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Abstract: Tie rods play a crucial role in civil engineering, particularly in controlling lateral thrusts in
arches and vaults, and enhancing the structural integrity of masonry buildings, both historic and con-
temporary. Accurately assessing the tensile axial forces in tie rods is challenging due to the limitations
of existing methodologies. These methodologies often rely on indirect measurements, computational
models, and optimization procedures, resulting in single-point solutions and neglecting both model-
ing and measurement uncertainties. This study introduces a novel Bayesian updating framework
to effectively address these limitations. The framework aims to accurately identify the structural
parameters influencing tie rod behavior and estimate uncertainties using natural frequencies as
references. A key innovation lies in the mathematical formulation of Bayesian updating, which is
founded upon the definition of computational models integrating uncertain updating parameters and
latent random variables derived from a rigorous sensitivity analysis aimed at quantifying the impact
of the updating parameters on the natural frequencies. Notably, the application of Bayesian updating
to the structural identification problem of ancient tie rods represents a significant advancement. The
framework provides a comprehensive description of the uncertainties associated with computational
models, offering valuable insights for practitioners and researchers alike. Moreover, the results of the
sensitivity analysis serve as a valuable tool for setting up inverse problems geared towards accurately
identifying tensile axial forces.

Keywords: axial force estimation; tie rods; global sensitivity analysis; Bayesian inference

1. Introduction

Axially loaded beam-like structures are widely used in civil engineering as tie rods
for arches and vaults to improve the stability of both ancient and/or modern masonry
buildings. These metallic elements, different in material, size, and shape are mainly used
to control the lateral thrusts at the base of masonry arches and vaults and to improve the
connection between lateral masonry walls. Tie rods have been used in masonry buildings
both at the construction stage and as repairing/strengthening intervention to improve the
seismic performance of the whole constructions [1–4].

The stability of buildings and local structural elements relies, among other protections,
on the use of metallic tie rods. Within this context, the magnitude of the axial tensile force
can provide important information. A change in time in the tensile force might be associated
with failures (i.e., steel relaxation, corrosion, anchorage penetrating the wall for an excessive
tension, break under earthquake loads [5,6]) causing a redistribution of the internal forces
among the structural elements. Furthermore, identifying changes in the axial force of tie
rods can provide information on the structural behavior of the whole construction. For this
reason, much focus has been placed by researchers on the identification of axial tensile
force in metallic ancient tie rods.

In addition to the tensile axial force, the main parameters characterizing the structural
behavior of existing metallic tie rods is characterized by transversal cross-section shape
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and dimensions, actual length (i.e., length of the tie beam including the anchorage lengths
in the side walls), bending stiffness, and boundary conditions used to describe the tie rod
insertion length into the lateral walls [6–9].

Since direct measurements of the unknowns can be challenging on tie rods in existing
constructions, many indirect methods based on in-situ non destructive tests have been
developed. These methods can be classified in static, mixed static/dynamic, and fully
dynamic methods [7]. Static methods for the axial force estimation are based on mea-
surements of displacements and/or strains and flexural displacements and/or curvatures
measured at a few sections of tie rods affected by concentrated static loads [10,11]. Mixed
methods consist of an analytical procedure based on static measurements of vertical dis-
placements caused by concentrated loads and dynamic measurements of the first vibration
frequency [12]. Fully dynamic methods are based on the identification of tensile axial
force and all the problem unknowns measuring the tie rods vibration frequencies and,
in a few cases, the associated vibration modes, via experimental modal analysis [2,13,14],
operational modal analysis [9,15], and acoustic measurements [16].

Fully dynamic methods are typically used in the literature since static and mixed
static/dynamic methods require small displacement measurements and significant load
application often challenging for the heights at which tie rods are placed, especially in
historic masonry structures. Using dynamic methods, the axial load and the other un-
knowns are identified by solving a non-linear inverse problem aimed at minimizing the
distance between the numerical and measured modal parameters. Analytical methods were
assessed in [17–19]. The problem was solved for a slender beam constrained by two sets of
elastic rotational end springs using one natural frequency and one flexural mode shape as
a target in [17,18]. These methods do not require the knowledge of the effective length of
the beam but only the bending stiffness and the mass density. The axial force as well as
the flexural stiffness of the end constraints are identified under the assumption of infinite
translational stiffness at the beam ends. The problem was solved for an Euler–Bernoulli
beam constrained at the end by both rotational and vertical springs accounting for bending
stiffness in [19]. The axial force and the four boundary stiffnesses are determined using
both vibration frequencies and corresponding vibration modes as reference data.

Minimization optimization functions were proposed in [2,7,13,20]. The axial force
identification procedure was assessed using as a reference structural system a simply
supported Euler–Bernoulli beam with a uniform section hinged at both ends with rotational
springs, or resting on a Winkler-type foundation over a length corresponding to the portion
of the tie rods constrained into the wall, subjected to constant axial force. The characteristics
equation of beam motion is used to estimate the approximate numerical solution of the
unknowns (i.e., tensile axial force and stiffnesses of boundaries), solving an iterative
optimization procedure aimed at minimizing a suitable error function representing the
distance between the measured and the model predicted modal parameters. In particular,
the first measured three modal frequencies of the tie rods are used to estimate the axial
tensile force, the bending stiffness of the section, and the stiffness of the rotational springs
in [2,20]. The axial load, the elastic Winkler bed characteristics, representing the contact
between stonework and the tie-rod, and the error function are estimated using as many
natural frequencies that can be identified from the measurements in [7,13].

The Finite Element (FE) model updating technique was described in [21–23]. Different
types of mathematical formulations were used to solve the inverse updating problem.
A traditional iterative procedure based on the manual tuning of the unknowns FE model
parameters (i.e., axial force and stiffness of the elastic springs) in order to match the first
two experimentally identified vibration frequencies and associated mode shapes is used
in [22]. A genetic algorithm procedure based on a fitness function fed by a simple FE model
is developed in [23]. The first four vibration modes and vibration frequencies are used
to update the FE model and to determine the axial force, the stiffnesses of the rotational
springs at the beam ends, the bending stiffness, and the effective length of the tie rod in [21].
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All these methods are used to estimate the axial force and the other problem unknowns
using beams with a uniform cross section, constant mass density, and elastic modulus as
a reference structural model. In practice, ancient metallic tie rods are often not charac-
terized by a uniform cross section, containing irregularities and/or discontinuities [24].
Furthermore, the mass density and the elastic properties of the ancient metal constituting
the ties may also vary along the actual length of ties for the different manufacturing and
not standardized procedures [25]. Moreover, all the above discussed methods are set in a
deterministic environment and do not account for the uncertainty on the physical and me-
chanical properties inherent to tie rods in existing buildings, especially the historical ancient
ones. Uncertainties are related to the effective length of the tie rods since the anchorages are
usually hidden inside the arches or vault imposts. Uncertainties are related to the boundary
conditions and, in particular, to the elastic stiffnesses of the springs (rotational and/or
elastic Winkler bed springs) used to reproduce the insertion length of the tie rods inside the
lateral walls. In all the methods assessed in the literature, these stiffnesses are assumed to
be symmetric. Uncertainties are obviously related to the mechanical properties of the ties
(i.e., elastic moduli, mass densities, and axial tensile force). A recent attempt to investigate
the influence of uncertain parameters on the tie rod’s axial load estimates by means of
vibration frequencies is carried out using the General Polynomial Chaos expansion method
in [6]. Artificial Neural Networks are used to develop a robust methodology for the tensile
axial force and the stiffnesses of the boundaries accounting for the irregular cross section
along the beam model and all the information given by the experiments in [26]. Recently,
the structural identification problem of ancient tie rods accounting for uncertainties is
solved using a finite dimensional model, finite numbers of random variables, and Monte
Carlo simulation in [27]. A suitable error function between the numerical natural frequen-
cies and the target experimental values is set up and minimized, changing the main features
of the assumed random models providing the tensile axial force probability estimate.

To overcome the above mentioned drawbacks, this paper proposes to identify the
random features of all the tie rods’ uncertain quantities using numerical structural analysis
and a Bayesian updating framework using dynamic data. Bayesian inference is a funda-
mental concept in probability theory, providing an efficient framework for updating beliefs
or making predictions around the unknown/uncertain parameters based on new mea-
surements, explicitly handling for modeling and measurement uncertainties. At its core,
Bayesian inference uses the well known Bayes’ theorem [28] to calculate the probability
over an hypothesis or a parameter space given observed data. The use of dynamic data to
update the initial hypotheses over the input parameter of a computational structural model
was firstly introduced in [29,30], becoming an actual research topic to solve the structural
inverse problems (i.e., numerical model updating) of different types of structure (i.e., steel
structures, masonry buildings, timber buildings, dams, wind turbines) [31–39].

In this paper, a Bayesian updating framework is used to solve the structural identi-
fication problem estimating the uncertainties associated with the computational model
input parameters of axially loaded beam-like structures using natural frequencies as a
reference. After discussing the mathematical setting used for the Bayesian updating and
the description of a suitable computational model, a global robust sensitivity analysis using
Sobol decomposition is carried out in order to estimate the influence of each computational
model input parameter on the natural frequencies. The obtained results are used to properly
select the updating parameters and then different cases are considered to assess the efficacy
of the proposed Bayesian procedure. It is demonstrated that the proposed approach is able
to provide the tensile axial force probability density function estimate.

2. Mathematical Setting for Bayesian Updating Framework Using Dynamic Data

Consider a structural system (e.g., beam, frame, building) whose dynamic modal
behavior can be modeled using a set of partial differential equations. The computational
model, M, is characterized by a set of known measurable quantities gathered in the vector
m and by a real valued random vector, ξ = {x, Θ} ∈ RP+N , consisting of a set of latent
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independent random variables, x = {x1, . . . , xP} ∈ RP, and an input random vector,
Θ = {θ1, . . . , θN} ∈ RN . The probabilistic model can be written as

M(m, ξ) = M̂(m, ξ) + em(ξ), (1)

where M(m, ξ) is the computational model output dynamic response or its transformation,
and M̂(m, ξ) is the deterministic model output dynamic response or its transformation,
em(ξ) is the total model error term. Further details about this mathematical formulation
can be found in [40–42].

Let us denote by D = {D1, . . . , Dm} ∈ RM some observations related to the dynamic
modal behavior of the system (i.e., natural frequencies). The observations typically differ
from the real process for some measurement errors. Thus, the probabilistic description can
be written as

D = M(m, ξ) + em, (2)

where em is the total measurement error term, modeled using a normal random variable
with zero mean and unit variance. Substituting Equation (1) into Equation (2), the following
description of the mathematical framework for the uncertainty quantification problem
is obtained:

D = M̂(m, ξ) + em(ξ) + em. (3)

In the Bayesian context, the probabilities of the unknown parameters to be updated
given knowledge of observations D ∈ RM are given by the joint PDF using Bayes’ theorem,

p(ξ|D) =
p(D|ξ)p(ξ)∫
p(D|ξ)p(ξ)dξ

, (4)

which are known as posterior distributions. The term p(ξ) denotes the prior probability
distribution of the unknown parameters, which quantifies the initial plausibility of the
initial hypotheses on the vector ξ. The term p(D|ξ) is the likelihood function and quantifies
the probability of the data conditional to the uncertain parameters resulting from the prob-
abilistic model assumed for the total error. Finally, the denominator makes the integration
of the posterior joint probability distribution over the parameter space equal to 1 [40].

Gathering the model and the measurement error terms em(ξ) and em in Equation (3) in
the total error term e and considering that the object of inference is the real valued random
vector Θ ∈ RN , the likelihood function can be modeled assuming a normally distributed
total error via marginalization as

p(D|Θ, x) =
∫

p(D|e, Θ, x)p(e|Θ, x)de, (5)

and the posterior distribution of the updating parameters Θ is given by

p(Θ|D) =
∫

p(Θ, x|D)dx

=

∫
p(Θ)p(x)p(D|Θ, x)dx∫ ∫
p(Θ)p(x)p(D|Θ, x)dxdΘ

= c−1 p(Θ)p(Θ, D)

, (6)

where c =
∫ ∫

p(Θ)p(x)p(D|Θ, x)dxdΘ is the normalizing constant. Further details about
this mathematical formulations can be found in [38]. The primary objective of using
latent random variables in this study is to expansively augment the parameter space,
thereby facilitating the tractable treatment of distributions that would otherwise be deemed
intractable. It is important to note that this purpose does not constitute their exclusive
utility. Latent random variables find application in diverse contexts, such as dimensionality
reduction. In the latter scenario, these latent random variables play a pivotal role in
capturing the underlying smaller-dimensional manifold.
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The determination of the likelihood function and the posterior distribution of the
updating parameters, Θ, is a crucial issue since a large number of numerical evaluations
of the deterministic computational model solution M̂(m, ξ) are required, making the
whole procedure computationally unfeasible when complicated computational models
are used, when a large space of input parameter ξ is considered and when a large space
of reference data, D, is used as a target for the updating procedure. The Markov Chain
Monte Carlo (MCMC) method [43,44] is one of the most widely used method for posterior
sampling. The term MCMC describes all procedures based on stationary chains of samples
to approximate the posterior parameter distributions. Metropolis Hastings (MH) is the most
popular MCMC method [43,45]. It is based on generating samples from a target posterior
probability distribution up to a constant factor in three main steps: (i) choose an initial
state from prior distributions; (ii) generate a candidate state by making a random walk
from the current state using a proposal distribution (e.g., a normal distribution centered
at the current state); (iii) calculate an acceptance probability ratio for the candidate state
and accept it or reject it as the current state of the chain. The algorithm is able to generate
a Markov Chain and after a burn-in period the accepted samples converge to the target
posterior distribution of the updating parameters, Θ. When latent random variables are
considered in the mathematical formulation of the probabilistic model in Equation (3), the
MCMC–MH method allows one to obtain samples from a posterior distribution defined on
an augmented space, p(ξ|D) = p(Θ, x)|D) ∝ p(Θ, x)p(D|Θ, x). The MCMC–MH method
is summarized in Algorithm 1.

Algorithm 1: Metropolis Hastings (MH) MCMC algorithm.

Data: Initiate the algorithm with a value Θ0

for Each t = 1 → N do
Draw Θ∗ from the proposal distribution density function
Draw x∗ from the proposal distribution density function
Estimate the computational model solution for M̂(m, Θ∗, x∗)
Compute the acceptance rate ρ(Θ∗, Θt)
Draw u from a uniform distribution u∼U (0, 1)
if u < ρ(Θ∗, Θt) then

Accept the state Θt+1 = Θ∗

else
Reject the state Θt+1 = Θt

3. Computational Model

The computational model, M̂, used for the structural identification problem of tie
rods, is illustrated in Figure 1. It consists of a uniform square cross-section Euler–Bernoulli
beam hinged at both sections with two rotational springs and affected by a constant axial
load, N. The rotational springs are used to describe the effect of the anchorage length
of tie rods in the lateral walls. In addition to the tensile axial load, the input parameters
governing the free transversal vibration problem in Figure 1 are the length, l, (i.e., distance
between the two lateral walls), the Young modulus, E, the mass density, ρ, the square
cross-section transversal dimension, a, of the tie rod, and the stiffness of the left and right
rotational springs, kl and kr. The length, l, is assumed to be a known measurable parameter,
while all the other parameters are assumed as uncertain.

It is worth noting that in all the existing literature research works about this topic,
the computational model used to reproduce the static and/or dynamic response of ancient
tie rods is marked by several simplifications, as deeply discussed in the Introduction
section. These include—but are not limited to—the use of a restricted number of unknown
parameters to be estimated and the assumption of symmetry in the stiffnesses of the
lateral rotational springs introduced to describe the unknown boundary conditions. In the
proposed paper, these limitations are overcome and non-symmetric boundary conditions
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are considered. Indeed, the computational model is distinguished by a number of governing
parameters greater than those typically used in the literature to address the same problem.

Figure 1. Scheme for axially loaded beam-like structure.

The FE numerical model used in this work is based on two nodes with two-dimensional
beam elements with two Degree of Freedom (DoF) at each node (i.e., deflection and rotation).
A total of 50 beam elements is used to discretize the structure and perform modal analyses.

4. Global Sensitivity Analysis

Sensitivity analysis is a process aimed at evaluating the contribution to the model
response of each computational input parameter [46]. The sensitivity analysis methods
can be distinguished into local and global methods depending on the selection of a proper
uncertain parameter space [46,47]. Local Sensitivity Analysis (LSA) is based in partial
derivatives or gradients, but these are dependent on the point of the parameter space for
which the model is evaluated. Global Sensitivity Analysis (GSA) is based on variance
decomposition of the output variance into a sum of the different components. Each
component is a measure of the sensitivity of the computational model output response to
variations of each input parameter taken alone or to variations of combinations of input
parameters [48,49]. Among different methods available for GSA, the Sobol decomposition
method is used in this paper [50,51]. Sobol’s method is based on decomposition of the
computational model output variance into a sum of variances of the input parameters in
increasing dimensionality. In particular, first-order Sobol indices allow one to estimate
the contribution of the variance of each input parameter taken alone to the overall model
output variance.

The GSA of the computational model output, M̂, in Figure 1 is evaluated considering
five output response Quantity of Interest (QoIs), i.e., fi,i = 1, . . . , 5, natural frequencies.
A set of six statistically independent uncertain computational model input parameters
(ξ j, j = 1, . . . , 6) are selected: Young modulus, E, mass density, ρ, transversal square
cross-section dimension, a, equivalent stiffness of left and right springs, kl and kr, and
tensile axial force, N. For all the uncertain computational model input parameters, zero
left truncated Gaussian distributions are selected, and their characteristics are summarized
in Table 1. Different values of axial force, N, distribution mean values are used in order
to account for the full range of possible axial loads in real ties in monumental buildings.
In particular, two different cases are distinguished: low-tensioned and high-tensioned
beams. Low-tensioned beams are characterized by axial load mean values equal to 0.1, 0.2,
and 0.3× the axial load capacity of the tie, estimated assuming a material yield strength
of Nk = fk × a2, fk = 220 MPa. High-tensioned beams are characterized by axial load mean
values equal to 0.4, 0.5, and 0.6× the axial load capacity of the tie. Elastic modulus, E, mass
density, ρ, and transversal square cross-section dimension, a, mean values are selected
using common literature case studies [6,26,27]. The mean values of the spring stiffnesses,
kl and kr, were determined through a preliminary parametric analysis, where the values
of kl and kr were varied between the extreme conditions of pinned (kl and kr equal to 0)
and fixed (kl and kr equal to 106 Nm) boundary conditions. Subsequently, an average
value of 4 × 105 Nm was chosen, accompanied by a cov that adequately covers conditions
near both pinned–pinned and fixed–fixed boundary conditions. Figure 2 illustrates the
results obtained from this analysis. Since different results are expected in the case of short
(i.e., length of tie rod lower than 5 m) and long (i.e., length of tie rod higher than 5 m) tie
rods, two different tie rod lengths are considered: 5 m and 10 m. In all the considered cases,
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the most significant variation of the natural frequencies due to variations of the spring
stiffnesses occur near the condition of pinned–pinned beams (i.e., kl and kr equal to zero),
with an initial rapid increase of the natural frequencies beyond which an almost constant
value is obtained, demonstrated by a progressive flattening of all the surfaces.

Table 1. Uncertain computational model input parameters and probability distributions for sensitiv-
ity analysis.

Parameter Mean Cov Distribution

E 2.0 × 1011 [Pa] 0.25 Truncated Gaussian
ρ 7500 [Kg/m3] 0.10 Truncated Gaussian
a 0.07 [m] 0.10 Truncated Gaussian
kl 400,000 [N × m] 0.30 Truncated Gaussian
kr 400,000 [N × m] 0.30 Truncated Gaussian

N-low-tensioned cases
0.1× Nk [N] 0.30 Truncated Gaussian
0.2× Nk [N] 0.30 Truncated Gaussian
0.3× Nk [N] 0.30 Truncated Gaussian

N-high-tensioned cases
0.4× Nk [N] 0.30 Truncated Gaussian
0.5× Nk [N] 0.30 Truncated Gaussian
0.6× Nk [N] 0.30 Truncated Gaussian

The first-order Sobol indices obtained for the considered cases of short low/high-
tensioned tie rods and long low/high-tensioned tie rods are reported in Figure 3. Different
results are obtained for each examined case. In particular, Young modulus, E, is the most
influential parameters on the natural frequencies for low- and high-tensioned short tie rods;
values of the first-order Sobol indices always higher than 40% are obtained for the natural
frequencies 2 to 5 of the low-tensioned short tie rod and for the natural frequencies 3 to 5
of the high-tensioned short tie rod. Young modulus, E, has a significant influence on the
higher-order natural frequencies of the low-tensioned and high-tensioned long tie rod with
values of the first-order Sobol indices in between 20% and 40% for the higher-order natural
frequencies and near zero values for the low-order natural frequencies. Mass density, ρ,
influences the first five natural frequencies of each considered case in a similar manner,
with values of the first-order Sobol indices always in the range of 10–30%. The square
cross-section transversal dimension, a, influences the first five natural frequencies in a
different manner, being one of the most influential parameters in the case of high-tensioned
short and long tie rods, with values of the first-order Sobol indices of around 20%. Axial
force, N, is the most influential parameter on the natural frequencies of the long tie rod;
values of the first-order Sobol indices always higher than 50% are obtained for the natural
frequencies of the high-tensioned long tie rods, with the exception of the fifth natural
frequency, and values of the first-order Sobol indices always higher than 40% are obtained
for the low-order natural frequencies of low-tensioned long tie rods. Axial force, N, has a
significant influence on the low-order natural frequencies of the low-tensioned and high-
tensioned short tie rods with values of the first-order Sobol indices in between 20% and
60% for the low-order natural frequencies and near zero values for the higher-order natural
frequencies. Finally, contrarily to what is expected, the stiffness of the left and right springs,
kl and kr, have a negligible influence on the natural frequencies in all the considered cases,
with values of the Sobol indices always near zero, with the exception of the first natural
frequency of the low-tensioned short tie rod.

The GSA results highlight that the structural identification problem associated with
ancient tie rods lacks a straightforward solution when considering natural frequencies as a
target for the updating, in either deterministic and/or probabilistic settings. This means
that the mathematical formulation of the inverse problem (i.e., choice of parameters to
be estimated) needs to be set up in a different manner, depending on the length of the
considered tie rod (short or long) and on the expected value of tensile axial force (low or
high). This result is of utmost importance for practitioners involved in the examination of
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vulnerability, structural integrity, and seismic performance of historical masonry buildings
equipped with ancient tie rods, providing practical recommendations to solve the issue.

Figure 2. Response surfaces of the first five natural frequencies varying the restraint spring stiffnesses,
kl and kr.
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Figure 3. Sensitivity analysis results (i.e., Sobol indices) for the different considered cases.

In the following, the mathematical setting of the Bayesian inverse problem is properly
set up, accounting for the GSA results.

The inverse problem for the probability estimates of the axial force, N, is well condi-
tioned when the low-order natural frequencies are considered as reference (i.e., first three
natural frequencies), especially in the case of short tie rods. When low-tensioned short tie
rods are considered, the significant influence of the Young modulus, E, on the first five
natural frequencies and the negligible influence of the axial force, N, on the higher-order
natural frequencies can lead to misleading probability estimates of the axial force, N. Fur-
thermore, the negligible influence of the spring stiffnesses, kl and kr, on the first five natural
frequencies suggests that they should be considered as latent random variables, x, in all the
considered cases, with the exception of the low-tensioned short tie rods. The uncertainties
about the Young modulus, E, the mass density, ρ, and the square cross-section transversal
dimension, a, may be estimated with a significant level of accuracy.
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5. Bayesian Solution with Dynamic Data

According to the results of the GSA, Bayesian updating is carried out to solve the
structural identification problem of the structural identification of ancient tie rods using
natural frequencies as targets to distinguish the four cases: low-tensioned short and long tie
rods and high-tensioned short and long tie rods. The reference dataset D = { f sim

1 , . . . , f sim
5 },

used as the target for the updating procedure, is obtained from the numerical model using
as actual true values of the input parameters those in Tables 2–5 for each considered case.
The measurements errors are applied by adding random errors into the simulated data.
The errors are simulated based on [52] as

f sim
i = f sim

i,0 (1 + εFi), (7)

where f sim
i,0 indicates the natural frequencies obtained from the computational model using

the initial parameter values (i.e., no noise natural frequencies), Fi are random numbers
sampled from a distribution with zero mean value and standard deviation equal to 1, and
ε represents the level of noise in the dynamic measurements. In the following, ε = 0.1 of
noise level is adopted. This choice reflects a typical range observed in experimental tests
and is consistent with a previous study [52].

Table 2. Comparison of actual and predicted parameters obtained for low-tensioned short tie rod.

Prior Distribution Posterior Distribution
Θj True Value Mean Value Cov Mean Value Cov

E [Pa] 1.80 × 1011 2.00 × 1011 0.30 1.867 × 1011 0.12
ρ [Kg/m3] 7500 7000 0.10 7232 0.06
a [m] 0.065 0.06 0.10 0.062 0.06
kl [N × m] 200,000 300,000 0.30 240,890 0.35
kr [N × m] 200,000 300,000 0.30 212,480 0.46
N [N] 50,000 80,000 0.30 43,699 0.48

Table 3. Comparison of actual and predicted parameters obtained for high-tensioned short tie rod.

Prior Distribution Posterior Distribution
Θj, xk True Value Mean Value Cov Mean Value Cov

E [Pa] 1.80 × 1011 2.00 × 1011 0.30 1.689 × 1011 0.14
ρ [Kg/m3] 7500 7000 0.10 7389 0.07
a [m] 0.065 0.06 0.10 0.066 0.06
kl [N × m] 200,000 300,000 0.30 - -
kr [N × m] 200,000 300,000 0.30 - -
N [N] 400,000 500,000 0.30 412,360 0.19

Table 4. Comparison of actual and predicted parameters obtained for low-tensioned long tie rod.

Prior Distribution Posterior Distribution
Θj, xk True Value Mean Value Cov Mean Value Cov

E [Pa] 1.80 × 1011 2.00 × 1011 0.30 1.735 × 1011 0.15
ρ [Kg/m3] 7500 7000 0.10 7255 0.09
a [m] 0.065 0.06 0.10 0.063 0.06
kl [N × m] 200,000 300,000 0.30 - -
kr [N × m] 200,000 300,000 0.30 - -
N [N] 50,000 80,000 0.30 52,408 0.41

The length, l, of the tie beams is considered as a known measurable quantity since the
effect of the anchorage length is considered in the different stiffnesses of the lateral springs.
Posterior distributions are obtained using the MCMC–MH Algorithm 1. Convergency
of MCMC was assessed by means of visual inspections of the trace plots showing the
sampled values of parameters over iterations. Stationary chains displaying a random
scatter around a central value without any apparent trend were ensured. Furthermore,
autocorrelation plots were obtained between each sample and its lagged versions. A
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rapid decay of autocorrelations was obtained, suggesting good mixing and convergence.
The Gelman–Rubin index was used, ensuring values close to 1, indicating convergence.
Convergency was obtained after 400,000 runs of MCMC–MH for the low-tensioned short
tie rods and after 450,000 runs of the MCMC–MH for all other cases.

Table 5. Comparison of actual and predicted parameters obtained for high-tensioned long tie rod.

Prior Distribution Posterior Distribution
Θj, xk True Value Mean Value Cov Mean Value Cov

E [Pa] 1.80 × 1011 2.00 × 1011 0.30 1.824 × 1011 0.13
ρ [Kg/m3] 7500 7000 0.10 7799 0.07
a [m] 0.065 0.06 0.10 0.066 0.06
kl [N × m] 200,000 300,000 0.30 - -
kr [N × m] 200,000 300,000 0.30 - -
N [N] 400,000 500,000 0.30 419,750 0.16

It is worth remembering that most of the existing literature dynamic approaches for
estimating the tensile axial force in ancient tie rods rely on a limited number of natural
frequencies. In contrast, the proposed approach allows for the use of a greater number of
natural frequencies as targets. This choice of natural frequencies as targets addresses the
practical challenges associated with dynamic identification experimental tests on structural
elements, particularly those situated at significant heights inside historic buildings where
the installation of multiple accelerometers is often logistically challenging. This is the
main reason for which mode shapes were not considered as targets, requiring the use of
several accelerometers to be located along the tie rod axis. Furthermore, the association
between natural frequencies and the vibration modes of tie rods is, in most cases, simple
and straightforward, without the risk of mode switching. The primary objective of the
proposed paper is to establish a robust mathematical framework capable of explicitly
addressing modeling and measurement uncertainties, taking into account the outcomes of
the global sensitivity analysis and the selection of natural frequencies as reference points.
In the mathematical formulation discussed in Section 2, the mathematical framework can
be easily adapted by appropriately selecting updating parameters and/or latent parameters
and explicitly considering measurement errors.

5.1. Low-Tensioned Short Tie Rod

Following the mathematical formulation of the Bayesian updating framework in
Section 2 and according to the results of the GSA in Section 4, for the low-tensioned short
tie rod six updating parameters are considered (i.e., ξ = Θ ∈ R6): Young modulus, E, mass
density, ρ, cross-section transversal dimension, a, left and right spring stiffness, kl and
kr, and axial tensile force, N. The effective length, l, of the tie is considered as a known
measurable quantity. Zero left truncated Gaussian distributions are assumed as prior
distributions of the uncertain parameters, whose mean and coefficient of variation, cov, are
reported in Table 2.

The results of the Bayesian updating framework (i.e., posterior distributions of the
updating parameters, Θj) are reported in Figure 4. It is worth noting that the updating
framework is able to modify the probability distributions of the updating parameters E, ρ,
and a, reducing the cov with respect to the prior distributions. The opposite behavior is
obtained for the two spring stiffnesses, kl and kr, and the tensile axial force, N, with a cov
of the posterior distributions greater than that of the prior distributions. These results were
expected considering the results of GSA in Figure 3. When low-tensioned short tie rods are
of interest, the most sensitive parameters on the QoIs are the Young modulus, E, the mass
density, ρ, and the transversal square cross-section dimension, a. The left and right spring
stiffnesses, kl and kr, Sobol indices assume near zero values in all cases, with the exception
of the first natural frequency, and the tensile axial force, N, Sobol indices assume values
different from zero only when the first two natural frequencies are considered. However,
it is worth observing that all the posterior distribution mean values, µΘup

j
, move towards
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the true values (i.e., actual values used to simulate the reference dataset, D), showing the
accuracy of the Bayesian updating framework to give useful information on the single-point
solution of the structural identification problem. In order to further validate the proposed
methodology, Figure 4g reports the comparison between the natural frequencies, f sim

i , used
as reference dataset D and the natural frequencies, fi, obtained from the computational
model driven by the posterior mean value of the updating parameters, µΘup

j
. A good

agreement between the reference natural frequencies and those predicted by the updated
numerical model can be observed with a percentage relative difference (i.e., 1 − f sim

i / fi)
always lower than 1%. Furthermore, Figure 4h shows the ratio between the posterior mean
value of the updated parameters, µΘup

j
, and the true value, Θtrue

j , of the computational

model input parameters used to obtain the reference dataset, D; a ratio equal to 1 indicates a
perfect match. Values of the posterior mean value, µΘup

j
, of approximately 1.05 times the true

value, Θtrue
j , are obtained for the Young modulus, E, and the equivalent stiffness of the two

lateral springs, kl and kr; values of the posterior mean, µΘup
j

, of approximately 0.95 times

the true value, Θtrue
j , are obtained for the mass density, ρ, and the cross-section transversal

dimension, a, value of posterior mean value, µΘup
j

, of approximately 0.87 times the true

value, Θtrue
j , is obtained for the tensile axial force, N. The obtained results indicate that

the computational model driven by the posterior mean value of the updating parameters,
Θj, provide a good representation of the structural system and that the tensile axial force
value estimation is accurate. Furthermore, the obtained results show the capability of the
Bayesian updating framework to be used for solving the structural identification problem
of low-tensioned short tie rods being able to give useful information about the probability
estimates of the most sensitive structural uncertain parameters (i.e., E, ρ, and a).

5.2. High-Tensioned Short Tie Rod

Following the mathematical formulation of the Bayesian updating framework in
Section 2 and according to the results of the GSA in Section 4, four updating parameters
are considered (i.e., Θ ∈ R4) in the case of high-tensioned short tie rods: Young modulus,
E, mass density, ρ, cross-section transversal dimension, a, and axial tensile force, N; two
latent random variables are considered, i.e., x ∈ R2): left and right spring stiffnesses, kl
and kr. Zero left truncated Gaussian distributions are assumed as prior distributions of the
updating parameters, whose mean and cov are reported in Table 3.

The results of the Bayesian updating framework (i.e., posterior distributions of the
updating parameters, Θj) are reported in Figure 5. It is worth noting that the updating
framework is able to modify the probability distributions of the updating parameters, Θj,
reducing the cov with respect to the cov of the prior distributions. Furthermore, the posterior
distribution mean values, µΘup

j
, of all the updating parameters move towards the true values

(i.e., the actual values used to simulate the reference dataset, D). In particular, Figure 5f
shows the ratio between the posterior mean value of the updated parameters, µΘup

j
, and

the true value, Θtrue
j , of the computational model input parameters used to obtain the

reference dataset, D. Values of the ratio in between 0.94 and 1.03 are obtained for all
the uncertain parameters, indicating an almost perfect match. It is worth noting that the
estimation of the tensile axial force, N, posterior mean value, Θup

j , is 1.03 times the true

value. Finally, Figure 5e reports the comparison between the natural frequencies, f sim
i , used

as the reference dataset, D, and the natural frequencies, fi, obtained from the computational
model driven by the posterior mean value of the updating parameters, µΘup

j
, and the mean

value of the left and right spring stiffnesses; differences always lower than 2% are obtained.
Differently from low-tensioned short tie rods, in this case Bayesian updating is able to
provide accurate information on both the single-point value of the updating parameters and
to reduce the uncertainty associated with the prior beliefs of all the uncertain parameters.
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Figure 4. Posterior PDF of the updated parameters: (a) Young modulus, E, (b) mass density, ρ, (c) cross
section transversal dimension, a, (d) stiffness of left spring, kl, (e) stiffness of right spring, kr, and (f) axial
load, N. Results comparison: (g) natural frequencies fi, i = 1, . . . , 5 obtained from the computational model
using the posterior mean value of the updated parameters, µΘup

j
, and natural frequencies used as reference;

(h) posterior mean value of the updated parameters, µΘup
j

, and true value, Θtrue
j .
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Figure 5. Posterior PDF of the updated parameters: (a) Young modulus, E, (b) mass density, ρ, (c) cross
section transversal dimension, a, (d) axial load, N. Results comparison: (e) natural frequencies fi, i
= 1, . . ., 5 obtained from the computational model using the posterior mean value of the updated
parameters, µΘup

j
, and natural frequencies used as reference; (f) posterior mean value of the updated

parameters, µΘup
j

, and true value, Θtrue
j .

5.3. Low-Tensioned Long Tie Rod

Following the discussion in Section 2 and according to the results of the GSA in Section 4,
the same mathematical setting of the Bayesian updating framework of the high-tensioned
short tie rod is considered (i.e., Θ = {E, ρ, a, N}, x = {kl, kr}). Zero left truncated Gaussian
distributions are used as prior distributions, whose characteristics are reported in Table 4.

The results of the Bayesian updating framework (i.e., posterior distributions of the
updating parameters, Θj) are reported in Figure 6. It is worth noting that the updating
framework is able to modify the probability distributions of the updating parameters,
reducing the cov with respect to the cov of the prior distributions, with the exception of
the tensile axial force, N. Moreover, the posterior distributions mean values, µΘup

j
, of

all the updating parameters move towards the true values and the values of the ratio
µΘup

j
/Θtrue

j are between 0.95 and 1.05, indicating an almost perfect match between the

two quantities (Figure 6f). Finally, also in this case, to further validate the proposed
methodology the posterior mean value of the updating parameters, µΘup

j
, is used as input

for the computational model and the obtained natural frequencies, fi. The first five natural
frequencies obtained by performing an eigenvalue analysis of this model are compared to
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the natural frequencies, f sim
i , used as the target in the updating procedure. This comparison

is shown in Figure 6e. An almost perfect match is observed, meaning that the updated
computational model is reliable.
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Figure 6. Posterior PDF of the updated parameters: (a) Young modulus, E, (b) mass density, ρ, (c) cross
section transversal dimension, a, (d) axial load, N. Results comparison: (e) natural frequencies fi, i
= 1, . . ., 5 obtained from the computational model using the posterior mean value of the updated
parameters, µΘup

j
, and natural frequencies used as reference; (f) posterior mean value of the updated

parameters, µΘup
j

, and true value, Θtrue
j .

5.4. High-Tensioned Long Tie Rod

Bayesian updating is carried out to solve the structural identification problem of high-
tensioned long tie rods using natural frequencies as a reference. Following the discussion in
Section 2 and according to the results of the GSA in Section 4, the same mathematical setting
of the Bayesian updating framework of the high-tensioned short tie rod and low-tensioned
long tie rod is considered (i.e., Θ = {E, ρ, a, N}, x = {kl , kr}). Zero left truncated Gaussian
distributions are used as prior distributions; the values of prior mean and cov are reported
in Table 5.

The results of the Bayesian updating framework (i.e., posterior distributions of the
updating parameters, Θj) are reported in Figure 7. Also in this case, the proposed updating
procedure is able to modify the probability distributions of the updating parameters,
reducing the cov with respect to the cov of the prior distributions. Furthermore, the posterior
distributions mean values, µΘup

j
, of all the updating parameters move towards the true

values and the ratio between the posterior mean value of the updated parameters, µΘup
j

,
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and the true value, Θtrue
j , of the computational model input parameters used to obtain the

reference dataset, D, are in between 1.00 and 1.05 for all the updating parameters, with
the exception of the tensile axial force, N, for which the ratio assumes a value equal to
0.83 (Figure 7f). Figure 7e shows the comparison between the natural frequencies, f sim

i
and the natural frequencies fi, i = 1, . . ., 5 obtained from the computational model using
the posterior mean value of the updated parameters, µΘup

j
, showing a relative difference

smaller than 0.8%.
Despite the existence of a difference between the true and the updated values of the

tensile axial force, N, the good agreement between the true and the updated mean values
of all the uncertain parameters, Θj, and the good match between the natural frequencies
used as the target for the updating and those obtained from the updated computational
models show that the proposed Bayesian framework is robust and accurate in giving useful
information on both single-point structural identification solutions and on probability
estimates of the uncertain parameters.
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Figure 7. Posterior PDF of the updated parameters: (a) Young modulus, E, (b) mass density, ρ, (c) cross
section transversal dimension, a, (d) axial load, N. Results comparison: (e) natural frequencies fi, i
= 1, . . ., 5 obtained from the computational model using the posterior mean value of the updated
parameters, µΘup

j
, and natural frequencies used as reference; (f) posterior mean value of the updated

parameters, µΘup
j

, and true value, Θtrue
j .
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6. Conclusions

In this paper, the Bayesian updating framework is mathematically formulated and
used to solve the structural identification problem of ancient tie rods using natural frequen-
cies as the target. Although this problem has received much attention in the literature,
all the proposed approaches do not consider uncertainties and they are able to provide
just a single-point solution using optimization functions that are often ill-posed, requiring
regularization procedures. To bridge this gap, Bayesian updating is proposed as a robust
methodology to obtain the solution of the structural identification problem of ancient tie
rods using natural frequencies as a reference.

In particular, a global robust sensitivity analysis was carried out by means of Sobol
variance decomposition and Sobol indices in order to properly select the updating parame-
ters and to properly set up the mathematical formulation of the Bayesian framework. Since
the sensitivity analysis indicated different behavior depending on beam length and axial
force magnitude, two different beam lengths were considered (i.e., short and long ties) and
two different levels of tension were selected (low- and high-tensioned ties). The global sen-
sitivity analysis reveals that not all computational model input parameters have the same
influence on natural frequencies. Additionally, the stiffness of lateral rotational springs
has a negligible impact on natural frequencies, except in cases of low-tensioned short tie
rods. This finding underscores the need for a distinct formulation of the inverse problem,
determining which parameters to estimate, depending on the tie rod’s length (short or
long) and the expected tensile axial force (low or high). The obtained results are of utmost
importance for practitioners interested in assessing the vulnerability, structural integrity,
and seismic performance of historical masonry buildings equipped with ancient tie rods,
offering practical recommendations for problem set up and resolution.

Second, five natural frequencies were used as targets in the updating framework for
each considered case. The obtained results demonstrated the effectiveness of the proposed
approach in accurately estimate the single-point solutions of the structural identification
problem, obtaining a reliable updated computational model. Furthermore, the proposed
procedure has been shown to be effective in providing probability estimates of the modeling
uncertainty involved in the problem. In particular, regarding the estimation of axial load—
crucial for assessing the integrity of both the rod and the entire structure it supports—it is
essential to note that the Bayesian approach enables the estimation of probability distribu-
tions by incorporating data while accounting for measurement and model uncertainties
through the definition of appropriate probabilistic models. This allows the reliable deter-
mination of the probability distribution of axial load by integrating information coming
from experimental data and computational model parameters. Additionally, it is note-
worthy that, in each scenario considered, it is feasible to obtain an estimate of the mean
value of the posterior distribution of axial load, which varies by a maximum of 0.15%
(i.e., low-tensioned tie rods) and a minimum of 0.03% (high-tensioned short tie rods).

Works are in progress in order to assess the effectiveness of the proposed procedure
to solve the structural identification problem of ancient tie rods using experimental noisy
modal data exploring different types of sampling methods to evaluate the posterior distri-
butions of all the uncertain parameters.
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