC Combination

River network density
(km/km2)

0.1693 0.1925 0.1218 Positive

Average elevation (m) 0.2359 0.2154 0.1899 Negative
Average slope (%) 0.2214 0.2432 0.2013 Negative
Vegetation cover (%) 0.3734 0.3489 0.4869 Negative

Vulnerability of
disaster-bearing
body

0.1365

Population density
(person/km2)

0.2164 0.1471 0.2477 Positive

Road density
(km/km2)

0.1445 0.1300 0.1462 Positive

Economic density
(billion yuan/km2)

0.0740 0.0985 0.0567 Negative

Primary industry GDP
(billion yuan/km2)

0.1108 0.1906 0.1643 Negative

Secondary industry
GDP (billion
yuan/km2)

0.1703 0.1037 0.1374 Negative

Tertiary industry GDP
(billion yuan/km2)

0.0677 0.1113 0.0587 Negative

Rural population
(10,000 people) 0.1449 0.1178 0.1328 Positive

Density of medical
institutions
(institutions/km2)

0.0714 0.1011 0.0562 Negative
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Table 8. Weight in return periods of 200 years for flood risk assessment in Liaocheng City.

Target Layer

Criteria Layer Indicator Layer
Nature
IndicatorIndicator Weights Indicator

Weights

Entropy Weight CRITIC AHP Combination

Urban flood
disaster risk

Severity of
disaster-causing
factors

0.6483

Maximum 24 h
rainfall (mm) 0.1066 0.1246 0.2507 0.1919 Positive

Maximum 3-day
rainfall (mm) 0.0956 0.1389 0.3063 0.2344 Positive

Average annual
precipitation in
moderate rainfall (mm)

0.2270 0.1638 0.0628 0.1345 Positive

Average annual
precipitation of heavy
rainfall (mm)

0.1876 0.1718 0.0732 0.1359 Positive

Average annual
precipitation of
storms (mm)

0.1344 0.1507 0.0828 0.0966 Positive

Precipitation variability 0.1503 0.1370 0.1154 0.1369 Positive
Flood frequency 0.0985 0.1131 0.1088 0.0698 Positive

Exposure to
disaster-
pregnant
environment

0.2297

Entropy Weight CRITIC Combination

River network density
(km/km2)

0.1693 0.1925 0.1218 Positive

Average elevation (m) 0.2359 0.2154 0.1899 Negative
Average slope (%) 0.2214 0.2432 0.2013 Negative
Vegetation cover (%) 0.3734 0.3489 0.4869 Negative

Vulnerability of
disaster-bearing
body

0.1220

Population density
(person/km2)

0.2164 0.1471 0.2477 Positive

Road density
(km/km2)

0.1445 0.1300 0.1462 Positive

Economic density
(billion yuan/km2)

0.0740 0.0985 0.0567 Negative

Primary industry GDP
(billion yuan/km2)

0.1108 0.1906 0.1643 Negative

Secondary industry
GDP (billion
yuan/km2)

0.1703 0.1037 0.1374 Negative

Tertiary industry GDP
(billion yuan/km2)

0.0677 0.1113 0.0587 Negative

Rural population
(10,000 people) 0.1449 0.1178 0.1328 Positive

Density of medical
institutions
(institutions/km2)

0.0714 0.1011 0.0562 Negative

We used Equations (14) and (15) to calculate the risk, exposure, vulnerability, and
comprehensive risk of flooding in Liaocheng City. We also adopted the natural discontinuity
grading method. The risk, exposure, vulnerability, and comprehensive risk of flooding in
Liaocheng City were divided into five grades, and the grading results are shown in Table 9.

Table 9. Guideline layers and urban flood risk classification criteria.

Classification
Severity of
Disaster-Causing
Factors

Exposure of
Disaster-Prone
Environment

Vulnerability of
Disaster-Bearing Body

Comprehensive Urban
Flood Risk

Very low <0.4228 <0.3901 <0.3664 <0.4539
Low 0.4228–0.4840 0.3901–0.4728 0.3664–0.4948 0.4539–0.5002
Medium 0.4840–0.5452 0.4728–0.5632 0.4948–0.5298 0.5002–0.5510
High 0.5452–0.6273 0.5632–0.6821 0.5298–0.5984 0.5510–0.6219
Very high >0.6273 >0.6821 >0.5984 >0.6219

3.2. Hazard Assessment of Disaster-Causing Factors

Using the ARCGIS 10.0 inverse distance weighting method, the related impact indica-
tor information was interpolated and extracted, and the factors were spatially superimposed
to obtain a vector map of each evaluation factor. Combined with the grading criteria in
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Table 7, the risk distribution of flood disasters in different return periods in Liaocheng City
was derived. The area share of each grade is shown in Table 10.

Table 10. Area share of disaster-causing factors.

Return Periods Very Low Low Medium High Very High

10a 18.83% 34.53% 20.66% 19.28% 6.70%
50a 16.94% 34.31% 20.86% 20.14% 7.75%
100a 17.37% 34.68% 20.47% 19.40% 8.08%
200a 19.47% 34.40% 18.06% 18.66% 9.41%

The results of the hazard assessment of disaster-causing factors in Liaocheng City are
shown in Figure 2, with no obvious boundaries in the spatial distribution. Overall, the risk
is higher in the western and central parts and lower in the south and north. With the change
in return periods, the medium-to-very-high-risk area gradually moves southward in the
central part and gradually expands in the western part. Among them, the high-risk area
is mainly concentrated in Dongchangfu District, and its scope increases with the increase
in return period, expanding from 6.7% to 9.41%, indicating that the possibility of extreme
floods in this area is increasing. Medium-to-very-high-risk areas are mainly located in
Dongchangfu District, Chiping District, Dong’a County, Guanxian County, and Yanggu
County, where the severity of flooding is high due to the frequent and heavy rainfall.
Very-low-severity areas are mainly distributed in Shenxian County and Gaotang County,
which have low flooding severity due to their low precipitation variability and low rainfall.
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3.3. Exposure Assessment of Disaster-Prone Environment

The exposure of the disaster-prone environment reflects the hydrological and geo-
morphological environment of Liaocheng City. As shown in Figure 3, the distribution
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of flood exposure in Liaocheng City is scattered; the exposure is generally low, but the
flood exposure in the central part and part of the southwest is strong. The areas of very
high exposure are mainly concentrated in Dongchangfu District and Shenxian County,
accounting for 10.42% of the total area, which is closely related to the high density of the
river network, lower elevation, gentle terrain, and low vegetation cover in these areas. In
Liaocheng City, the very-low-exposure and low-exposure areas account for 21.64% and
31.41% of the total area, respectively, and are mainly distributed in the northern part of the
city, with Linqing City being the least exposed because of its relatively steep slope and high
vegetation cover.
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3.4. Vulnerability Assessment of the Disaster-Bearing Body

As shown in Figure 4, the spatial distribution trend of the disaster-bearing body’s
vulnerability level in Liaocheng City shows a gradual weakening from the southwest to
the northeast, and it is entirely in a state of high vulnerability. The very-high-vulnerability
areas are concentrated in Dongchangfu District, Shenxian County, Guanxian County, and
Linqing City, accounting for 57.17% of the total area. These areas are densely populated and
have a large number of rural populations and dense roads, as well as weak recovery and
self-construction capacity after damage. Very-low-vulnerability and low-vulnerability areas
account for 11.69% and 8.48% of the total area, respectively, located in Chiping District and
Dong’a County, which have low populations and road densities, high economic densities,
and high levels of secondary industry development.
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3.5. Comprehensive Risk Assessment of Urban Floods

Based on the results obtained by analyzing the severity of disaster-causing factors, the
exposure of the disaster-prone environment, and the vulnerability of the disaster-bearing
body, the comprehensive assessment model was used to carry out a weighted integrated
evaluation, and the final results were graded using the natural breakpoint method, i.e., very
low comprehensive risk, low comprehensive risk, medium comprehensive risk, high com-
prehensive risk, and very high comprehensive risk. The comprehensive risk distribution of
flood disasters in Liaocheng City was obtained, as shown in Table 11.

Table 11. Area share of comprehensive urban flood risk.

Return Periods Very Low Low Medium High Very High

10a 21.14% 35.12% 24.29% 15.27% 4.18%
50a 20.76% 34.80% 24.04% 15.20% 5.20%
100a 20.54% 36.57% 23.19% 13.41% 6.29%
200a 23.39% 34.03% 22.00% 13.42% 7.16%

As shown in Figure 5, the spatial distribution of the comprehensive risk of flooding
in Liaocheng City was characterized by high risk in the central and western parts and
relatively low risk in the southern and northern parts. Comprehensive risk was dominated
by medium and low risk, with medium-risk and low-risk areas being distributed in Linqing
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City, Chiping District, and Shenxian County. Very-low-risk areas were distributed in
Gaotang County.
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With the gradual increase in return periods, the overall spatial distribution of medium-
to-very-high-risk areas in risk zoning gradually shrinks, and the spatial distribution of very-
high-risk areas gradually moves south but maintains a stable distribution law. The high-risk
areas of Liaocheng City, in terms of comprehensive flood risk, are mainly distributed in
Guanxian County and tend to be concentrated with the increase in return periods. Very-
high-risk areas increase with the increase in the recurrence period, expanding from 4.18%
to 7.16%, which are concentrated in Dongchangfu District. Due to the frequent and heavy
rainfall in Dongchangfu District and Guanxian County, the precipitation variability was
high. This, coupled with the dense population and rural population, dense road network,
and rapid economic development, resulted in high flood severity and the high vulnerability
of the disaster-bearing bodies in Dongchangfu District and Guanxian County. At the same
time, Dongchangfu District has many rivers, a gentle terrain, and low vegetation cover,
resulting in a high level of exposure. Therefore, Dongchangfu District and Guanxian
County have a higher likelihood of flooding and are the key areas for future forecasting
and prediction as well as flood prevention in weather characterized by rainfall.
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4. Conclusions

This study took Liaocheng City as its research area on the basis of analyzing the
characteristics of spatial and temporal changes in precipitation and the causes of disaster
risk. We utilized the theory of disaster science and analyzed flood risk from three aspects:
disaster-causing factors, disaster-prone environments, and disaster-bearing bodies. Consid-
ering different return periods, we adopted the subjective–objective combination assignment
method for the risk of disaster-causing factors. For assessing the exposure to disaster-prone
environments and the vulnerability of affected populations, we utilized the CRITIC-entropy
weight objective empowerment method. Additionally, we employed the AHP subjective
empowerment method for the criterion layer in order to set up the risk evaluation index
system for Liaocheng City’s flood disaster and make use of GIS spatial analysis technology
to assess the flood disaster risk and risk area zoning. The results indicate the following:

(1) This regional flood risk assessment model based on a combination of subjective and
objective multi-weight methods fully considers the role of expert experience and ob-
jective data, makes up for the shortcomings of single-weighting and machine learning
models, and can simultaneously avoid the subjectivity of results and uncertainty of
parameters, thus obtaining more accurate decision-making results and evaluating
urban flood disaster risks more scientifically. This study represents important basic
work for disaster prevention and mitigation in plain cities and is of great significance
for improving the flood prevention capacity of urban areas, decreasing the risk level,
and promoting economic development.

(2) The spatial distribution of flood risk in Liaocheng City is characterized by a higher
severity in the western and central parts and a lower severity in the south and north.
With the change in return periods, the medium-to-very-high-risk area gradually moves
southward in the central part and gradually expands in the western part. Among
them, the high-risk area is concentrated in Dongchangfu District. The distribution
of flood exposure is scattered and generally at a low level, but flood exposure is
higher in the central and southwestern parts. The area of very high exposure is
mainly concentrated in Dongchangfu District and Shenxian County. The spatial
distribution trend of flood vulnerability shows a gradually weakening trend from the
southwest to the northeast, with high vulnerability overall. Very-high-vulnerability
areas are concentrated in Dongchangfu District, Shenxian County, Guanxian County,
and Linqing City.

(3) The spatial distribution of the comprehensive risk of flooding in Liaocheng City indi-
cates high risk in the central and western parts of the city and relatively low risk in the
south and north. Comprehensive risk was dominated by medium and low risk, with
medium-risk and low-risk areas mainly being distributed in Linqing City, Chiping
District, and Shenxian County. Very-low-risk areas are mainly distributed in Gaotang
County. With the gradual increase in return periods, the overall spatial distribution
of medium-to-very-high-risk areas in risk zoning gradually shrinks, and the spatial
distribution of very-high-risk areas gradually moves south but maintains a stable
distribution law. The high-risk areas of Liaocheng City, in terms of comprehensive
flood risk, are mainly distributed in Guanxian County and tend to be concentrated
with the increase in return periods. Very-high-risk areas increase with the increase
in the recurrence period, expanding from 4.18% to 7.16%, which are concentrated in
Dongchangfu District.

(4) The research results can provide decision support for scientific and efficient flood risk
management. In areas characterized by high flood risk in Liaocheng City, specific
measures such as increasing urban and rural green areas, improving flood control
standards for buildings, and/or expanding the defense scope of flood control projects,
as well as changing flood control zones based on urban economic development and
flood control capabilities, can be taken to continue improving the entire emergency
management system for urban flood disasters, enhancing the city’s control and early
warning capabilities, engineering defense capabilities, and resource guarantee ca-
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pabilities in response to flood disasters. They also provide ideas for improving the
flood emergency response capacity of similar plain cities. Risk assessment and the
zoning of flood disasters are important parts of implementing risk management. The
results of this study provide a scientific basis for disaster relief and mitigation. These
results could improve people’s awareness of flood risk prevention and may help flood
control and mitigation departments take effective measures in order to deal with flood
disasters; they may also provide ideas for improving the flood emergency response
capacity of similar plain cities.
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