
Citation: Şanlıtürk, İ.H.; Kocabaş, H.

Precise Calculation of Inverse

Kinematics of the Center of Gravity

for Bipedal Walking Robots. Appl. Sci.

2024, 14, 3706. https://doi.org/

10.3390/app14093706

Academic Editor: Alessandro

Gasparetto

Received: 3 April 2024

Revised: 23 April 2024

Accepted: 24 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Precise Calculation of Inverse Kinematics of the Center
of Gravity for Bipedal Walking Robots
İsmail Hakkı Şanlıtürk * and Hikmet Kocabaş

Department of Mechanical Engineering, Faculty of Mechanical Engineering, Istanbul Technical University,
34485 İstanbul, Turkey; kocabash@itu.edu.tr
* Correspondence: sanliturk18@itu.edu.tr

Abstract: The walking of humanoid robots is dependent on the precise tracking of their center of
gravity and foot trajectories. Trajectory tracking is achieved by mobilizing their joints to achieve
the correct trajectory. Errors occur because of assumptions on tracking the center of gravity and the
foot trajectories. In this study, a numerical algorithm was developed that produces an exact and
single kinematic solution in which the center of gravity and foot trajectories can be tracked with the
desired precision. The effectiveness of this algorithm was examined with a dynamic simulation and
compared with a method given in the literature. The main highlight of this study, using the presented
algorithm, is that the robot could walk even if the position of its center of gravity was lower than its
hips, resulting in a tracking error that was smaller than that reported in the literature.

Keywords: bipedal robot; dynamic walking; open loop

1. Introduction

Humanoid robots have a similar joint structure to humans and are expected to perform
actions usually performed by them. Robots with human-like mobility that do not require
changes in work environments in the industry, space, service, and health sectors can
increase the quality of life of people. Humanoid robots have advanced enough for use in
industrial settings [1–3]. These robots mainly consist of a bottom part, which consists of
two legs connected to the pelvis that carry the trunk and is responsible for locomotion, and
an upper body, which is connected to two arms and contains a central computer, sensors,
and a power supply, to perform the tasks assigned to the robot. This study focuses on the
locomotion of the bottom part, consisting of two legs and a pelvis piece.

Humanoid robots move via gravity, contact forces, and torques applied to their
joints [4]. In the first step, a plan is made for gait and steps in the process of walking [5–7].
In this process, the trajectories of the center of gravity (CoG) of the robot and its feet are
obtained. When it is expected to walk based on its CoG, the inverted pendulum method is
used [8]. The cart-table model is used for walking based on foot positions [9]. In both meth-
ods, the zero-moment point (ZMP) is used as the point of contact between the fixed foot
and the floor [10]. Inverse kinematics methods are used to move the limbs to the desired
position in the workspace, whereas forward kinematics methods are used to move them in
the joint space [11]. In the second step, inverse kinematics calculations are performed so
that the robot can follow these trajectories. When the foot and pelvis positions are known,
joint angles can be calculated using the inverse kinematics method, either analytically or
numerically [12–17].

However, this does not guarantee the tracking of the CoG of the robot at the desired
precision level. The CoG is in the middle of the connection points of the two legs of the
robot or at a higher position [18–25]. The CoG is calculated before the robot starts its motion.
Throughout this motion, the difference between the positions of the pelvis and the CoG
is assumed to be fixed [9]. Another assumption is that the CoG of the robot is fixed in
reference to the supporting leg [26].

Appl. Sci. 2024, 14, 3706. https://doi.org/10.3390/app14093706 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093706
https://doi.org/10.3390/app14093706
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3691-320X
https://doi.org/10.3390/app14093706
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093706?type=check_update&version=2

Appl. Sci. 2024, 14, 3706 2 of 13

When the CoG is not calculated precisely, the deviations in the CoG caused by contact
forces prevent the locomotion of the robot [27]. The methods used in the literature to solve
this are listed in the following paragraph.

In a previous study, the feet of the robot were increased in size [28]. To increase the
accuracy of calculation, in addition to CoG and foot trajectories, analyses requiring the
hip position and trajectory and orientation trajectories were carried out [20,29]. When
the weight of the foot constitutes a higher proportion of the total weight of the robot, the
foot that is in motion has a greater influence on the locomotive dynamics of the robot. To
mitigate this effect, the method of modeling the moving foot as a pendulum was used.
Nevertheless, there were still errors in CoG tracking and the movements of the robot were
restricted due to the aforementioned assumptions [30].

Applications aim to ensure that the controller moves the robot within the desired
tolerances against these errors. The smallest achievable error was found to be 0.18 m with
the inverse dynamics control method [31] and 0.03–0.4 m with the non-linear optimization
control method [32].

In this study, for the precise tracking of the CoG, an iterative method of calculating
joint angles was developed, which can calculate the CoG at a precision of 0.001 m or lower,
resulting in a single solution. There is no need to select the optimum solution among
multiple; only the CoG and the trajectories of the feet are sufficient.

The novelty of this study is that the precision of the CoG calculation error can be
determined before the robot starts moving. Rather than analyzing and eliminating the
cause of errors in the CoG trajectory by looking at the trajectory resulting from the control
cycle, it would be better to examine the error that occurs according to the predetermined
error in establishing cause–effect relationships.

The rest of this paper is organized as follows. Section 2 gives information on the robot
used in this study. The kinematics and dynamics of the robot are explained in Sections 2.2
and 2.3, respectively. The calculation of the CoG and zero-moment point equations is
explained in Section 2.4. The main subject of the study, the algorithm, is explained in
Section 2.5 with equations and pseudo-code. Initial values and result trajectories are also
given. In Section 2.6, the simulation model and parameters of this study are presented. The
results of this study are discussed in Section 3, and its conclusions are given in Section 4.

2. Materials and Methods
2.1. Robot Structure

The robot reported in this paper is the numerical model of the ITU Biped bipedal
walking robot [33]. The rotational axes of 3 harmonic geared (Harmonic Drive, Frankfurt,
Germany) direct-current (DC) motors (Maxon, Sachseln, Switzerland) are placed at the
hip joint so that they intersect at a single point, while the rotational axes of 2 DC motors
(Maxon, Sachseln, Switzerland) connected to screw nuts (Rexroth, Istanbul, Türkiye) are
placed at the ankle joint so that they intersect at a single point. The joint types and positions
of the robot are shown in Figure 1.

In Figure 1a, OW is the inertial coordinate system, OB is the base coordinate system, x0
is the starting point for movement, y0 is the pelvis length, and z0 is the pelvis height of the
robot. The x axis is represented in red, and the y and z axes are represented in green and
blue, respectively. O0L is the hip point of the left leg, O6R is the foot coordinate system, and
θnR are the joint angles of the right leg. To increase readability, the hip point of the right
leg and the joint angles of the left leg are not shown in Figure 1. l1, l2, and l3 are the link
lengths of the robot. Values of the length parameters are given in Table 1.

Appl. Sci. 2024, 14, 3706 3 of 13Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 14

(a) (b)

Figure 1. Joint angles and basic dimensions of the robot: (a) joint and length parameters; (b) leg

indices and approximate CoGs.

In Figure 1a, 𝑂𝑊 is the inertial coordinate system, 𝑂𝐵 is the base coordinate system,

𝑥0 is the starting point for movement, 𝑦0 is the pelvis length, and 𝑧0 is the pelvis height

of the robot. The x axis is represented in red, and the y and z axes are represented in green

and blue, respectively. 𝑂0𝐿 is the hip point of the left leg, 𝑂6𝑅 is the foot coordinate sys-

tem, and 𝜃𝑛𝑅 are the joint angles of the right leg. To increase readability, the hip point of

the right leg and the joint angles of the left leg are not shown in Figure 1. 𝑙1, 𝑙2, and 𝑙3

are the link lengths of the robot. Values of the length parameters are given in Table 1.

The approximate CoGs of the legs are given in Figure 1b. Index R represents the right

leg, L is the left leg, and T is the torso. 𝑐𝐵 is the CoG of the robot. 𝑚𝑇 in Figure 1b is the

weight of the torso, and 𝑚𝑅 and 𝑚𝐿 are the total weights of the right and left legs, re-

spectively.

Table 1. Length parameters.

Parameter Symbol Value Unit

𝑥0 −0.14 m

𝑦0 0.13 m

𝑧0 −0.07 m

𝑙1 0.422 m

𝑙2 0.4 m

𝑙3 0.075 m

The CoGs with respect to the link coordinate system and the masses of the body parts

used in the simulation are given in Table 2.

Table 2. CoGs and masses of the body parts.

Part Name 𝒄𝒙 (m) 𝒄𝒚 (m) 𝒄𝒛 (m) 𝒎 (kg)

Torso 0.000006 0.020549 0.157635 2.387902

Hip roll body 0.000003 0.035534 0.0661 2.139072

Hip yaw body −0.009912 0.002801 −0.0228 0.71518

Figure 1. Joint angles and basic dimensions of the robot: (a) joint and length parameters; (b) leg
indices and approximate CoGs.

Table 1. Length parameters.

Parameter Symbol Value Unit

x0 −0.14 m
y0 0.13 m
z0 −0.07 m
l1 0.422 m
l2 0.4 m
l3 0.075 m

The approximate CoGs of the legs are given in Figure 1b. Index R represents the right
leg, L is the left leg, and T is the torso. cB is the CoG of the robot. mT in Figure 1b is the weight
of the torso, and mR and mL are the total weights of the right and left legs, respectively.

The CoGs with respect to the link coordinate system and the masses of the body parts
used in the simulation are given in Table 2.

Table 2. CoGs and masses of the body parts.

Part Name cx (m) cy (m) cz (m) m (kg)

Torso 0.000006 0.020549 0.157635 2.387902
Hip roll body 0.000003 0.035534 0.0661 2.139072
Hip yaw body −0.009912 0.002801 −0.0228 0.71518

Upper leg body 0.186095 −0.004384 −0.003505 3.804756
Lower leg body 0.180778 −0.007 0.000426 2.805996
Ankle roll body −0.000011 −0.001187 0.001606 0.022225

Foot 0.058582 0.000012 0.018663 1.584761

2.2. Robot Kinematics

The method developed in this study requires the separate calculation of the CoG of
the legs. Because each leg can be represented as a matrix structure, the Denavit–Hartenberg

Appl. Sci. 2024, 14, 3706 4 of 13

(DH) [34] method is used for kinematic calculations. The link transformations are presented
in Table 3.

Table 3. Link transformations according to the DH method.

Joint No. θ d a α

1 θ0 0 0 π/2
2 θ1 0 0 −π/2
3 θ2 0 l1 0
4 θ3 0 l2 0
5 θ4 0 0 π/2
6 θ5 0 l3 0

Equations (1)–(4) present the link transformation matrices for an inertial reference frame.

OB =


1 0 0 x0
0 1 0 0
0 0 1 0
0 0 0 1

, (1)

The transformation matrix of O0R according to OW is given in Equation (2). The calcu-
lation for the left foot is made by writing y0 in the second row and fourth column.

WO0R = OB


0 −1 0 0
1 0 0 −y0
0 0 1 z0
0 0 0 1

 (2)

The joint transformation matrix can be written with Equation (3).

n−1Tn =


cos θn −sin θncos αn sin θnsin αn rncos θn
sin θn cos θncos αn −cos θnsin αn rnsin θn

0 sin αn cos αn dn
0 0 0 1

 (3)

After these expressions, the position and orientation of the foot can be calculated based
on the 0th coordinate system as given in Equation (4).

0RT6R = 0RT1R
1RT2R

2RT3R
3RT4R

4RT5R
5RT6R =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (4)

where the left side of the equation is obtained by the placement of the values in the DH
matrix. Its right side includes the position and orientation values of the foot obtained in
the 0th coordinate system. When the reciprocal of the left side of the equation is taken, the
chain from the foot to the hip is obtained. If both sides are multiplied by the matrix 5RT−1

6R ,
the transformation matrix from the ankle to the hip can be obtained [35].

As 2 coordinate systems intersect at the ankle, and 3 intersect at the hip, the value of
the knee joint is obtained based on the matrix that is formed. According to this, inverse
kinematic calculations can be made using Equations (5)–(10).

θ4 =

√√√√√√
 1 − cos θ2

4
[(px+l3)

2+p2
y+p2

z−l2
1−l2

2]
(2l1l2)

 (5)

Appl. Sci. 2024, 14, 3706 5 of 13

θ5 = arctan

 −pz√[
(px + l3)

2 + p2
y

]
− arctan

(
l1sin θ4

l1cos θ4 + l2

)
(6)

θ6 = arctan
(

py

−px − l3

)
(7)

θ2 = arctan

−
√

1 −
(
axsin θ6 + aycos θ6

)2

axsin θ6 + aycos θ6

 (8)

θ1 = arctan
(−oxsin θ6 − oycos θ6

−nxsin θ6 − nycos θ6

)
(9)

θ3 = arctan
(

az

axcos θ6 − aysin θ6

)
− π − θ4 − θ5 (10)

The forward kinematics of the robot can be calculated using Equation (11).

WO0R.0RT6R (11)

This expression denotes the orientation and position matrix of the robot in an inertial
reference frame according to the joint angles used as inputs.

2.3. Robot Dynamics

The method developed in this study uses the reference CoG trajectory. Thus, the
dynamics of the robot are obtained using the linear inverted pendulum method. In the
3-dimensional linear inverted pendulum model (3DLIPM) shown in Figure 2, the desired
surface equation is reached by setting kx = 0 and ky = 0. As the height of the inverted
pendulum, zc is taken as a constant.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 14

𝜃4 = √

{

1 − cos 𝜃4
2

[(𝑝𝑥 + 𝑙3)
2 + 𝑝𝑦

2 + 𝑝𝑧
2 − 𝑙1

2 − 𝑙2
2]

(2𝑙1𝑙2) }

 (5)

𝜃5 = arctan

(

−𝑝𝑧

√[(𝑝𝑥 + 𝑙3)
2 + 𝑝𝑦

2]
)

 − arctan (
𝑙1 sin 𝜃4

𝑙1 cos 𝜃4 + 𝑙2
) (6)

𝜃6 = arctan (
𝑝𝑦

−𝑝𝑥 − 𝑙3
) (7)

𝜃2 = arctan

(

−√1 − (𝑎𝑥 sin 𝜃6 + 𝑎𝑦 cos 𝜃6)

2

𝑎𝑥 sin 𝜃6 + 𝑎𝑦 cos 𝜃6
)

 (8)

𝜃1 = arctan(
−𝑜𝑥 sin 𝜃6 − 𝑜𝑦 cos 𝜃6
−𝑛𝑥 sin 𝜃6 − 𝑛𝑦 cos 𝜃6

) (9)

𝜃3 = arctan(
𝑎𝑧

𝑎𝑥 cos 𝜃6 − 𝑎𝑦 sin 𝜃6
) − 𝜋 − 𝜃4 − 𝜃5 (10)

The forward kinematics of the robot can be calculated using Equation (11).

𝑂𝑊 0𝑅. 𝑇0𝑅
6𝑅 (11)

This expression denotes the orientation and position matrix of the robot in an inertial

reference frame according to the joint angles used as inputs.

2.3. Robot Dynamics

The method developed in this study uses the reference CoG trajectory. Thus, the dy-

namics of the robot are obtained using the linear inverted pendulum method. In the 3-

dimensional linear inverted pendulum model (3DLIPM) shown in Figure 2, the desired

surface equation is reached by setting 𝑘𝑥 = 0 and 𝑘𝑦 = 0. As the height of the inverted

pendulum, 𝑧𝑐 is taken as a constant.

Figure 2. Three-dimensional linear inverted pendulum model (3DLIPM). Figure 2. Three-dimensional linear inverted pendulum model (3DLIPM).

After making these arrangements, the differential equations that define the system
can be given with Equations (12) and (13).

..
x =

g
z

x (12)

..
y =

g
z

y (13)

Appl. Sci. 2024, 14, 3706 6 of 13

Step positions are set in a matrix p, as given in Equation (14). The trajectory of the
CoG is obtained as the output.

p =

sx0 sx1
sy0 sy1
sz0 sz1

. . .
sx(n−1) sxn
sy(n−1 syn

sz(n−1) szn

 (14)

Using Equations (12)–(14), for a step length of 0.3 m (sx), a step width of 0.065 m (sy),
and a CoG height of 0.45 m (zc), the trajectory of the CoG is found, as shown in Figure 3.
When the foot position is taken as a reference, the height of the hip of the robot in this case
is 0.826 m. The step height is 0.075 m (hs). The foot trajectories are continuous up to the
second derivation [36].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 14

After making these arrangements, the differential equations that define the system

can be given with Equations (12) and (13).

𝑥̈ =
𝑔

𝑧
𝑥 (12)

𝑦̈ =
𝑔

𝑧
𝑦 (13)

Step positions are set in a matrix 𝑝, as given in Equation (14). The trajectory of the

CoG is obtained as the output.

𝑝 = [

𝑠𝑥0 𝑠𝑥1
𝑠𝑦0 𝑠𝑦1
𝑠𝑧0 𝑠𝑧1

 …

𝑠𝑥(𝑛−1) 𝑠𝑥𝑛
𝑠𝑦(𝑛−1 𝑠𝑦𝑛
𝑠𝑧(𝑛−1) 𝑠𝑧𝑛

] (14)

Using Equations (12)–(14), for a step length of 0.3 m (𝑠𝑥), a step width of 0.065 m (𝑠𝑦),

and a CoG height of 0.45 m (𝑧𝑐), the trajectory of the CoG is found, as shown in Figure 3.

When the foot position is taken as a reference, the height of the hip of the robot in this case

is 0.826 m. The step height is 0.075 m (ℎ𝑠). The foot trajectories are continuous up to the

second derivation [36].

Figure 3. Trajectory of the CoG and fixed foot positions.

In Figure 3, the robot starts its movement by taking a step with its right leg. It walks

for a total of 6 steps and stops.

2.4. CoG and ZMP Calculations

The ITU Biped has a six-axis force–torque sensor at its ankle (ATI Mini85 F/T Trans-

ducer, ATI, Apex, NC, USA). ZMP is indirectly measured using the parameters shown in

Figure 4.

Because no torque is generated in parallel with the foot plane according to the defi-

nition of the ZMP [10], the position of the ZMP based on the reaction on the sensor created

by the force and moment at the ZMP is calculated using Equations (15) and (16).

Figure 4. Parameters used in ZMP calculations.

Figure 3. Trajectory of the CoG and fixed foot positions.

In Figure 3, the robot starts its movement by taking a step with its right leg. It walks
for a total of 6 steps and stops.

2.4. CoG and ZMP Calculations

The ITU Biped has a six-axis force–torque sensor at its ankle (ATI Mini85 F/T Trans-
ducer, ATI, Apex, NC, USA). ZMP is indirectly measured using the parameters shown in
Figure 4.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 14

After making these arrangements, the differential equations that define the system

can be given with Equations (12) and (13).

𝑥̈ =
𝑔

𝑧
𝑥 (12)

𝑦̈ =
𝑔

𝑧
𝑦 (13)

Step positions are set in a matrix 𝑝, as given in Equation (14). The trajectory of the

CoG is obtained as the output.

𝑝 = [

𝑠𝑥0 𝑠𝑥1
𝑠𝑦0 𝑠𝑦1
𝑠𝑧0 𝑠𝑧1

 …

𝑠𝑥(𝑛−1) 𝑠𝑥𝑛
𝑠𝑦(𝑛−1 𝑠𝑦𝑛
𝑠𝑧(𝑛−1) 𝑠𝑧𝑛

] (14)

Using Equations (12)–(14), for a step length of 0.3 m (𝑠𝑥), a step width of 0.065 m (𝑠𝑦),

and a CoG height of 0.45 m (𝑧𝑐), the trajectory of the CoG is found, as shown in Figure 3.

When the foot position is taken as a reference, the height of the hip of the robot in this case

is 0.826 m. The step height is 0.075 m (ℎ𝑠). The foot trajectories are continuous up to the

second derivation [36].

Figure 3. Trajectory of the CoG and fixed foot positions.

In Figure 3, the robot starts its movement by taking a step with its right leg. It walks

for a total of 6 steps and stops.

2.4. CoG and ZMP Calculations

The ITU Biped has a six-axis force–torque sensor at its ankle (ATI Mini85 F/T Trans-

ducer, ATI, Apex, NC, USA). ZMP is indirectly measured using the parameters shown in

Figure 4.

Because no torque is generated in parallel with the foot plane according to the defi-

nition of the ZMP [10], the position of the ZMP based on the reaction on the sensor created

by the force and moment at the ZMP is calculated using Equations (15) and (16).

Figure 4. Parameters used in ZMP calculations. Figure 4. Parameters used in ZMP calculations.

Because no torque is generated in parallel with the foot plane according to the defini-
tion of the ZMP [10], the position of the ZMP based on the reaction on the sensor created
by the force and moment at the ZMP is calculated using Equations (15) and (16).

pz =
My + l3Fz

Fx
(15)

py =
l3Fy − Mz

Fx
(16)

Appl. Sci. 2024, 14, 3706 7 of 13

Individual CoGs of the robot bodies are calculated with Equation (18). Before using
Equation (18), Equation (17) must be used for calculating positions of the bodies with
respect to the inertial coordinate system.

0Tn =
n−1

∏
n=0

nTn+1 (17)

cn = 0Tn


cx
cy
cz
1

 (18)

In the algorithm, the CoG of the robot is calculated using the CoGs given in Figure 1b
in Equation (19).

cB =
∑6

n=1(mncn)R + ∑6
n=1(mncn)L + mTcT

mR + mL + mT
(19)

2.5. Converging Center of Gravity Algorithm

For the precise calculation of the CoG, joint angles are first calculated using the current
positions. Using these angles, the CoG of the robot is calculated using Equation (19). The
vector from the current to the reference CoG is found using Equation (20).

(Gerror)n = cBref − (cBrobot)n−1 (20)

Equation (21) is utilized to calculate the unit vector of this vector.

(
Ĝerror

)
n =

(Gerror)n
|(Gerror)n|

(21)

Using Equation (21), the hip connected to the foot that is in contact with the floor is
moved to a new position by multiplying the unit vector by a certain coefficient β (0.001 in
this study). (

0O3

)
n
=

(
0O3

)
n−1

+ β.
(
Ĝerror

)
n (22)

The hip connected to the foot in motion is also moved accordingly. The joint angles
and the CoG of the robot are calculated again based on these new hip positions. This
process continues until the difference between the reference and current CoGs becomes
smaller than the desired value. In our study, the error margin is taken as 0.001 m. The
calculation is first made for the fixed foot. Afterward, the indices of the fixed and moving
feet are changed, the foot in motion is assumed to be fixed, and the hips are moved. In this
way, the masses and positions of all robot components are utilized.

The pseudo-code of the process is given in Algorithm 1.
In this method, the error between the reference and current CoGs is first calculated.
Figure 5 displays the graphical representation of the legs of the robot. The right leg is

shown in blue, and the left leg is shown in red. The CoG at the beginning of the trajectory
calculations is called the current CoG and is shown as a red circle. The reference CoG is
called the target CoG and is shown as a green circle.

The result of running the algorithm given in Algorithm 1 is shown as the blue track
in Figure 5. The walking trajectory is obtained by running the algorithm for all values on
the trajectory.

Appl. Sci. 2024, 14, 3706 8 of 13

Algorithm 1. Converging center of gravity algorithm (CCG)

1: fixed ⇐ 1
2: moving ⇐ 2
3: For each point in CoG_Traj
4: Gref ⇐ point (1)
5: pfeet ⇐ point (2)
6: Gerror
7: While |(Gerror)n|>ϵ

8: cB (Equation (19))
9: Gerror (Equation (20))
10: Ĝerror (Equation (21))
11:

(0O3fixed
)

n =
(0O3fixed

)
n−1 + β.

(
Ĝfixed

)
n (Equation (22))

12: (
0O3moving

)
n
=

(0O3fixed
)

n − (−1)moving2[0 y 0 0
]

13: θ1, θ2, θ3, θ4, θ5, θ6 (f or le f t and right legs) (Equations (5)–(10))
14: cB (Equation (19))
15: Gerror (Equation (20))
16: If |(Gerror)n|< ϵ

17: Save joint angles
18: Else
19: BO0R.0RT6R (Equation (11))
20: Continue cycle
21: End if
22: transitory ⇐ j
23: j ⇐ i
24: i ⇐ transitory
25: End while
26: End for

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 14

6: 𝐆𝐞𝐫𝐫𝐨𝐫

7: While |(𝐆𝐞𝐫𝐫𝐨𝐫)𝑛|>𝜖

8: 𝐜𝐁 (Equation (19))

9: 𝐆𝐞𝐫𝐫𝐨𝐫 (Equation (20))

10: 𝐆̂𝐞𝐫𝐫𝐨𝐫 (Equation (21))

11: (𝐎𝟑𝐟𝐢𝐱𝐞𝐝
𝟎)

𝑛
= (𝐎𝟑𝐟𝐢𝐱𝐞𝐝

𝟎)
𝑛−1

+ 𝛽. (𝐆̂𝐟𝐢𝐱𝐞𝐝)𝑛 (Equation (22))

12: (𝐎𝟑𝐦𝐨𝐯𝐢𝐧𝐠
𝟎)

𝑛
= (𝐎𝟑𝐟𝐢𝐱𝐞𝐝

𝟎)
𝑛
− (−1)𝑚𝑜𝑣𝑖𝑛𝑔2[0 𝑦0 0]

13: 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6 (𝑓𝑜𝑟 𝑙𝑒𝑓𝑡 𝑎𝑛𝑑 𝑟𝑖𝑔ℎ𝑡 𝑙𝑒𝑔𝑠) (Equations (5)–(10))

14: 𝐜𝐁 (Equation (19))

15: 𝐆𝐞𝐫𝐫𝐨𝐫 (Equation (20))

16: If |(𝐆𝐞𝐫𝐫𝐨𝐫)𝑛|< 𝜖

17: Save joint angles

18: Else

19: 𝑂𝐵 0𝑅. 𝑇0𝑅
6𝑅 (Equation (11))

20: Continue cycle

21: End if

22: transitory ⇐ j

23: j ⇐ i

24: i ⇐ transitory

25: End while

26: End for

In this method, the error between the reference and current CoGs is first calculated.

Figure 5 displays the graphical representation of the legs of the robot. The right leg

is shown in blue, and the left leg is shown in red. The CoG at the beginning of the trajec-

tory calculations is called the current CoG and is shown as a red circle. The reference CoG

is called the target CoG and is shown as a green circle.

Figure 5. Graphical presentation of CCG algorithm.

The result of running the algorithm given in Algorithm 1 is shown as the blue track

in Figure 5. The walking trajectory is obtained by running the algorithm for all values on

the trajectory.

Figure 5. Graphical presentation of CCG algorithm.

2.6. Simulation Model

A simulation model is used to avoid mechanical rigidity, gearbox backlash, and signal
delay issues and to obtain the effectiveness of the CCG algorithm. A dynamic model in
which the limb angles calculated using this algorithm are used as inputs is obtained as
in Figure 6 using MATLAB R2023b SimScape MultiBody [37]. The foot positions in the
gait of the robot are predetermined. To define contact with the floor, the “Spatial Contact
Force” [38] block of SimScape MultiBody that defines contact between spherical and planar
surfaces is used. A total of 4 contact spheres are added at the corners on both feet of the
robot with a radius of 0.01 m. The “Inertia Sensor” component in MATLAB Multibody [39]
is used to measure the actual CoG of the mechanism in the simulation. The parameters that
are used in this study are presented in Table 4.

Appl. Sci. 2024, 14, 3706 9 of 13

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 14

2.6. Simulation Model

A simulation model is used to avoid mechanical rigidity, gearbox backlash, and sig-

nal delay issues and to obtain the effectiveness of the CCG algorithm. A dynamic model

in which the limb angles calculated using this algorithm are used as inputs is obtained as

in Figure 6 using MATLAB R2023b SimScape MultiBody [37]. The foot positions in the

gait of the robot are predetermined. To define contact with the floor, the “Spatial Contact

Force” [38] block of SimScape MultiBody that defines contact between spherical and pla-

nar surfaces is used. A total of 4 contact spheres are added at the corners on both feet of

the robot with a radius of 0.01 m. The “Inertia Sensor” component in MATLAB Multibody

[39] is used to measure the actual CoG of the mechanism in the simulation. The parameters

that are used in this study are presented in Table 4.

Figure 6. Simulink model diagram.

The joint angles of the left and right legs are input to the model. The model applies

trajectories to the robot. ZMP and CoG are calculated in the model. Since the floor is flat

and the CoG height of the robot is constant in the simulation, only the x and y components

of the ZMP and CoG are plotted.

Table 4. Study parameters.

Parameter Value Unit Explanation

𝑠𝑥 0.3 m Step length

𝑠𝑦 0.065 m Distance between feet

ℎ𝑠 0.075 m Step height

𝑟𝑠𝑝ℎ𝑒𝑟𝑒 0.01 m Contact sphere radius

𝑘𝑐𝑜𝑛𝑡𝑎𝑐𝑡 6.00 × 104 N/m Contact rigidity

𝑏𝑐𝑜𝑛𝑡𝑎𝑐𝑡 6.00 × 103 Ns/m Contact dampening ratio

𝐺𝑝𝑟𝑒𝑐 0.001 m Precision of calculation

𝛽 0.001 Unit vector magnitude coefficient

3. Results

Two simulations that use the same walking parameters are run. The CCG algorithm

is used in the first simulation. Joint angles are calculated with the CCG algorithm for pre-

cise CoG tracking in each position in the trajectory. In the second simulation, the CoG is

calculated before the movement starts. The vector is assumed to be constant between the

pelvis and the CoG. The CCG algorithm is compared to the method given in [9]. Other

methods restrict the movement of the robot and require additional trajectories. Both sim-

ulations are run as an open loop. Neither a balancer nor a controller is used.

The timespan of the simulation is divided into 10 equal intervals, as shown in both

Figure 7a,b. A screenshot of the simulation is taken and overlaid on the previous moment

at the start of the intervals. The leftmost pose is the starting pose of the simulation in each

panel in Figure 7. The robot moves forward in the positive x direction, which is repre-

sented by the red arrow in Figure 7.

Figure 6. Simulink model diagram.

Table 4. Study parameters.

Parameter Value Unit Explanation

sx 0.3 m Step length
sy 0.065 m Distance between feet
hs 0.075 m Step height
rsphere 0.01 m Contact sphere radius
kcontact 6.00 × 104 N/m Contact rigidity
bcontact 6.00 × 103 Ns/m Contact dampening ratio
Gprec 0.001 m Precision of calculation
β 0.001 Unit vector magnitude coefficient

The joint angles of the left and right legs are input to the model. The model applies
trajectories to the robot. ZMP and CoG are calculated in the model. Since the floor is flat
and the CoG height of the robot is constant in the simulation, only the x and y components
of the ZMP and CoG are plotted.

3. Results

Two simulations that use the same walking parameters are run. The CCG algorithm
is used in the first simulation. Joint angles are calculated with the CCG algorithm for
precise CoG tracking in each position in the trajectory. In the second simulation, the CoG
is calculated before the movement starts. The vector is assumed to be constant between
the pelvis and the CoG. The CCG algorithm is compared to the method given in [9].
Other methods restrict the movement of the robot and require additional trajectories. Both
simulations are run as an open loop. Neither a balancer nor a controller is used.

The timespan of the simulation is divided into 10 equal intervals, as shown in both
Figure 7a,b. A screenshot of the simulation is taken and overlaid on the previous moment
at the start of the intervals. The leftmost pose is the starting pose of the simulation in each
panel in Figure 7. The robot moves forward in the positive x direction, which is represented
by the red arrow in Figure 7.

The poses of the robot with and without CCG are presented in Figure 7. As seen in (a),
the robot is able to follow the trajectory without falling when CCG is used. When CCG is
not used, as shown in (b), the robot is unable to preserve its stance and falls by losing its
balance after taking its fourth step. The fall of the robot in the fourth step can be seen as an
inverted robot pose in (b).

Figure 8 shows the reference ZMP and CoG trajectory, as well as a comparison of the
trajectories of the CoG obtained with and without CCG. While the result of the simulation
run with CCG is compatible with the reference CoG, the trajectory calculated without
CCG starts to deviate after the second step and results in the robot falling in the fourth
step. The starting points of motion are very close to each other. There is sliding in the feet
during motion as only four points contact the floor. This explains the errors observed in the
trajectories along the x and y axes.

Appl. Sci. 2024, 14, 3706 10 of 13Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 14

(a) (b)

Figure 7. Simulation steps: (a) the CCG, (b) constant pelvis to reference CoG.

The poses of the robot with and without CCG are presented in Figure 7. As seen in

(a), the robot is able to follow the trajectory without falling when CCG is used. When CCG

is not used, as shown in (b), the robot is unable to preserve its stance and falls by losing

its balance after taking its fourth step. The fall of the robot in the fourth step can be seen

as an inverted robot pose in (b).

Figure 8 shows the reference ZMP and CoG trajectory, as well as a comparison of the

trajectories of the CoG obtained with and without CCG. While the result of the simulation

run with CCG is compatible with the reference CoG, the trajectory calculated without

CCG starts to deviate after the second step and results in the robot falling in the fourth

step. The starting points of motion are very close to each other. There is sliding in the feet

during motion as only four points contact the floor. This explains the errors observed in

the trajectories along the x and y axes.

Figure 8. Calculated and simulated trajectories.

The calculation times of this method are also obtained. In a computer equipped with

Windows 10 Pro 22H2, Core i7 2700, 16 GB of memory, and 240 GB SSD hardware, run-

ning MATLAB R2023b, the calculation time for the first value on the trajectory is 0.001662

s, while it is 0.000414 s for the following calculations. This shows that it is possible to make

calculations 2415 times per second. Accordingly, the calculation method that is developed

here can calculate joint angles according to a given CoG and foot trajectories at the desired

level of precision in the real-time control of bipedal walking robots.

Figure 7. Simulation steps: (a) the CCG, (b) constant pelvis to reference CoG.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 14

(a) (b)

Figure 7. Simulation steps: (a) the CCG, (b) constant pelvis to reference CoG.

The poses of the robot with and without CCG are presented in Figure 7. As seen in

(a), the robot is able to follow the trajectory without falling when CCG is used. When CCG

is not used, as shown in (b), the robot is unable to preserve its stance and falls by losing

its balance after taking its fourth step. The fall of the robot in the fourth step can be seen

as an inverted robot pose in (b).

Figure 8 shows the reference ZMP and CoG trajectory, as well as a comparison of the

trajectories of the CoG obtained with and without CCG. While the result of the simulation

run with CCG is compatible with the reference CoG, the trajectory calculated without

CCG starts to deviate after the second step and results in the robot falling in the fourth

step. The starting points of motion are very close to each other. There is sliding in the feet

during motion as only four points contact the floor. This explains the errors observed in

the trajectories along the x and y axes.

Figure 8. Calculated and simulated trajectories.

The calculation times of this method are also obtained. In a computer equipped with

Windows 10 Pro 22H2, Core i7 2700, 16 GB of memory, and 240 GB SSD hardware, run-

ning MATLAB R2023b, the calculation time for the first value on the trajectory is 0.001662

s, while it is 0.000414 s for the following calculations. This shows that it is possible to make

calculations 2415 times per second. Accordingly, the calculation method that is developed

here can calculate joint angles according to a given CoG and foot trajectories at the desired

level of precision in the real-time control of bipedal walking robots.

Figure 8. Calculated and simulated trajectories.

The calculation times of this method are also obtained. In a computer equipped with
Windows 10 Pro 22H2, Core i7 2700, 16 GB of memory, and 240 GB SSD hardware, running
MATLAB R2023b, the calculation time for the first value on the trajectory is 0.001662 s,
while it is 0.000414 s for the following calculations. This shows that it is possible to make
calculations 2415 times per second. Accordingly, the calculation method that is developed
here can calculate joint angles according to a given CoG and foot trajectories at the desired
level of precision in the real-time control of bipedal walking robots.

The results of the simulation with and without CCG are given in Figures 9 and 10,
respectively.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 14

The results of the simulation with and without CCG are given in Figures 9 and 10,

respectively.

Figure 9. Result of simulation with CCG.

The ZMP values and CoG trajectory are in good agreement, as shown in Figure 9,

which presents the result of the simulation run with CCG. Due to the hysteresis in contact

forces, there are deviations in the ZMP values. However, because these values remain

within the support geometry, the robot does not fall and can complete its walk.

Figure 10. Result of simulation without CCG.

On the other hand, in the result of the simulation run without CCG in Figure 10, the

CoG and ZMP values are compatible during the first two steps but deviate afterwards,

and the trajectory showing the robot fall is seen in the fourth step as a result of the disrup-

tion of this compatibility in the third step.

In addition, CoG tracking error values of the CCG algorithm are illustrated in Figure

11.

Figure 9. Result of simulation with CCG.

Appl. Sci. 2024, 14, 3706 11 of 13

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 14

The results of the simulation with and without CCG are given in Figures 9 and 10,

respectively.

Figure 9. Result of simulation with CCG.

The ZMP values and CoG trajectory are in good agreement, as shown in Figure 9,

which presents the result of the simulation run with CCG. Due to the hysteresis in contact

forces, there are deviations in the ZMP values. However, because these values remain

within the support geometry, the robot does not fall and can complete its walk.

Figure 10. Result of simulation without CCG.

On the other hand, in the result of the simulation run without CCG in Figure 10, the

CoG and ZMP values are compatible during the first two steps but deviate afterwards,

and the trajectory showing the robot fall is seen in the fourth step as a result of the disrup-

tion of this compatibility in the third step.

In addition, CoG tracking error values of the CCG algorithm are illustrated in Figure

11.

Figure 10. Result of simulation without CCG.

The ZMP values and CoG trajectory are in good agreement, as shown in Figure 9,
which presents the result of the simulation run with CCG. Due to the hysteresis in contact
forces, there are deviations in the ZMP values. However, because these values remain
within the support geometry, the robot does not fall and can complete its walk.

On the other hand, in the result of the simulation run without CCG in Figure 10, the
CoG and ZMP values are compatible during the first two steps but deviate afterwards, and
the trajectory showing the robot fall is seen in the fourth step as a result of the disruption of
this compatibility in the third step.

In addition, CoG tracking error values of the CCG algorithm are illustrated in Figure 11.
Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 14

Figure 11. CoG tracking error values of CCG algorithm.

Figure 11 displays the errors between the calculated and simulated CoG values. The

greatest error value was 0.0559 m, the smallest error value was 9.6353 × 10−4 m, and the

average error value was 0.0238 m.

4. Conclusions

The variation in limb positions using the unit vector of the vector between the target

and reference centers of gravity, rather than joint angles, allows for the precise determi-

nation of the CoG. Using this method, the robot can walk on an even surface without

needing any feedback or control.

There is no need for the CoG of the robot to be higher than the hip level. Therefore,

there is no need to design the legs as very light components and the trunk as a heavy

component. Using the CCG algorithm, the robot can walk even if its CoG is lower than its

hips.

This method has advantages over those in the literature mentioned in this article. The

model developed in the study allowed for the tracking of the CoG trajectory with a 0.0238

m error in the numerical simulation. This value is lower than 0.18 in [31] and lower than

0.03–0.4 m in [32].

The CCG algorithm can be used with any position-controlled bipedal robot. The only

inputs required are the reference feet and CoG trajectories.

The CCG algorithm can also be used in situations where the CoG trajectory needs to

be regenerated precisely before the movement of the robot starts.

Author Contributions: Conceptualization, İ.H.Ş.; methodology, İ.H.Ş.; software, İ.H.Ş.; validation,

İ.H.Ş.; formal analysis, İ.H.Ş.; investigation, H.K.; resources, İ.H.Ş.; data curation, İ.H.Ş.; writing—

original draft preparation, İ.H.Ş.; writing—review and editing, H.K.; visualization, İ.H.Ş.; supervi-

sion, H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the

corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Figure 11. CoG tracking error values of CCG algorithm.

Figure 11 displays the errors between the calculated and simulated CoG values. The
greatest error value was 0.0559 m, the smallest error value was 9.6353 × 10−4 m, and the
average error value was 0.0238 m.

4. Conclusions

The variation in limb positions using the unit vector of the vector between the target
and reference centers of gravity, rather than joint angles, allows for the precise determina-
tion of the CoG. Using this method, the robot can walk on an even surface without needing
any feedback or control.

Appl. Sci. 2024, 14, 3706 12 of 13

There is no need for the CoG of the robot to be higher than the hip level. Therefore, there
is no need to design the legs as very light components and the trunk as a heavy component.
Using the CCG algorithm, the robot can walk even if its CoG is lower than its hips.

This method has advantages over those in the literature mentioned in this article.
The model developed in the study allowed for the tracking of the CoG trajectory with a
0.0238 m error in the numerical simulation. This value is lower than 0.18 in [31] and lower
than 0.03–0.4 m in [32].

The CCG algorithm can be used with any position-controlled bipedal robot. The only
inputs required are the reference feet and CoG trajectories.

The CCG algorithm can also be used in situations where the CoG trajectory needs to
be regenerated precisely before the movement of the robot starts.

Author Contributions: Conceptualization, İ.H.Ş.; methodology, İ.H.Ş.; software, İ.H.Ş.; validation,
İ.H.Ş.; formal analysis, İ.H.Ş.; investigation, H.K.; resources, İ.H.Ş.; data curation, İ.H.Ş.; writing—
original draft preparation, İ.H.Ş.; writing—review and editing, H.K.; visualization, İ.H.Ş.; supervision,
H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Optimus (Robot). Available online: https://en.wikipedia.org/wiki/Optimus_(robot) (accessed on 15 March 2024).
2. Agility Robotics. Available online: https://Agilityrobotics.Com/ (accessed on 15 March 2024).
3. Kaneko, K.; Kaminaga, H.; Sakaguchi, T.; Kajita, S.; Morisawa, M.; Kumagai, I.; Kanehiro, F. Humanoid Robot HRP-5P: An

Electrically Actuated Humanoid Robot with High-Power and Wide-Range Joints. IEEE Robot. Autom. Lett. 2019, 4, 1431–1438.
[CrossRef]

4. Sugihara, T.; Morisawa, M. A Survey: Dynamics of Humanoid Robots. Adv. Robot. 2020, 34, 1338–1352. [CrossRef]
5. Rokbani, N.; Cherif, A.; Alimi, A.M. Toward Intelligent Biped-Humanoids Gaits Generation. In Humanoid Robots; Choi, B., Ed.;

Intech: Rijeka, Croatia, 2009; pp. 259–272. [CrossRef]
6. Chevallereau, C.; Razavi, H.; Six, D.; Aoustin, Y.; Grizzle, J. Self-Synchronization and Self-Stabilization of 3D Bipedal Walking

Gaits. Robot. Auton. Syst. 2018, 100, 43–60. [CrossRef]
7. Yin, C.; Zhu, J.; Xu, H. Walking Gait Planning And Stability Control. In Humanoid Robots; Choi, B., Ed.; Intech: Rijeka, Croatia,

2009; pp. 297–332. [CrossRef]
8. Tang, Z.; Er, M.J. Humanoid 3D Gait Generation Based on Inverted Pendulum Model. In Proceedings of the 22nd IEEE

International Symposium on Intelligent Control, ISIC 2007. Part of IEEE Multi-conference on Systems and Control, Singapore,
1–3 October 2007; pp. 339–344. [CrossRef]

9. Kajita, S.; Kanehiro, F.; Kaneko, K.; Fujiwara, K.; Harada, K.; Yokoi, K.; Hirukawa, H. Biped Walking Pattern Generation by Using
Preview Control of Zero-Moment Point. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation,
Taipei, Taiwan, 14–19 September 2003; pp. 1620–1626. [CrossRef]

10. Vukobratovic, M.; Borovac, B. Zero-Moment Point—Thirty Five Years of Its Life. Int. J. Humanoid Robot. 2012, 1, 157–173.
[CrossRef]

11. Lavor, C.; Xambó-Descamps, S.; Zaplana, I. Robot Kinematics. In SpringerBriefs in Mathematics; Springer: Cham, Switzerland,
2018; pp. 75–100. [CrossRef]

12. Maalouf, N.; Elhajj, I.H.; Shammas, E.; Asmar, D. Biomimetic Energy-Based Humanoid Gait Design. J. Intell. Robot. Syst. 2020,
100, 203–221. [CrossRef]

13. Kobayashi, T.; Sekiyama, K.; Hasegawa, Y.; Aoyama, T.; Fukuda, T. Virtual-Dynamics-Based Reference Gait Speed Generator for
Limit-Cycle-Based Bipedal Gait. Robomech J. 2018, 5, 18. [CrossRef]

14. Alba, M.; Prada, J.C.G.; Meneses, J.; Rubio, H. Center of Percussion and Gait Design of Biped Robots. Mech. Mach. Theory 2010, 45,
1681–1693. [CrossRef]

15. Lim, I.S.; Kwon, O.; Park, J.H. Gait Optimization of Biped Robots Based on Human Motion Analysis. Robot. Auton. Syst. 2014, 62,
229–240. [CrossRef]

https://en.wikipedia.org/wiki/Optimus_(robot)
https://Agilityrobotics.Com/
https://doi.org/10.1109/LRA.2019.2896465
https://doi.org/10.1080/01691864.2020.1778524
https://doi.org/10.5772/6732
https://doi.org/10.1016/j.robot.2017.10.018
https://doi.org/10.5772/6735
https://doi.org/10.1109/ISIC.2007.4450908
https://doi.org/10.1109/ROBOT.2003.1241826
https://doi.org/10.1142/S0219843604000083
https://doi.org/10.1007/978-3-319-90665-2_4
https://doi.org/10.1007/s10846-020-01179-z
https://doi.org/10.1186/s40648-018-0115-9
https://doi.org/10.1016/j.mechmachtheory.2010.06.008
https://doi.org/10.1016/j.robot.2013.08.014

Appl. Sci. 2024, 14, 3706 13 of 13

16. Atmeh, G.; Subbarao, K. A Neuro-Dynamic Walking Engine for Humanoid Robots. Robot. Auton. Syst. 2018, 110, 124–138.
[CrossRef]

17. Hildebrandt, A.-C.; Ritt, K.; Wahrmann, D.; Wittmann, R.; Sygulla, F.; Seiwald, P.; Rixen, D.; Buschmann, T. Torso Height
Optimization for Bipedal Locomotion. Int. J. Adv. Robot. Syst. 2018, 15. [CrossRef]

18. Khomariah, N.E.; Pramadihanto, D.; Dewanto, R.S. FLoW Bipedal Robot: Walking Pattern Generation. In Proceedings of the
2015 International Electronics Symposium: Emerging Technology in Electronic and Information, IES 2015, Surabaya, Indonesia,
29–30 September 2015; pp. 73–78. [CrossRef]

19. Park, I.W.; Kim, J.Y.; Lee, J.; Oh, J.H. Online Free Walking Trajectory Generation for Biped Humanoid Robot KHR-3(HUBO).
In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006;
pp. 1231–1236. [CrossRef]

20. Mandava, R.K.; Vundavilli, P.R. Forward and Inverse Kinematic Based Full Body Gait Generation of Biped Robot. In Proceedings
of the International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016, Chennai, India, 3–5 March
2016; pp. 3301–3305. [CrossRef]

21. Yang, L.; Liu, Z.; Chen, Y. Bipedal Walking Pattern Generation and Control for Humanoid Robot with Bivariate Stability Margin
Optimization. Adv. Mech. Eng. 2018, 10, 2018. [CrossRef]

22. Olcay, T.; Özkurt, A. Design and Walking Pattern Generation of a Biped Robot. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 761–769.
[CrossRef]

23. Carpentier, J.; Tonneau, S.; Naveau, M.; Stasse, O.; Mansard, N. A Versatile and Efficient Pattern Generator for Generalized
Legged Locomotion. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016; pp. 3555–3561. [CrossRef]

24. Chae, H.-S. Development of the Modeling for Biped Robot Using Inverse Kinematics. WSEAS Trans. Syst. 2004, 3, 2788–2792.
25. Tevatia, G.; Schaal, S. Inverse Kinematics for Humanoid Robots. In Proceedings of the IEEE International Conference on Robotics

and Automation. Symposia Proceedings, San Francisco, CA, USA, 24–28 April 2000; pp. 294–299. [CrossRef]
26. Efrain, O.; Ponce, R.; Mansard, N.; Souères, P.; Ramos, O.E.; Soù, P. Whole-Body Motion Integrating the Capture Point in the

Operational Space Inverse Dynamics Control. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots,
Madrid, Spain, 18–20 November 2014; pp. 707–712. [CrossRef]

27. Shibata, M.; Natori, T. Impact Force Reduction for Biped Robot Based on Decoupling COG Control Scheme. In Proceedings of the
6th International Workshop on Advanced Motion Control. Proceedings (Cat. No.00TH8494), Nagoya, Japan, 30 March 2000–1
April 2000; pp. 612–617. [CrossRef]

28. Sugihara, T. Solvability-Unconcerned Inverse Kinematics by the Levenberg–Marquardt Method. IEEE Trans. Robot. 2011, 27,
984–991. [CrossRef]

29. Bajrami, X.; Dermaku, A.; Likaj, R.; Demaku, N.; Kikaj, A.; Maloku, S.; Kikaj, D. Trajectory Planning and Inverse Kinematics
Solver for Real Biped Robot with 10 DOF-s. IFAC-PapersOnLine 2016, 49, 88–93. [CrossRef]

30. Buschmann, T.; Lohmeier, S.; Bachmayer, M.; Ulbrich, H.; Pfeiffer, F. A Collocation Method for Real-Time Walking Pattern
Generation. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, PA, USA, 29 November
2007–1 December 2007; pp. 1–6. [CrossRef]

31. Nakanishi, J.; Mistry, M.; Schaal, S. Inverse Dynamics Control with Floating Base and Constraints. In Proceedings of the 2007
IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 1942–1947. [CrossRef]

32. Clever, D.; Hu, Y.; Mombaur, K. Humanoid Gait Generation in Complex Environments Based on Template Models and Optimality
Principles Learned from Human Beings. Int. J. Robot. Res. 2018, 37, 1184–1204. [CrossRef]

33. Bayraktaroğlu, Z.Y.; Acar, M.; Gerçek, A.; Tan, N.M. Design and Development of the I.T.U. Biped Robot. Gazi Univ. J. Sci. 2018, 31,
251–271.

34. Denavit, J.; Hartenberg, R.S. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. J. Appl. Mech. 1955, 22,
215–221. [CrossRef]

35. Ali, M.A.; Park, H.A.; Lee, C.S.G. Closed-Form Inverse Kinematic Joint Solution for Humanoid Robots. In Proceedings of the
IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010—Conference Proceedings, Taipei, Taiwan,
18–22 October 2010; pp. 704–709. [CrossRef]

36. Yapıcı, K.O. 14 Serbestlik Dereceli İki Ayaklı Bir Robotun Dinamik Yürüme Hareketinin Kontrolü. Master Thesis, ITU Science
and Technology Institute, İstanbul, Turkey, 2008.

37. Simscape Multibody. Available online: https://www.mathworks.com/products/simscape-multibody.html (accessed on 15
March 2024).

38. Spatial Contact Force. Available online: https://www.mathworks.com/help/sm/ref/Spatialcontactforce.html?SearchHighlight=
spatial%20contact&s_tid=srchtitle_support_results_1_spatial%20contact (accessed on 15 March 2024).

39. Inertia Sensor. Available online: https://www.mathworks.com/help/sm/ref/Inertiasensor.html?S_tid=srchtitle_site_search_1_
inertia%20sensor (accessed on 15 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/J.ROBOT.2018.09.003
https://doi.org/10.1177/1729881418804442
https://doi.org/10.1109/ELECSYM.2015.7380817
https://doi.org/10.1109/ROBOT.2006.1641877
https://doi.org/10.1109/ICEEOT.2016.7755317
https://doi.org/10.1177/1687814018800883
https://doi.org/10.3906/elk-1409-19
https://doi.org/10.1109/ICRA.2016.7487538
https://doi.org/10.1109/ROBOT.2000.844073
https://doi.org/10.1109/HUMANOIDS.2014.7041440
https://doi.org/10.1109/AMC.2000.862951
https://doi.org/10.1109/TRO.2011.2148230
https://doi.org/10.1016/J.IFACOL.2016.11.108
https://doi.org/10.1109/ICHR.2007.4813841
https://doi.org/10.1109/ROBOT.2007.363606
https://doi.org/10.1177/0278364918765620
https://doi.org/10.1115/1.4011045
https://doi.org/10.1109/IROS.2010.5649842
https://www.mathworks.com/products/simscape-multibody.html
https://www.mathworks.com/help/sm/ref/Spatialcontactforce.html?SearchHighlight=spatial%20contact&s_tid=srchtitle_support_results_1_spatial%20contact
https://www.mathworks.com/help/sm/ref/Spatialcontactforce.html?SearchHighlight=spatial%20contact&s_tid=srchtitle_support_results_1_spatial%20contact
https://www.mathworks.com/help/sm/ref/Inertiasensor.html?S_tid=srchtitle_site_search_1_inertia%20sensor
https://www.mathworks.com/help/sm/ref/Inertiasensor.html?S_tid=srchtitle_site_search_1_inertia%20sensor

	Introduction
	Materials and Methods
	Robot Structure
	Robot Kinematics
	Robot Dynamics
	CoG and ZMP Calculations
	Converging Center of Gravity Algorithm
	Simulation Model

	Results
	Conclusions
	References

