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Abstract: The uncertainty in the new power system has increased, leading to limitations in traditional
stability analysis methods. Therefore, considering the perspective of the three-dimensional static
security region (SSR), we propose a novel approach for system static stability analysis. To address the
slow training speed of traditional deep learning algorithms using batch gradient descent (BGD), we
introduce an improved stochastic–batch gradient descent (S-BGD) search method that combines the
advantages of stochastic gradient descent (SGD) in fast training. This method ensures both speed
and precision in parameter training. Moreover, to tackle the problem of getting trapped in local
optima and saddle points during parameter training, we draw inspiration from kinematic theory
and propose a gradient pile (GP) training method. By utilizing accumulated gradients as parameter
corrections, this method effectively avoids getting stuck in local optima and saddle points, thereby
enhancing precision. Finally, we apply the proposed methods to construct the static security region
for the IEEE-118 new power system using its data as samples, demonstrating the effectiveness of
our approach.

Keywords: static security region of power systems; wind power penetration rate; improved
stochastic–batch gradient pile descent; hyperplane

1. Introduction

With the large-scale integration of renewable energy sources, the intermittent and
fluctuating nature of their output has made power grid operation more complex and
variable. As a result, the construction of the static security region (SSR) has become
increasingly challenging [1]. Ensuring the static stability of power systems has become
an urgent problem to be addressed. Traditional point-by-point methods are no longer
sufficient to meet the construction demands of the SSR under the high penetration rate
of renewable energy [2,3]. Therefore, research on stability analysis methods suitable for
the current complex power systems holds significant practical importance [4]. In order to
more accurately and efficiently analyze the static stability of the system, Jarjis and others
proposed the method of power system static security region analysis in 1975 [5].

The static security region (SSR) in power systems is a collection of all possible opera-
tional points that maintain stability under given operating conditions. Each point within
this region represents a state of the power system where it can operate safely without
violating any electrical parameters, such as voltage, power, frequency, etc. States within
the SSR mean that the grid can stably meet load demands without being affected by ex-
ternal disturbances. The concept of the static security domain is crucial for the planning,
operation, and control of power systems, especially in scenarios where a high proportion
of new energy sources, such as wind and solar power, are integrated into the grid, making
the determination of the SSR more important and complex. It provides grid operators
with a visualization tool to monitor and assess the stability boundaries of the system, and
finding stable operating critical points quickly is the primary challenge in constructing the
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static security region [6]. In the literature [7], the method based on the Lagrange multi-
plier is proposed to trace the Security Region Boundary (SRB) to construct the SSR. In the
literature [8], the efficiency of constructing the SSR is improved by optimizing the search
model based on the properties of the power grid boundary. The literature [9] approximates
the SSR through the relationship between the spatial angles of the critical point’s space
static security domain mathematical model tangent vector and the maximum spatial angle
threshold. The literature [10] solves the security region using the Taylor series trajectory
sensitivity method. The literature [11] uses based least absolute shrinkage and selection op-
erator (Lasso) for optimal power flow calculation. All of the above studies aim to improve
the efficiency and accuracy of constructing the security domain, but they do not consider
the construction of the security domain under the scenario of new energy integration into
the system.

In addition, intelligent optimization algorithms are commonly utilized in power
system analysis. The gradient descent algorithm is a type of iterative optimization algorithm
that can be applied to solve linear or nonlinear problems. Depending on the different data
usage approaches, such as data size, time complexity, and algorithm accuracy, the gradient
descent algorithm can be categorized into the following distinct forms: (1) the batch
gradient descent (BGD) algorithm; (2) the stochastic gradient descent (SGD) algorithm; and
(3) the Mini-Batch Gradient Descent (MBGD) algorithm.

The literature [12] proposes the BGD algorithm, which computes the gradient of the
cost function using the entire dataset during each iteration. However, with the growth of
massive datasets and memory limitations, loading all the data at once becomes increasingly
impractical, leading to slow training processes. Addressing the low efficiency of gradient
descent in handling large-scale samples, the literature [13] introduces the SGD algorithm,
which calculates the gradient using only a single sample during each iteration to update the
parameters, eliminating computational redundancy. However, the process introduces more
noise, causing not every iteration to converge towards the global optimum and reducing
training accuracy.

To overcome the shortcomings of the two methods mentioned above, the literature [14]
presents the Mini-Batch Gradient Descent algorithm, which uses a fixed number of training
samples to form a small sample set during each parameter update. The learning rate of
the parameter is affected not only by the learning rate parameter η but also by the value of
the mini-batch size m. However, when the value of m is too large, the parameter update
becomes slower, and achieving the same accuracy requires a significantly increased cost.

To further accelerate the parameter update rate of the gradient descent algorithm and
escape from the attraction basin of local minima, the literature [15] proposes the Momentum
Learning Rate as a supplementary term in the parameter update formula of the gradient
descent algorithm. It accumulates the historical gradients throughout the parameter update
process to influence the current direction of gradient descent.

Furthermore, the literature [16] introduces a pipelined stochastic gradient descent
with Taylor expansion. The proposed method generates multiple model replicas to solve
the weight inconsistency problem and adopts a Taylor expansion-based gradient predic-
tion algorithm to mitigate the delayed gradient problem. The literature [17] designs a
projection sub-gradient method based on the Nesterov accelerated gradient algorithm,
which can achieve stable learning accuracy while maintaining convergence speed. The
literature [18] builds on the idea of variance reduction and designs the distributed im-
plementation algorithm Dis-SAGD, which employs an adaptive sampling strategy and
momentum acceleration to achieve near-linear acceleration in distributed clusters. Lastly,
the literature [19] utilizes mini-batch samples instead of all samples during the training pro-
cess and performs batch subtraction updates while computing average gradients, resulting
in the variance-reduced BSUG algorithm.

The batch gradient descent method targets the entire dataset and has the ability to
search for global optimal solutions, but it comes with a high computational cost and slow
training speed. On the other hand, the Mini-Batch Gradient Descent method divides the
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large dataset into several small subsets and computes the gradient only for a specific small
subset during each iteration. This effectively reduces the computational workload per
iteration and improves computational efficiency. The stochastic gradient descent method
treats each sample as a small subset, and both Mini-Batch Gradient Descent and stochastic
gradient descent methods can be considered as types of it. While the stochastic gradient
descent method efficiently searches for the optimal parameter region, it may fall short in
finding the global optimal solution.

Current research has delved deeply into improving the efficiency and accuracy of con-
structing safety domains, but there has been less consideration of the impact of large-scale
new energy integration and penetration rates on the boundaries of power system safety
domains. Addressing the shortcomings of fitting accuracy in stochastic gradient descent
and the insufficient training efficiency of batch gradient descent, this study utilizes the fast
training speed of stochastic gradient descent and the high fitting accuracy of batch gradient
descent to improve traditional gradient descent algorithms. We propose an improved
stochastic–batch gradient descent method and a gradient accumulation strategy, applying
them to the construction of the static safety domain in power systems incorporating new
energy. The method is used to track critical stable operating points within the safety do-
main, forming the SSR and conducting static stability analysis of the system. Through this
method, this paper aims to achieve the following contributions. First, it aims to enhance
the accuracy and efficiency of static safety domain analysis in new energy power systems.
Second, it aims to explore the characteristics of changes in the static safety domain bound-
aries of power systems under different wind power penetration rates. Finally, through case
study analysis, it aims to validate the practical utility of the proposed methods and provide
new insights for power system stability research.

2. Research on the Static Security Region (SSR) of Power Systems Based on New Energy

The static security region of a power system is defined as the collection of all stable
operating points. It approaches the problem from a domain perspective, describing the
region where the system can operate safely and stably as a whole. The relative relationship
between system operating points and the boundaries of the security region provides
information on safety margins and optimal control, enabling more efficient analysis of the
static stability of the power system. It is typically represented by a set of operating points
that satisfy the power flow equations and various security constraints of the power system.
Mathematically, the SSR can be represented as follows [20]:

ΩSSR =



f (x, y) = 0
Vmin

i ≤ Vi ≤ Vmax
i , ∀i ∈ N

Pmin
g,i ≤ Pg,i ≤ Pmax

g,i , ∀i ∈ Ng

Qmin
g,i ≤ Qg,i ≤ Qmax

g,i , ∀i ∈ Ng

−Pmax
l,i−j ≤ Pl,i−j ≤ Pmax

l,i−j, ∀i,j ∈ N

(1)

In the provided description, x represents the vector of system state variables. y
represents the vector of injected power at each node. f (x, y) = 0 denotes the system power
flow equations. N and Ng are the sets of system nodes and generator nodes, respectively.
Vmin

i and Vmax
i are the minimum and maximum allowable voltage magnitudes at each

node. Pmin
g,i and Pmax

g,i are the minimum and maximum active power output limits of the

generators. Qmin
g,i and Qmax

g,i are the minimum and maximum reactive power output limits
of the generators. −Pmax

l,i−j and Pmax
l,i−j represent the active power limits in the forward and

reverse directions, respectively, of transmission lines i − j.
Considering the integration of new energy sources and deriving an analytical ex-

pression for the system’s static security region based on static power flow calculations,
the equivalent schematic diagram of wind farm integration into the grid is illustrated
in Figure 1.
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Figure 1. The equivalent schematic diagram of wind farm integration into the grid.

In the diagram,
.
E represents the voltage at the wind power access point in the sys-

tem,
·

Vpcc represents the voltage at the wind farm grid connection point, Zs = Rs + jXs
represents the equivalent impedance of the system, Zl = Rl + jXl represents the equivalent
impedance of the transmission line between the wind farm grid connection point and the
system equilibrium point, Pw + jQw represents the apparent power of the wind farm, and

.
I

represents the injected current from the wind farm. The relationship between wind farm
active power output and voltage curve is derived as follows:

·
Vpcc =

.
E + (Rs + jXs)

.
I (2)

For the given load on the busbar, Pw + jQw,
.
I = (Pw−jQw)

·
V
∗
pcc

.

The apparent power of the wind farm is given by

Pw + jQw =
·

Vpcc
V∗

pcc−
.
E

Rs−jXs

=
(
Vpcc cos θ + jVpcc sin θ

)(Vpcc cos θ−jVpcc sin θ−E
Rs−jXs

) (3)

In Equation (3) { .
E = E∠0◦
·

Vpcc = Vpcc∠θ
(4)

 Pw =
VpccE(Xs sin θ−Rs cos θ)+V2

pccRs

R2
s+X2

s

Qw =
−VpccE(Xs cos θ+Rs sin θ)+V2

pccXs

R2
s+X2

s

(5)

Simplifying Equation (3), we obtain(
Pw +

V2
pccRs

R2
s + X2

s

)2

+

(
Q +

V2
pccXs

R2
s + X2

s

)2

=
V2

pccE2

R2
s + X2

s
(6)

Organizing Equation (6), we obtain(
V2

pcc

)2
+
[
2PwRs + 2QXs − E2

]
V2

pcc +
(

R2
s + X2

s

)(
P2

w + Q2
)
= 0 (7)
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Solving for P, Q, and V in Equation (7), we obtain the expression for the static security
domain as follows:

P = − RsV2
pcc∓

√
−Q2(R2

s+X2
s )

2
+(R2

s+X2
s )(U2

pcc−2QXs)V2
pcc−X2

s V4
pcc

R2
s+X2

s

Q = −XsV2
pcc±

√
−P2(R2

s+X2
s )

2
+(R2

s+X2
s )(V2

pcc−2PRs)V2
pcc−R2

s V4
pcc

R2
s+X2

s

V =

√
−(PRs + QXs) +

V2
pcc
2 ±

√
V4

pcc
4 − (PRs − QXs)

2 − V2
pcc(PRs + QXs)

(8)

The assignment of values in Equation (8) should satisfy the following two con-
straint conditions.

(1) Equality constraint condition
The expression f (x, y) = 0 represents the equality constraint, ensuring power balance

between supply and demand, where N denotes the total number of system nodes and G
denotes the number of generator nodes, and it can be represented as follows:

Pi − Vi
N
∑

j=1
Vj
(
Gij cos θij + Bij sin θij

)
= 0

Qi − Vi
N
∑

j=1
Vj
(
Gij sin θij − Bij cos θij

)
= 0

(9)

In Expression (9), x represents the system’s state variables, y denotes the injected
power at nodes, and Pi and Qi represent the active and reactive power injection at node i,
respectively. Gij and Bij are the real and imaginary parts of the admittance of branch ij, and
θij is the phase angle difference between the two terminal nodes of branch ij.

(2) Inequality constraints
When the system experiences voltage fluctuations caused by disturbances, the voltage

at the grid connection point is maintained by dynamically adjusting the reactive power
sources within the wind farm. The introduced constraint for the voltage deviation at the
wind farm connection point is as follows:

Vref
PCC − Verr

PCC ≤ VPCC ≤ Vref
PCC + Verr

PCC (10)

where VPCC represents the actual voltage at the wind farm connection point; Vref
PCC de-

notes the commanded voltage at the connection point; and Verr
PCC signifies the permissible

control error.
The reactive regulation capacity constraint of wind turbines is as follows:

[Qgimin
, Qgimax

] =

{
[0, Qgimax

] Vref
pcc > Vpcc + Vdead

pcc
[Qgimin

, 0] Vref
pcc < Vpcc − Vdead

pcc
(11)

The symbol Udead
pcc represents the dead band for PCC bus voltage control.

The inequality constraints for the wind farm also include voltage magnitude con-
straints for each node.

Vmin
i ≤ Vi ≤ Vmax

i , ∀i ∈ N (12)

The symbols Vmin
i and Vmax

i represent the minimum and maximum values of the node
voltage magnitude, respectively.

The active power constraint for the branch is given by

−Pmax
ij ≤ Pij ≤ Pmax

ij , ∀i,j ∈ B (13)

−Pmin
ij and Pmax

ij are the positive and negative active output limits of branch ij, respectively.
The reactive power constraint for branches is as follows:
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Let
∣∣yij
∣∣ = ∣∣Gij + jBij

∣∣, where
(
Gij + jBij

)
is the (i,j)-th element of the nodal admittance

matrix. Therefore

·
Iij =

(
Gij + jBij

)( ·
Vi −

·
Vj

)
=
(
Gij + jBij

)(
Viejθi − Vje

jθj
)

= −yije−j(90◦−β)Vie
jθj
(

ejθij − Vj/Vi

)
= −yijVie

−j(θj+β−90◦)Vie
jθj
(
cos θij + j sin θij − Vj/Vi

)
(14)

Assuming Vj/Vi = 1; θij is small; therefore,cos θij ≈ 1 and sin θij ≈ θij. Equation (14)
can be written as follows:

·
Iij ≈ −yijVie

−j(θj+β−90◦)(jθij
)

(15)

Taking the modulus of both sides in Equation (15), we obtain∣∣∣∣ ·
Iij

∣∣∣∣ = yijV
∣∣θij
∣∣ (16)

The constraint expressed by the voltage phase difference at both ends of branch ij can
be obtained from the current constraint, namely

−θmax
ij ≤ θij ≤ θmax

ij , ∀i,j ∈ B (17)

θmax
ij =

Imax
ij

yijVmax
i

(18)

In conclusion, the reactive power flow constraint is as follows:

−Qmax
ij ≤ Qij ≤ Qmax

ij , ∀i,j ∈ B (19)

The static security domain obtained in Equation (8) and its constrained conditions,
(9) to (19), requires an optimization algorithm for global parameter identification. In
this paper, we employ the gradient descent algorithm, which offers fast computational
speed and excellent global optimization capability for addressing large-scale mathematical
optimization search problems, as detailed in Sections 2 and 3.

The equation for the safety domain hyperplane can be expressed in the following form:

n

∑
i=1

aixi = a1x1 + a2x2 + . . . + anxn = y (20)

In Equation (20), ai, i = 1, 2, . . . , n represents the coefficients of the hyperplane to
be determined, y denotes the dimension of the system, and y is the observed variable
(usually 1).

For the m critical points found during the search
(
xj1, xj2, . . . , xjn

)
, j = 1, 2, . . . , m, and

their errors can be represented as follows:

Y − Xa = ε (21)

In Equation (21) 

Y = [y1, y2, . . . , ym]
T

X =


x11 x12 . . . x1n
x21 x22 · · · x2n
...

...
...

xm1 xm2 · · · xmn


α = [α1, α2, · · · , αν]

T

ε = [ε1, ε2, · · · , εm]
T

(22)
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The error vector ε should satisfy Equation (23)

∥ε∥2 = (Y − Xa)T(Y − Xa) → min (23)

Taking the partial derivative with respect to α to ∥ε∥2, we have

∂∥ε∥2

∂α =
∂(YTY−2YT Xα+αT XT Xα)

∂α
= −2YTX + 2αTXTX = 0

(24)

The least squares estimate for parameter α can be solved as follows:

αLS =
(

XTX
)−1

XTY (25)

In order to evaluate the accuracy of the approximation, it is necessary to calculate the
fitting error for each critical point on the hyperplane. The fitting error errj, as shown in the
equation above, can be calculated using the following formula:

∂∥ε∥2

∂α =
∂(YTY−2YT Xα+αT XT Xα)

∂α
= −2YTX + 2αTXTX = 0

(26)

The distance from the critical point xj to the boundary (taken as an absolute value) is

dj =

∣∣∣∣ n
∑

i=1
aLSixji − yj

∣∣∣∣√
n
∑

i=1
a2

LSi

(27)

∥xj∥2 represents the module of the critical point xj.
As long as m ≥ n, the least squares solution aLS will have a unique solution. To ensure

fitting accuracy, it is necessary to search for m ≥ 2n critical points.

3. Improved Stochastic–Batch Gradient Pile Descent

The GD algorithm can be divided into three different forms: BGD, MBGD, and SGD.
In order to overcome the slow training speed of BGD and fully utilize the advantages of the
fast search for the optimal parameter region using SGD, this paper proposes an improved
stochastic–batch gradient descent method (S-BGD). Additionally, to address the issue of
the traditional GD algorithm easily getting stuck in local optima and saddle points during
training, a gradient accumulation strategy (GP) is introduced. Below, we will introduce
these improvement methods separately.

3.1. The Improved Method Based on Stochastic–Batch Gradient Descent (S-BGD)

The fundamental idea of the S-BGD method is to utilize the efficiency of stochastic
gradient descent (SGD) in the early stages of iteration to quickly search for the region where
the global optimum lies. Once the search point reaches the vicinity of the global optimum
region, the method switches to batch gradient descent (BGD) with a larger step size to
efficiently search for the global optimum within the parameter space, thereby improving
fitting accuracy. Figure 2 illustrates the optimization process of the S-BGD method for a
model with two-dimensional variables as an example.
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Figure 2. A conceptual illustration of the improved stochastic–batch gradient descent (S-BGD)
search method.

In Figure 2, the function L (x1, x2) represents the optimization objective of the model,
where x1 and x2 are the optimization variables. The initial point is located at point A, and
the global optimum is at point C. The parameter training starts using the SGD method in
the early stages of optimization to quickly search for the optimal parameter region at point
B. Subsequently, the BGD method is employed within the optimal parameter region with
larger steps to search for the global optimum at point C. As shown, the S-BGD method
combines the advantages of the fast parameter search capability of SGD and the ability of
BGD to find the global optimum, thereby improving the training speed while ensuring
fitting accuracy.

3.2. The Improvement Method Based on the Gradient Pile (GP)

In the traditional gradient descent (GD) algorithm, the optimization variable is up-
dated using the negative gradient as the correction term in each iteration. For an uncon-
strained optimization model, the k-th iteration of the traditional GD algorithm is performed
using the following formula:

minH(x) (28)

xk+1 = xk + λ1(−∇xk H) (29)

In Equations (28) and (29), H is the objective function of the optimization model. x is
the optimization variable. xk represents the value of x at the k-th iteration. −∇xk H is the
negative gradient of H with respect to x. λ1 is the step size used in the iteration.

The traditional GD algorithm guides the optimization variable to find points where the
gradient is zero and uses a gradient equal to zero as the convergence criterion. However,
during parameter training, there are many local optimal points and saddle points in
the solution space where the gradient is zero. If the gradient equal to zero is the only
convergence criterion, the GD algorithm may get stuck in local optimal points and saddle
point regions during the training process, reducing training accuracy. To address this
problem, this paper proposes an improvement based on the accumulation of gradients as
the correction term. The k-th iteration step is given by

ak = −∇xk H (30)

vk = λ2vk−1 + λ3ak (31)
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xk+1 = xk + λ4vk (32)

In Equations (30)–(32), a and v, respectively, represent the negative gradient of x and
its accumulation. λ2 and λ3 are weight parameters, and λ4 is the iteration step size. To
ensure the convergence of the iterative computation, the accumulation of gradients should
exhibit a decaying trend during the iteration process. Therefore, it is specified that λ2 < 1.

It can be observed that using the gradient accumulation as the correction term and
considering the gradient accumulation as 0 as the convergence criterion not only maintains
the descent rate of the negative gradient but also effectively avoids getting trapped in
saddle points and local optima. By doing so, it enables the search for the global optimal
solution and thus enhances the optimization capability of the GD algorithm.

The search process based on gradient accumulation is illustrated in Figure 3. In the
figure, a ball starts rolling down from the top of the hill, where the gradient accumulation
is represented as v and the negative gradient as a. The negative gradient acts as an
acceleration, guiding the motion of the ball. At the extremum point A and the saddle point
B, the values of a become 0. According to the traditional GD algorithm, the computation
would end at either point A or B. However, as seen in Figure 3, the optimal point is actually
C, not A or B. Thus, the traditional GD algorithm gets trapped in a local optimum or a
saddle point. On the other hand, using the gradient accumulation-based search method
proposed in this paper, when the ball reaches point A or B, it continues to move forward to
point C, effectively avoiding the problem of getting stuck in local points or saddle points
during the search process.
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In conclusion, this paper proposes a comprehensive improvement in parameter train-
ing strategy by employing both the S-BGD and GP methods. This approach enhances
training efficiency while effectively avoiding convergence to local points and saddle points.
We refer to this enhanced method as the stochastic–batch gradient pile descent (S-BGPD)
method. The S-BGPD method combines the SGD and GP methods in the early stages of
training to quickly reach the optimal parameter region and then switches to BGD with GP
to search for the global optimum.

4. A Methodology for Fitting Safety Domain Boundaries Based on the Improved
Stochastic–Batch Gradient Pile Descent
4.1. The Establishment of a Hyperplane Equation

The methods for solving hyperplane equations include fitting methods, dimensionality
reduction methods, restoration methods, and intercept methods, among others. In this
paper, a combination of stochastic gradient descent and batch gradient descent is used
to determine the coefficients of the hyperplane and construct the safety domain for the



Appl. Sci. 2024, 14, 3730 10 of 23

power system. The practical safety domain is composed of critical hyperplanes. A specific
description of the hyperplane equation ground is given in Section 2, Equations (20)–(27).

4.2. Training Is Conducted Using the Stochastic–Batch Gradient Descent Method

The parameter training of models based on deep learning mainly consists of two steps.
(1) Pre-training the parameters of each hidden layer in a feedforward manner to obtain
initial values for each hidden layer’s parameters. (2) On the basis of pre-training, applying
an algorithm to uniformly train all parameters to adjust the hidden layer parameters and
ultimately obtain the output layer parameters.

In the context of deep learning algorithm structure, this study adopts a six-layer hidden
layer configuration, with each hidden layer having 100, 80, 60, 40, 30, and 20 neurons
respectively. The activation function used for the hidden layers is the sigmoid function,
while the output layer utilizes a linear function as its activation function. The sigmoid
function is a typical activation function used in neural networks and has proven to be
effective. Its mathematical expression is given by Equation (33) as follows:

sigmoid(z) =
1

1 + e−z (33)

The model structure is illustrated in Figure 4.
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In Figure 4, {d, y} represents the input variables and output variables, where
d = [d1, d2, d3, d4] represents the influencing parameters such as power flow data, and
y represents the critical point active power. fi, wi, mi, bi, respectively, denote the number of
neurons, activation function, weight, and bias of the i-th layer. li represents the output of
the i-th layer, which also serves as the input for the I + 1-th layer. l0 represents the input to
the model, and the output of the model is the output of the last layer l7 = y.

There are two methods for layer-wise pre-training: unsupervised learning and super-
vised learning. Research has shown that the supervised learning approach for layer-wise
pre-training yields better fitting results. Therefore, in this paper, we adopt the supervised
learning method for layer-wise pre-training. Below, we illustrate the first step of pre-
training, focusing on the parameters (w1, b1) of the first hidden layer in the predictive
model, as shown in Figure 4. The training structure for the first and second layers is
depicted in Figure 5.



Appl. Sci. 2024, 14, 3730 11 of 23

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 27 
 

In Figure 4,  ,d y   represents the input variables and output variables, where 

 1 2 3 4, , ,d d d d d=
 

represents the influencing parameters such as power flow data, and 

y represents the critical point active power. , , ,i i i if mw b , respectively, denote the num-

ber of neurons, activation function, weight, and bias of the i-th layer. il  represents the 

output of the i-th layer, which also serves as the input for the I + 1-th layer. 0l represents 

the input to the model, and the output of the model is the output of the last layer 7 y=l . 

There are two methods for layer-wise pre-training: unsupervised learning and su-

pervised learning. Research has shown that the supervised learning approach for layer-

wise pre-training yields better fitting results. Therefore, in this paper, we adopt the super-

vised learning method for layer-wise pre-training. Below, we illustrate the first step of 

pre-training, focusing on the parameters ( 1 1,w b ) of the first hidden layer in the predictive 

model, as shown in Figure 4. The training structure for the first and second layers is de-

picted in Figure 5. 

First, construct a three-layer neural network, as shown in Figure 5a, where 1 1,b w  

represent the weight matrix parameters and biases of the output layer. The training opti-

mization model is given by Equations (34)–(36) as follows: 

1 1 1sigmoid( ), 1, ,j j j S= + = l w d b
 

(34) 

2

oss 1 1 1 1 1 1 1( , , , ) ( )j j

jL b b y   = + −w w b w l  (35) 

oss 1 1 1 1 oss

1

min ( , , , )
S

j

j

L b L
=

  =w w b  (36) 

In Equations (34)–(36), j
d  and 

jy  , respectively, represent the input variable and 

output variable of the j-th sample. S  is the total number of training samples, and ossL  

represents the training error or loss function. 

d1

d2

 

+1 +1

y1

 

+1 +1

y2

f1、w1、b1

l0 l1 f2、w2、b2

l1 l2l1
' l2

'

w2
 、b2

 

Input Layer

m1=100 m1  =1

Output LayerHidden Layer Output LayerInput Layer Hidden Layer

m0=4 m1=100 m2=80 m2  =1

(a) 
Layer l1 neuron training 

structure diagram
(b) 

Layer l2 neuron training 

structure diagram

w1
 、b1

 

 

Figure 5. The pre-training structures for the first and second hidden layers. 
Figure 5. The pre-training structures for the first and second hidden layers.

First, construct a three-layer neural network, as shown in Figure 5a, where w′
1, b′1

represent the weight matrix parameters and biases of the output layer. The training
optimization model is given by Equations (34)–(36) as follows:

lj
1 = sigmoid(w1dj + b1), j = 1, . . . , S (34)

Lossj(w1, w′
1, b1, b′1) = (w′

1lj
1 + b′1 − yj)

2
(35)

minLoss(w1, w′
1, b1, b′1) =

S

∑
j=1

Lossj (36)

In Equations (34)–(36), dj and yj, respectively, represent the input variable and output
variable of the j-th sample. S is the total number of training samples, and Loss represents
the training error or loss function.

By employing the stochastic–batch gradient descent method for training, we can obtain
the parameters w1, w′

1, b1, b′1 that satisfy our objectives. Then, based on Equations (34)–(36),
we can compute the output l1 for the first hidden layer. The specific implementation steps
are as follows.

(1) Firstly, randomly initialize the initial values of the parameter variables w1, w′
1, b1, b′1.

Then, perform iterative calculations using a combination of the SGD and GP methods. In
the k-th iteration of the j-th sample, the update for w1 is as follows:

aw1
k = −

∂Lossj

∂w1

∣∣∣∣
w1=w1k

(37)

vw1
k = λ2vw1

k−1 + λ3aw1
k (38)

w1(k+1) = w1k + λ4vw1
k (39)

where w1k,aw1
k , and vw1

k represent the values of w1 and its negative gradient and gradient
accumulation at the k-th iteration. The iterative update calculations for w′

1, b1, b′1 can be
found in Appendix B. The methods for computing gradients of parameter variables can be
referred to in references [21–26].
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(2) Subsequently, the values obtained from step (1) for w1, w′
1, b1, b′1 are used as initial

values, and the iterative calculation is performed using the BGD method and GP method
combined. At the t-th iteration, the iterative update for w1 is as follows:

aw1
t = − 1

S

S

∑
j=1

∂Lossj

∂w1

∣∣∣∣∣
w1=w1t

(40)

vw1
t = λ2vw1

t−1 + λ3aw1
t (41)

w1(t+1) = w1t + λ4vw1
t (42)

The iterative update calculations for w′
1, b1, b′1 can be found in Appendix B.

After the iterative calculations are completed, we obtain the pre-training values for
w1, b1, as well as the output values l1 of the samples at the first hidden layer. With the
pre-training of w1, b1 completed, we construct a three-layer neural network, as shown in
Figure 5b. We use l1 as the input for the second hidden layer and apply the same training
approach as in the first layer to train the parameters of the second hidden layer’s neurons.
We repeat this process iteratively until the pre-training of all six hidden layers’ neuron
parameters is completed.

After completing the pre-training of hidden layers 1 to 6, we proceed with the second
step of training, which involves using the algorithm to perform unified training on all
parameters. Through this process, we obtain the weight matrix parameters w and bias b
for all the neurons in the model.

4.3. Solve the Boundary of the Safety Domain by Utilizing the Stochastic–Batch Gradient Pile
Descent (S-BGPD) Method

Step One: Initialization in the simulation system involves selecting three stable op-
erating points of the system as starting points for the search process. Taking the two-
dimensional search as an example, we determine the search range and generate search
directions. We perform searches in three directions, 15◦, 45◦, and 75◦, from the baseline
operating point. We also conduct searches along the ray direction from the spatial origin to
the baseline operating point. These searches enable us to obtain the initial critical points.

Step Two: We use the stochastic gradient descent (SGD) method to iteratively calculate
the parameter variables and apply gradient accumulation to adjust the calculation results.
This process helps us find the region where the global optimum is located.

Step Three: Within this region, we employ the batch gradient descent (BGD) method
to perform iterative calculations and apply gradient accumulation to adjust the calculation
results. We obtain the hyperplane coefficients and credible hyperplane.

Step Four: Following the corresponding search methods in Step Two and Step Three,
sequentially search for critical points until the number of critical points exceeds ‘n’. At this
point, we can employ the least squares method for fitting operations.

Step Five: Validate whether the error of the obtained hyperplane meets the required
criteria. If the criteria are met, proceed to Step Six. If not, return to Step Two for recalibration.

Step Six: Finally, with the hyperplane that meets the error criteria, construct the safety
domain of the system.

At the initial operating points S1, S2, and S3, the first critical point is searched in
the directions of 15◦, 45◦, and 75◦, respectively. However, searching for the first critical
point near its vicinity may lead to data getting trapped in a local minimum, requiring GP
correction to improve the reliability of the results.

The flow chart of constructing security domains based on improved stochastic-batch
gradient pile descent is shown in Figure 6.
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5. Discussion
5.1. S-BGPD Is Used to Construct the SSR (Static Security Region)

In this example, the IEEE-118 system is used to construct the boundary of the hy-
perplane. Firstly, time domain simulation results are obtained using MATLAB software
(9.10.0.1602886 R2021a) to gather the power flow data. Then, based on the constraints
of the stochastic–batch gradient descent method for the hyperplane, the safety domain’s
hyperplane is constructed. Finally, the optimal coefficients for the hyperplane are obtained.

In the example of the IEEE-118 node system, the structure is illustrated in Figure 7.The
system operates at a frequency of 50 Hz. The improved IEEE-118 node system consists of
186 transmission lines, 91 loads, and 54 generator units. The peak load of the system is
3733 MW. In this study, the penetration rate is set to 10 gradients with an increase of 5%,
starting from an initial penetration rate of 5%.
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The formula for calculating the new energy penetration rate, denoted as fNEW , is given
as the ratio of the total new energy generation capacity to the overall power demand of the
system, PL. The formula can be expressed as follows:

fNEW =
∑ PN

∑ PL
× 100% (43)

In the case study, ten nodes, namely, Node 27, Node 31, Node 46, Node 54, Node
59, Node 61, Node 73, Node 87, Node 111, and Node 107, are connected to wind power
generation. These nodes are equipped with DFIG (Doubly Fed Induction Generator)
wind turbines. Additionally, three critical nodes, G66, G103, and D27, are considered
for the construction of the safety domain. Their active power output is used to create a
three-dimensional vector to represent the safety domain.

As an example, the boundary surface of the security domain fitted for a new energy
penetration rate of 40% is shown in Figures 8 and 9.

The nodes Bus 66 and Bus 27 are chosen as key nodes. In the 2D space with P66 and
P27 as coordinate axes, the approximate boundary of the SSR is searched using the method
proposed in this chapter. Analytical expression for the approximate 2D SSR hyperplane of
the IEEE-118 system is shown in Table 1. The analytical expression for the approximate
boundary of the SSR in the 2D active power injection space is shown in Figure 8.

Table 1. Analytical expression for the approximate 2D SSR hyperplane of the IEEE-118 system.

Hyperplane Analytical Expression Range of P27

H1 −0.1700P27-P66 + 2.8423 = 0 [0.1600, 1.8960]
H2 −0.4980P27-P66 + 3.4641 = 0 [1.8960, 2.6850]
H3 −1.1148P27-P66 + 5.1203 = 0 [2.6850, 3.5350]
H4 −2.2942P27-P66 + 9.2897 = 0 [3.5350, 3.9794]
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Further, taking Bus 66, Bus 27, and Bus 103 as voltage stability critical nodes, with
θmax = 13◦ and hmax = 0.05, the approximate SSR boundary in three-dimensional space
with P66, P27, and P103 as axes is depicted in Figure 9. The analytical expression for this
boundary is provided in Appendix A.

In Figure 9, the surface edges are irregular with jagged protrusions, indicating the
influence of new energy uncertainties at a 40% wind power penetration rate. Overall, the
surface transitions smoothly from the lowest penetration point (blue area), representing
a relatively stable state of the system, to the highest penetration point (red area), which
may approach the limits of system stability. The transition is relatively smooth, and the
area distribution of various states on the surface is balanced, indicating that the system can
accept static safety and stability at a 40% wind power penetration rate.
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5.2. The Static Safety Domain of the System at Different Penetration Rates

Through extensive simulation calculations, it was found that the boundary of the static
security region (SSR) can be fitted using hyperplanes. Then, several operating points near
the boundary are selected for time domain simulation to verify the constructed boundary,
ensuring that the error remains within the permissible range for engineering applications.
The figure below shows the cases where the penetration rate ranges from 5% to 50%.

The SSR constructed in three-dimensional space visually reveals the range of static se-
curity in the three-dimensional space, delineated by the coordinated active power output of
synchronous units G103 and G66, along with the active power output of DFIG wind turbine
D27. The SSR constructed from these three entities exhibits a smooth characteristic. As the
penetration rate of new energy increases, the determining factors of the SSR boundary tend
to converge towards new energy sources. The static security domain between the three
entities was fitted by critical points searched using an improved gradient descent method.

In Figure 10, from the top left to the bottom right, one can observe significant changes
in certain areas of the graph as the wind power penetration rate increases. At lower
penetration rates, the data appear more concentrated and coherent. As the penetration
rate increases, the data begin to exhibit greater fluctuations, especially in certain areas in
Figure 10 at penetration rates of 45% and 50% (such as the transition area from yellow to
red) where abrupt changes occur, indicating that the system behaves more dynamically or
unstably at higher penetration rates.
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At lower penetration rates, the system exhibits more stable behavior with a relatively
even distribution of active power. As the penetration rate increases, the graph becomes
more variable, particularly in areas with higher power levels. This means that as more wind
power is integrated, the system becomes more dynamic and requires more regulation to
maintain stability. At high penetration rates (such as 45% and 50%), the system experiences
significant fluctuations, indicating potential stability issues at these nodes, which need to
be addressed by adjusting the outputs of other nodes or by adding energy storage and
other frequency regulation measures.

From the perspective of the safety domain, at low penetration rates, the safety domain
is larger, meaning that the power system can operate safely within a larger state space. At
high penetration rates, the safety domain irregularly shrinks, indicating that the system is
more sensitive to power changes, with stricter operational restrictions. Particular attention
is given to the static safety domain of the system with a wind power penetration rate of
40%. Although its stability is not as good as that at about 10% penetration in Figure 10, it
generally meets the stability requirements.

5.3. Validation of Effectiveness

(1) Validation of engineering allowable error

Taking a 40% new energy penetration rate as an example, to validate the effectiveness
of the proposed method, it was compared with the traditional fitting method. The compari-
son was based on the error defined as the average ratio of the distance between all critical
points (injection power vectors) and the boundary of the hyperplane to the magnitude of
the injection power vector at that moment.

errj =
m

∑
j=1

1
m

dj

∥xj∥2 =
m

∑
j=1

1
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∣∣∣∣ n
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In the equation, dj represents the distance from the critical point to the system hyper-
plane, ∥xj∥2 represents the module of the critical point in the system (module of the power
vector), and aLSi represents the coefficients of the system hyperplane.

The comparison of errors between the method used in this article and the traditional
fitting method is shown in Table 2.

Table 2. Comparison of errors.

Method Penetration Rate of
New Energy/%

Angle between
Each Hyperplane/◦

Average Fitting
Error of Critical

Points/%

S-BGPD 40 2.12 1.27
Traditional fitting method 40 2.03 1.20

Out of the 268 critical points in the three-dimensional safe region, 249 points have a
relative error of less than 0.5%, accounting for 92.91% of the total; 19 points have a relative
error between 0.5% and 1.5%, accounting for 7.09% of the total; and the maximum relative
error is 1.365%. All errors are within the permissible engineering tolerance (5%).

(2) Boundary Time Domain Validation

Taking a 40% new energy penetration rate as an example, a number of running points
are found at the boundary point for time domain simulation, and then the boundary is
constructed accurately based on whether the simulation result is in a stable state and
whether the region where the point is located is a safe region. In order to further verify the
accuracy of the result, several points near the critical surface of the safety domain are taken
for time domain simulation verification.

The time domain simulation at operating points 2, 9, and 10 resulted in an unstable
state, and these points are located outside the hyperplane, not satisfying the stability
constraints. Based on the results of the time domain simulation in Table 3, the determination
obtained through the stochastic–batch gradient descent with the gradient accumulation
strategy remains consistent with the time domain simulation, indicating that the use of the
improved stochastic–batch gradient descent and gradient accumulation strategy effectively
searches for the SSR with the required accuracy.

Table 3. Time domain simulation results with a 40% penetration rate.

Operating Point
Output of

Generators G66
and G103/MW

Active Power
Output of Wind

Turbine
D27/MW

Whether It Is
Located within

the Safety
Domain

Time Domain
Simulation

1 2204.312297 1528.687703 Yes Stable
2 2216.342716 1516.657284 No Unstable
3 2239.286794 1493.713206 Yes Stable
4 2210.594078 1522.405922 Yes Stable
5 2206.249615 1526.750385 Yes Stable
6 2232.481303 1500.518697 Yes Stable
7 2169.626044 1563.373956 Yes Stable
8 2225.400152 1507.599848 Yes Stable
9 2227.172067 1505.827933 No Unstable
10 2229.287542 1503.712458 No Unstable

5.4. Compare and Analyze the Results Obtained from Different Methods

To validate the effectiveness and accuracy of the improved stochastic–batch gradient
descent algorithm, different methods before and after the improvement are compared
to observe the enhancements in computational efficiency and precision achieved by the
improvements to the gradient descent algorithm.
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In Figure 11, it is evident that all four methods converge. BGD converges slower due
to the use of a smaller step size to ensure stability. On the other hand, SGD iterates with
a single sample at a time, which prevents it from exploring the global optimal solution,
leading to oscillations in the convergence curve. Compared to these two methods, S-BGD
demonstrates better convergence characteristics. Its convergence is more stable and efficient
than BGD and SGD.
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In Table 4, it can be observed that the S-BGD method has a lower fitting error compared
to the SGD and BGD methods, indicating that the S-BGD method, which combines both the
SGD and BGD methods, exhibits better optimization capabilities than using the SGD or BGD
methods individually. Furthermore, the S-BGPD method outperforms the S-BGD method
in terms of fitting accuracy, indicating that the incorporation of the gradient accumulation
strategy GP allows the S-BGPD method to obtain relatively superior solutions and thereby
improves fitting precision.

Table 4. Comparison of results from different methods.

Method
Relative Errors/%

Time/s
Average Relative Error Maximum Relative Error

SGD 1.584 2.917 213.97
BGD 1.423 2.597 572.56

S-BGD 1.334 2.044 312.42
S-BGPD 1.283 1.419 376.59

Regarding training time, the BGD and S-BGD methods have training times of 572.56 s
and 312.42 s, respectively. This demonstrates that the S-BGD method achieves a 45% reduc-
tion in training time compared to BGD, highlighting its enhanced computational efficiency.
On the other hand, the S-BGPD method has a training time of 376.59 s, representing a 20%
increase compared to S-BGD. This increase in training time is mainly due to the introduction
of the gradient accumulation strategy GP, which elongates the search path to avoid local
optima or saddle points and increases the computational load.

To validate the effectiveness and accuracy of the choice of hidden layers, the S-BGPD
method was employed in the same IEEE-118 bus system with configurations of 5 and
10 hidden layers, respectively, to optimize and observe their error results.

In Figure 12, it can be observed that after more than 100 iterations, the cumulative
relative errors of the optimization results in five and ten hidden layers that are not sig-
nificantly different. It can tentatively be concluded that the results obtained using the
S-BGPD method with either configuration are similar. The reason for not considering more
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layers is that too many layers may lead to overfitting, where the model learns the noise
in the training data, leading to poor generalization of new data. Therefore, considering
computational efficiency, it is advisable to choose five hidden layers.
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6. Conclusions

This paper presents an improved strategy for parameter optimization training and
applies it to static safety domain analysis in power systems. The proposed deep learning
algorithm with the improved stochastic–batch gradient descent method is employed to
construct the static safety domain in power systems under high penetration of new energy
sources. This study extensively utilizes time domain simulations on the test system and
finds that the boundary can be effectively approximated using the hyperplane method,
displaying smooth linear characteristics and fitting errors within the acceptable engineering
range. Based on the test results, the following conclusions are drawn:

(1) The combination of stochastic gradient descent (SGD) and batch gradient descent
(BGD) in the training of parameters for deep learning prediction models can effectively
improve both training efficiency and performance.

(2) The utilization of the gradient accumulation strategy during the training process
with SGD and BGD helps to address the problem of easily getting trapped in local optima
and saddle points, leading to enhanced accuracy in the model.

(3) When compared to the traditional shallow training Backpropagation (BP) neural
network algorithm, the proposed deep learning approach in this paper significantly reduces
the cumulative relative error and maintains consistent results with time domain simulation
verification. These findings demonstrate the effectiveness of the proposed method in power
system static safety domain analysis.

(4) In the IEEE-118 node system, the variation patterns of the static security domain
boundaries were explored under different wind power penetration rates. From the per-
spective of the security domain, at low penetration rates, the security domain is larger,
indicating that the power system can operate safely within a larger state space. At high
penetration rates, the security domain irregularly contracts, showing that the system is
more sensitive to power changes and has stricter operational restrictions. Special attention
was given to the static security domain at a 40% wind power penetration rate, where the
power system meets the stability requirements of high-penetration power systems.
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SSR Static Security Region
GD Gradient Descent
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GP Gradient Pile
S-BGPD Stochastic–Batch Gradient Pile Descent

Appendix A

Table A1. Coefficients of the approximate three-dimensional SSR hyperplane in the IEEE-118 node system.

Hyperplane a b c d P27 P66

1 −0.2019 −1.1878 −0.0556 3.3851 [2.5200, 2.8151] [0.1600, 1.8960]
2 -0.2688 −0.5399 −0.0583 1.8795 [2.1271, 2.6622] [1.4620, 2.6850]
3 −0.6484 −0.5816 −0.0080 2.9793 [1.1796, 2.1422] [2.6630, 3.5350]
4 −0.6976 −0.3041 −0.0302 2.8296 [0.1600, 1.1920] [3.5000, 3.9794]
5 −0.0827 −0.8909 −0.0590 2.5425 [2.6622, 2.7831] [0.1600, 1.4620]
6 −0.3558 −0.8218 −0.0596 2.7583 [2.1422, 2.6622] [1.4520, 2.6630]
7 −0.6502 −0.5727 −0.0641 3.0125 [1.1920, 2.1422] [2.6370, 3.5000]
8 −1.3144 −0.3262 −0.8047 5.9583 [0.1600, 2.0809] [3.2300, 3.9767]
9 −0.0827 −0.8840 −0.0666 2.5354 [2.6169, 2.7378] [0.1600, 1.4520]

10 −0.3570 −0.8108 −0.0377 2.6979 [2.0951, 2.6169] [1.4100, 2.6370]
11 −0.4203 −0.4058 −0.0196 1.9884 [1.4809, 2.1138] [2.5870, 3.2300]
12 −0.9038 −0.4702 0.0270 3.5743 [0.1600, 1.4809] [3.2300, 3.9172]
13 −0.0566 −0.8553 −0.1022 2.5328 [2.6036, 2.6862] [0.1600, 1.4100]
14 −0.3351 −0.8054 −0.0632 2.7093 [2.1138, 2.6036] [1.3770, 2.5870]
15 −0.6429 −0.5631 −0.0790 3.0282 [1.1742, 2.1138] [2.5310, 3.4100]
16 −0.6940 −0.3407 −0.0883 2.9618 [0.1600, 1.1742] [3.3330, 3.9079]
17 −0.0280 −0.8327 −2.9749 10.7914 [0.1600, 2.6044] [0.1600, 1.3770]
18 −0.3297 −0.7896 −3.3600 12.2121 [0.1600, 2.5636] [0.1600, 2.5310]
19 −0.6350 −0.5488 −3.7416 13.5887 [0.1600, 2.0818] [0.1600, 3.3330]
20 −0.6800 −0.3460 −3.6558 13.2564 [0.1600, 1.1538] [0.1600, 3.8387]
21 0.0827 0.8909 −0.1327 −2.3806 [2.5200, 2.7831] [0.1600, 1.8960]
22 0.3558 0.8218 −0.0067 −2.7023 [2.1271, 2.6622] [1.4620, 2.6850]
23 0.6502 0.5727 0.0228 −2.9776 [1.1796, 2.1422] [2.6630, 3.5350]
24 0.7061 0.3262 0.0028 −2.8626 [0.1600, 1.1920] [3.5000, 3.9794]
25 0.0827 0.8840 0.0598 −2.5249 [2.6169, 2.7378] [0.1600, 1.4620]
26 0.3570 0.8108 0.0694 −2.7463 [2.0951, 2.6169] [1.4520, 2.6630]
27 0.4203 0.4058 −0.0055 −1.9500 [1.1920, 2.0951] [2.6370, 3.5000]
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Table A1. Cont.

Hyperplane a b c d P27 P66

28 0.9038 0.4702 0.0786 −3.7358 [0.1600, 1.4809] [3.2300, 3.9767]
29 0.0566 0.8553 0.0201 −2.3511 [2.6036, 2.6862] [0.1600, 1.4520]
30 0.3351 0.8054 0.0025 −2.5749 [2.0951, 2.6036] [1.4100, 2.6370]
31 0.6429 0.5631 0.0833 −3.0377 [1.1742, 2.1138] [2.5870, 3.4100]
32 0.6940 0.3407 0.0094 −2.7874 [0.1600, 1.1742] [3.4100, 3.9172]
33 0.0280 0.8327 0.0500 −2.3182 [2.5636, 2.6044] [0.1600, 1.4100]
34 0.3297 0.7896 0.0639 −2.6633 [2.0818, 2.5636] [1.3770, 2.5870]
35 0.6350 0.5488 0.0879 −3.0040 [1.1538, 2.0818] [2.5310, 3.4100]
36 0.6800 0.3460 0.0688 −2.8648 [0.1600, 1.1538] [3.3330, 3.9079]

Appendix B

Table A2. Formulas of iterative updating.

Method Variant Formulas of Iterative Updating

SGD

w1 aw1
k = − ∂Lossj

∂w1

∣∣∣
w1=w1k

; vw1
k = λ2vw1

k−1 + λ3aw1
k ; w1(k+1) = w1k + λ4vw1

k

b1 ab1
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1 aw’
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k

b′1 ab′1
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∂b′1

∣∣∣
b′1=b′1k

; vb′1
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BGD
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The iterative update computations for w1, w’
1, b1, b′1 during the training processes of

SGD and BGD are presented in Appendix B, as indicated.
In the table, wk, aw1

k , and vw1
k represent the weight coefficient matrix, negative gradient,

and gradient accumulation of the k-th iteration, respectively. Other variables follow a
similar pattern.

References
1. Yan, X.; Zhang, X.; Zhang, B.; Ma, Y.; Wu, M. Research on Distributed PV Storage Virtual Synchronous Generator System and Its

Static Frequency Characteristic Analysis. Appl. Sci. 2018, 8, 532. [CrossRef]
2. Zheng, H.; Li, B.; Liu, D.; Yin, H.; Li, Z.; Zhang, B.; Yang, H.; Yue, H.; Zhao, G.; Cui, D. On-line evaluation index of power system

static stability situation based on time-sequence trajectory characteristics of voltage vorator. Power Syst. Technol. 2021, 45, 640–648.
3. Wang, Z.; Li, L.; Li, Z.; Cheng, Z. The evolution characteristics of power grid frequency probability distribution. Power Syst. Prot.

Control 2021, 49, 65–73.
4. Jin, W.; Zhang, S.; Li, J. Robust Planning of Distributed Generators in Active Distribution Network Considering Network

Reconfiguration. Appl. Sci. 2023, 13, 7747. [CrossRef]
5. Jarjis, J.; Galiana, F.D. Quantitative analysis of steady state stability in power networks. IEEE Trans. Power Appar. Syst. 1981, 100,

318–326. [CrossRef]
6. Lin, W.; Jiang, H.; Yang, Z. Tie-line Security Regions in High Dimension for Renewable Accommodations. arXiv 2022,

arXiv:2201.01019. [CrossRef]
7. Li, X.; Zhang, L.; Jiang, T.; Chen, H.; Li, G. Generic search method of power system security domain boundary based on lagrange

multiplier. Proc. CSEE 2021, 41, 5139–5153.

https://doi.org/10.3390/app8040532
https://doi.org/10.3390/app13137747
https://doi.org/10.1109/TPAS.1981.316845
https://doi.org/10.1016/j.energy.2023.126887


Appl. Sci. 2024, 14, 3730 23 of 23

8. Jiang, T.; Zhang, M.; Cui, X.; Li, Y.; Shi, Q. Optimization model for fast search of static voltage stability region boundary in power
system. Trans. China Electrotech. Soc. 2018, 33, 4167–4179.

9. Zhang, Q.; Zheng, H.; Wang, J.; Liu, X.; Qu, Y.; Bie, C. Power system static voltage stability margin calculation method based on
AQ node. Power Syst. Technol. 2019, 43, 714–721.

10. Xia, S.; Zhang, Q.; Hussain, S.T.; Hong, B.; Zou, W. Impacts of Integration of Wind Farms on Power System Transient Stability.
Appl. Sci. 2018, 8, 1289. [CrossRef]

11. Li, Y.; Li, Y.; Sun, Y. Online Static Security Assessment of Power Systems Based on Lasso Algorithm. Appl. Sci. 2018, 8, 1442.
[CrossRef]

12. Liu, Y.; Zhang, J. Gradient Descent Method. J. East China Inst. Technol. 1993, 2, 12–22.
13. Bottou, L. Online learning and stochastic approximations. Line Learn. Neural Netw. 1998, 17, 142.
14. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst.

2006, 19.
15. Guo, Y.; Song, X. Analysis and Improvement of the Gradient Descent Method. Sci. Technol. 2016, 15, 115–117.
16. Jang, B.; Yoo, I.; Yook, D. Pipelined Stochastic Gradient Descent with Taylor Expansion. Appl. Sci. 2023, 13, 11730. [CrossRef]
17. Liu, Y.; Cheng, Y.; Tao, Q. Individual Convergence of NAG with Biased Gradient in Non-smooth Cases. J. Softw. 2020, 31,

1051–1062.
18. Xie, T.; Zhang, C.; Xu, Y. Collaborative Parameter Update Based on Average Variance Reduction of Historical Gradients.

J. Electron. Inf. Technol. 2021, 43, 956–964.
19. Song, J.; Zhu, Y.; Xu, B. Batch Subtraction Update Variance Reduction Gradient Descent Algorithm BSUG. Comput. Eng. Appl.

2020, 56, 117–123.
20. Tan, H. Research on Fast Search Method for Static Security Domain Boundary of Power System; Northeast Electric Power University:

Jilin, China, 2019.
21. Yann, L.; Yoshua, B.; Geoffrey, H. Deep learning. Nature 2015, 521, 436–444.
22. Thomas, W.; Helmut, B. A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Trans. Inf.

Theory 2018, 64, 1845–1866.
23. Tong, Z.; Tanaka, G. Hybrid pooling for enhancement of generalization ability in deep convolutional neural networks. Neurocom-

puting 2019, 333, 76–85. [CrossRef]
24. Fang, Z.; Feng, H.; Huang, S.; Zhou, D.-X. Theory of deep convolutional neural networks II: Spherical Analysis. Neural Netw.

2020, 131, 154–162. [CrossRef] [PubMed]
25. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. In Parallel Distributed

Processing: Explorations in the Microstructure of Cognition; The MIT Press: Cambridge, MA, USA, 1986; pp. 318–362.
26. Chen, K. A Study of Efficient Training Algorithms to Deep Learning Models; University of Science and Technology of China: Hefei,

China, 2016; pp. 4–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app8081289
https://doi.org/10.3390/app8091442
https://doi.org/10.3390/app132111730
https://doi.org/10.1016/j.neucom.2018.12.036
https://doi.org/10.1016/j.neunet.2020.07.029
https://www.ncbi.nlm.nih.gov/pubmed/32781384

	Introduction 
	Research on the Static Security Region (SSR) of Power Systems Based on New Energy 
	Improved Stochastic–Batch Gradient Pile Descent 
	The Improved Method Based on Stochastic–Batch Gradient Descent (S-BGD) 
	The Improvement Method Based on the Gradient Pile (GP) 

	A Methodology for Fitting Safety Domain Boundaries Based on the Improved Stochastic–Batch Gradient Pile Descent 
	The Establishment of a Hyperplane Equation 
	Training Is Conducted Using the Stochastic–Batch Gradient Descent Method 
	Solve the Boundary of the Safety Domain by Utilizing the Stochastic–Batch Gradient Pile Descent (S-BGPD) Method 

	Discussion 
	S-BGPD Is Used to Construct the SSR (Static Security Region) 
	The Static Safety Domain of the System at Different Penetration Rates 
	Validation of Effectiveness 
	Compare and Analyze the Results Obtained from Different Methods 

	Conclusions 
	Appendix A
	Appendix B
	References

